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Abstract

Mirror therapy (MT) has been proposed as an effective rehabilitative strategy to alleviate pain 

symptoms in amputees with phantom limb pain (PLP). However, establishing the neural correlates 

associated with MT therapy have been challenging given that it is difficult to administer the 

therapy effectively within a magnetic resonance imaging (MRI) scanner environment. To 

characterize the functional organization of cortical regions associated with this rehabilitative 

strategy, we have developed a combined behavioral and functional neuroimaging protocol that can 

be applied in participants with a leg amputation. This novel approach allows participants to 

undergo MT within the MRI scanner environment by viewing real-time video images captured by 

a camera. The images are viewed by the participant through a system of mirrors and a monitor that 
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the participant views while lying on the scanner bed. In this manner, functional changes in cortical 

areas of interest (e.g., sensorimotor cortex) can be characterized in response to the direct 

application of MT.

SUMMARY:

We present a novel combined behavioral and neuroimaging protocol employing real-time video 

projection for the purpose of characterizing the neural correlates associated with mirror therapy 

within the magnetic resonance imaging scanner environment in leg amputee subjects with 

phantom limb pain.
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INTRODUCTION:

PLP refers to the sensation of pain perceived within the area corresponding to the missing 

limb postamputation1,2. This condition is a significant chronic health care burden and can 

have a dramatic impact on an individual’s quality of life3,4. It has been suggested that 

alterations in the brain structure and function play a fundamental role in the development 

and neuropathophysiology of PLP5,6. However, the underlying neural correlates of how pain 

symptoms develop and how they can be alleviated in response to treatment remain unknown. 

This lack of information is mostly due to technical challenges and limitations associated 

with performing a given therapeutic approach within the constraints of a neuroimaging 

environment such as MRI5,7,8.

Results from a number of studies attribute the development of PLP to maladaptive 

neuroplastic reorganization occurring within sensorimotor cortices, as well as in other areas 

of the brain. For example, it has been shown that following the amputation of a limb, there is 

a shift in the corresponding sensorimotor cortical representation of neighboring areas. As a 

result, neighboring areas apparently start invading the zones that used to correspond to the 

amputated limb9,10. In order to alleviate pain symptoms associated with PLP, treatments 

such as MT or motor imagery may be effective9,11,12. It is suggested that the alleviation of 

symptoms occurs putatively through the cross-modal re-establishment of afferent inputs, 

provided by the observation of mirror-reflected images from the nonaffected limb12–17. 

Through these images, participants are able to visualize the reflection of the opposite limb 

instead of the one that has been amputated, thus creating an illusion that both limbs remain. 

The illusion and immersive effects were previously studied by Diers et al. in healthy subjects 

in which a comparison of functional activation through functional MRI (fMRI) was 

evaluated after undergoing a task either with a common mirror box or virtual reality18. 

However, the neural correlates associated with the reversal of the maladaptive neuroplastic 

changes and the alleviation of symptoms remain poorly understood. Additionally, the 

underlying mechanism of PLP remains a topic of research as the clear underlying 

physiopathologic alteration behind the development of PLP is still incompletely elucidated 
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while controversial findings have been revealed5,19. As stated above, multiple authors 

attribute the development of pain to deafferentation and cortical reorganization of the 

affected brain area (area of the amputated limb)6–8; however, opposite results were described 

by Makin and collaborators in which the presence of pain is associated with the preservation 

of brain structure and pain is attributed to a reduction interregional functional connectivity19. 

In view of these controversial and opposite findings, we believe that the novel approach 

presented here will bring additional relevant information to the study of PLP and will allow 

scientists to evaluate the effects of MT in a live environment with the degree of brain 

activation while comparing them with the levels of pain assessed in our full protocol19.

Previous literature on this topic has shown that MT is one of the most appropriate behavioral 

therapies for the treatment of PLP due to its easy implementation and low costs12. In fact, 

previous studies of this technique have shown evidence of a reversal of maladaptive changes 

within the primary sensorimotor cortex in amputees with PLP8,20,21. Even though MT is 

perhaps one the most inexpensive and most effective approach to treat PLP12,22–24, more 

studies are needed to confirm these effects since some patients do not respond to this type of 

treatment8 and there is a lack of larger randomized clinical trials that provide high-evidence-

based results25.

