Skip to main content
. Author manuscript; available in PMC: 2019 May 16.
Published in final edited form as: J Am Stat Assoc. 2018 May 16;113(521):95–110. doi: 10.1080/01621459.2017.1330202

Table 7:

Variable selection and clustering results based on AgeWise data. For the skewvarsel-p algorithm, the specific permutation of data types is provided in parentheses, where P=PSG, A=Actigraphy, and D=Diary. Variables represent averages over multiple nights of observation unless prefixed with “sd”, in which case they represent the standard deviation. The P, A, or D in parentheses after each variable indicates the data source through which it was measured. See Table 1 for full variable descriptions and abbreviations.

Algorithm Variables Selected Skewness Rankings Spearman r Median (Min., Max) Cluster Distribution Number of Clusters
clustvarsel SL(P), sdSL(D), SL(D), SL(A), RL(P), RLA(P) 5,14,7,6,20 0.07(0.003,0.93) CFUST 2
skewvarsel %Delta(P), Delta(P), Bed(P) 30,28,60 0.05(0.02,0.99) MSN 4
skewvarsel-p(PDA) %Delta(P), sdMood(D), sdSE(A), Delta(P), TST(P) 30,43,4,28,56 0.16(0.002,0.99) CFUST 4
skewvarsel-p(PAD) %Delta(P), sdSL(A), sdSL(D), Delta(P), SL(D), TST(P) 30,9,14,28,6,56 0.15(0.07,0.83) CFUST 3
skewvarsel-p(APD) SL(A), %Delta(P), sdWASO(D), Delta(P) 6,30,21,28 0.13(0.03,0.99) CFUST 2
skewvarsel-p(DAP) sdSL(D), SL(A), SL(P), SL(D), NREM(P) 14,6,5,6,67 0.19(0.05,0.83) CFUST 2
skewvarsel-p(DPA) sdSL(D), SL(P), SL(A), SL(D), NREM(P) 14,6,5,6,67 0.19(0.05,0.83) CFUST 2
skewvarsel-p(ADP) SL(A), sdWASO(D), N2(P), sdSL(A) 6,21,70,9 0.20(0.03,0.92) CFUST 2