One of the hypotheses by which MT can reduce PLP is related to the fact that the mirror 

image of the not-amputated body part helps to reorganize and integrate the mismatch 

between proprioception and visual feedback26. The underlying mechanisms of MT could be 

associated with the reversion of the maladaptive mapping of somatosensory8,27,28.

For MT, subjects are required to perform several motor and sensory tasks using their intact 

limb (e.g., flexion and extension) while observing this effect in a mirror located in the 

midline of the participant’s body, thereby creating a vivid and precise representation of 

movement within the area of the amputated limb29.

To further develop the scientific understanding of the pathophysiology aspects involved in 

PLP, it is crucial to better characterize the underlying neuroplastic changes that result from 

limb amputations, as well as the improvement of pain symptoms provided by MT. In this 

regard, neuroimaging techniques, such as fMRI, have emerged as powerful tools to help 

elucidate the pathophysiologic mechanisms associated with cortical reorganization and 

provide clues toward optimizing the rehabilitation of individuals with PLP in the clinical 

context30,31. Furthermore, the high spatial resolution afforded by fMRI (as compared to 

electroencephalography, for example) allows for more accurate mapping of brain responses, 

such as finger and digit representations, in the sensorimotor cortex along with other regions 

of the brain32.

To date, the neurophysiology associated with MT remains elusive due in large part to the 

challenges of carrying out the procedure within the scanner environment (i.e., it is difficult 

for an individual to perform the therapy while lying in the scanner). Here, we describe a 

method that allows for an individual to observe their own leg movement in real-time while 

lying supine within the narrow confines of the scanner bore. An accurate recreation of the 

vivid and immersive sensation elicited by the therapy can be recreated using a video camera 
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that captures real-time images of the moving leg, and a system of mirrors and a monitor that 

can be viewed directly by the study participant.

Past studies have attempted to incorporate techniques such as video recording, virtual reality, 

and prerecorded animations as means to present the visual stimulus and circumvent these 

technical challenges9,16,33,34. Yet, these techniques have been limited in their 

effectiveness35–39. In the particular case of using a prerecorded video, there is an often poor 

synchronization between participants’ movements and the ones provided by the video, as 

well as a lack of timing accuracy, which leads to a poor realistic impression that the 

individual’s own leg is moving. In order to improve this sense of sensorimotor immersion, 

other techniques, such as virtual reality and digitized animations, have been attempted. Yet, 

they have failed to generate visually convincing sensations due to a low image resolution, a 

limited field of view, unrealistic or nonnatural human-like motions, and presence of motion 

lag (i.e., desynchronization of movement). Additionally, the lack of an accurate modeling 

combined with the poor control over other features, such as the effects of friction, 

momentum, and gravity, hinders the perception of a vivid and immersive feel40. Therefore, 

for amputees, it is worth to explore strategies to ensure that subjects are engaged in the 

cognitive task (observation) and immersive on the illusion of amputated limb movement. 

Finally, the required resources for developing and implementing these complex strategies 

may be time-consuming and/or cost prohibitive.

We describe a new approach that we believe creates a realistic and vivid sense of immersion 

whereby the participant can see a live and real-time video of a projected image of their own 

limb while they perform a session of the MT31. This approach is performed while the 

individual is lying in the scanner bore and is without substantial costs or extensive technical 

development.

This protocol is part of a National Institutes of Health (NIH) Research Project Grant (RO1)-

sponsored clinical trial that evaluates the effects of the combination of a neuromodulatory 

technique, namely transcranial direct current stimulation (tDCS), with a behavioral therapy 

(mirror therapy) in order to relieve phantom limb pain31. We evaluate changes in the visual 

analog scale (VAS) for pain at baseline, prior, and after each intervention session. fMRI is 

used as a neurophysiologic tool in order to evaluate structural changes in brain function and 

its correlation with the relief of PLP. Therefore, an initial fMRI is obtained in order to have a 

baseline map of the structural organization of the participant’s brain, which will either show 

that there is cortical maladaptive reorganization5,6,8,11,13,14,18,28 or that there is not19; in the 

same way, the scientist can observe what areas are activated at baseline with the task of MT 

in order to understand the areas’ activation response to the MT; lastly, it is possible to obtain 

a second fMRI postintervention to see if changes (modulation) have been generated in the 

cortical reorganization after the combined therapy with tDCS and MT and to analyze if those 

changes are correlated or associated with the degree of pain change. Therefore, this protocol 

allows scientists to evaluate structural reorganization changes in patients with PLPs during 

MT and also helps them to understand if these changes seen in fMRI are associated with 

changes in PLP, therefore providing additional details on how MT affects brain structural 

and functional activity to modify phantom pain.
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PROTOCOL:

1. Preparation of the subject

1.1. Prior to participation, have the participant complete a consent form and an MRI 

safety screening evaluation, the latter carried out by the neuroimaging technician 

at the scanning facility, to ensure that the participant does not have any known 

contraindications to being scanned (e.g., metal in their body, a history of 

claustrophobia, or pregnancy).

1.2. Provide the participant with detailed instructions with regard to the experimental 

procedure.

1.3. Have the subject listen to an instructional recorded audio to ensure that they are 

able to understand and follow the instructions provided during the scanning 

procedure.

1.4. Carry out a practice run in a mock scanner to facilitate the familiarization of the 

task instructions within the scanner environment.

NOTE: The mock scanner is similar in every way to the real data-acquiring MRI 

scanner, but without the active magnet.

1.5. Give clear instructions to the participant to avoid any movements of the residual 

and phantom limb to avoid any contractions of the stump muscles that can 

interfere with the brain signal.

2. Preparation of the experiment

NOTE: The experimental protocol is similar to what has been previously described for the 

purposes of investigating the neural correlates associated with the mental imagery of moving 

the upper limbs. Here, we have adapted the approach to the movement of lower limbs. 

Specifically, the behavioral tasks consist of the following.

2.1. Before entering the scanner room, ask the participant to remove their prosthesis 

and any metal objects.

2.2. Have the MRI technician make sure that the participant has no metal on their 
body that might put them at risk.

2.3. Transport the participant to the MRI room in an MRI-compatible wheelchair; 

after that, ask the participant to transfer themselves to the MRI scanner bed.

2.4. For the MT, comfortably place a single-piece, MRI-compatible, horizontal 

mirror (10,000 mm × 255 mm × 3 mm) supported by a triangular stand between 

the legs of the participant while they are lying supine on the scanner bed. Use 

sandbags in order to allow stability and a better positioning of the mirror. Attach 

the mirror stand to an adjustable arm so that it can be positioned in accordance 

with the subject’s height and positioning without contacting any part of the body 

(Figure 1).
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2.5. For the visual feedback, mount an MRI-compatible digital camera on an 

adjustable tripod stand near the intact leg of the participant (Figure 1).

NOTE: The camera used is listed in the Table of Materials and costs 

approximately 217 USD. The camera acquires images in 1,080 pixels image 

resolution. Since the camera itself was not placed inside of the MRI bore, there 

is not a need for costlier MRI-compatible systems. The camera is attached to an 

MRI-safe IV pole via a gooseneck modular hose to enable positioning changes.

2.6. Attach the camera to a tripod, allowing the appropriate adjustment of the 

viewing angle and field of view.

2.7. Place a second mirror on the MRI head coil, allowing the participant to view the 

image presented on the monitor directly while lying completely inside the 

scanner bore (Figure 2).

2.8. Set up the real-time video image transmission to be sent through a computer-

controlled system and project it onto a monitor placed at the back of the scanner 

bore (near the head of the participant).

NOTE: There is no perceivable time delay between the projection and the 

captured actual movement. The actual movement and the visual feedback are 

separated by less than a second which does not interfere in the real-time feeling, 

as stated by participants.

3. Scanning and data collection

3.1. Acquire fMRI data with a 3 T scanner using an 8-channel phased-array head 

coil.

3.2. Obtain imaging sequences that include a high-resolution T1-weighted structural 

image (TE: 3.1 ms, TR: 6.8 ms, flip angle: 9°, isotropic 1 mm voxel size) 

(anatomical scan), and blood-oxygen-level-dependent (BOLD) fMRI signal 

measurements using a protocol based on multislice gradient (fast-field) echo-

planar imaging (EPI) and standard parameters (TE: 28 ms, TR: 2 s, flip angle: 

90°, isotropic 3 mm voxel size, oriented axially and covering the whole brain).

NOTE: The entire scanning procedure lasts approximately 30 min. This includes 

an initial 4 min structural (anatomical) scan and four task (functional) 

acquisitions lasting 6 min each. For each task (functional acquisition), the 

patient is expected to tap their foot at a speed of 1 tap every second.

3.3. During the scans, have the participant wear sound-isolating MRI compliant 

headphones (e.g., Westone) throughout the scanning session to hear the 

investigator’s auditory commands.

3.4. While the patient is lying in the scanner, play the auditory track so that the 

participant hears a series of auditory cues for performing the given behavioral 

task.
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3.5. Use the following commands: 1) “leg” for movement of the amputated leg (see 

the note after step 3.11); 2) “mirror” for movement of the intact leg while 

viewing a real-time video recording (thus observing the movement of a leg in the 

position of the amputated leg using the mirror); 3) “rest” in which the participant 

stops any leg movement and lies motionless with their eyes closed. In addition, 

have the investigator says “start” and “end” to signify the beginning and the end 

of the experimental run, respectively (Figure 3).

3.6. Have the participant perform a movement with the nonamputated lower leg with 

the eyes closed (i.e., repeated plantar flexion and dorsal flexion of the foot at a 

pace of approximately one tap per 2‒3 s).

3.7. Have the participant perform the same leg movement, but now the participant 

observes a mirror image of his/her leg moving in the place of the amputated leg 

using real-time video capture of the movement of the intact leg.

3.8. Have the participant perform a rest condition, in which he/she lays still with no 

movement of the legs.

NOTE: Each condition lasts for 20 s (i.e., one experimental block = 60 s) for a 

run length time of 6 min (six repetitions of the experimental run per block).

3.9. Collect data in a single session for each participant.

3.10. Instruct the investigator to take note of any unwanted movements, and, in 

between the runs, to instruct the participant to keep the correct pace and 

movements.

3.11. Make sure that, after the procedures are performed, the investigator transfers the 

data to an encrypted flash drive and stores it in a secure location in the facility.

NOTE: In this protocol, the word “leg” is used in place of the word “foot”. Even 

though the participants are only making foot movements (due to restraints from 

the MRI machine), most of them have a bigger part of the lower limb amputated 

and are referred as leg amputees, not foot.

4. Analysis

4.1. Analyze the functional neuroimaging data using standard techniques30,41, using 

the longitudinal analysis design (baseline and posttreatment) and processing 

stream in the FMRIB Software Library (FSL) software package42,43.

4.1.1. For each functional scan, perform 3D motion correction using the first volume 

alignment, high-pass filtering to remove temporal linear trends, and perform a 

correction for slice time acquisition and spatial smoothing (Gaussian kernel, 5.0 

mm full width at half maximum [FWHM]).

4.1.1.1.Mark volumes with a motion above 0.9 mm in any direction with FSL’s motion 

outlier detection processing stream and mathematically “scrub” them from the 

final analysis44.

Velez et al. Page 7

J Vis Exp. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NOTE: If more than 25% of the volumes are designated for removal, the whole 

acquisition should be excluded from the total dataset.

4.1.2. Coregister each of the preprocessed functional images to the high-resolution 

anatomical and, then, bring them into standard Talairach space.

4.1.3. Fit a general linear model (GLM) to a voxel time course where each 

experimental condition is modeled by a boxcar regressor that should be 

smoothed with double-gamma hemodynamic response function.

4.1.4. Use the high-resolution anatomical T1-weighted anatomical volume to construct 

an inflated cortical surface mesh to see the sulcal activation, and then, project 

individual subject maps for each contrast of interest onto the subject’s 

reconstructed mesh.

NOTE: The projections should show the significant values from the GLM. Set 

the statistical significance value threshold at the standard criterion of p < 0.001 

corrected for multiple comparisons, using a cluster-size threshold adjustment.

4.2. Conduct a region of interest (ROI) analysis.

4.2.1. Define the primary ROI broadly with FreeSurfer’s Desikan atlas45 of the 

primary sensorimotor cortex and, then, refine it for each subject by using the 

subject-specific functional activation during the leg vs. rest condition at the 

baseline scan.

4.2.2. Reflect the refined primary ROI onto the homologous area of the opposite 

hemisphere (i.e., ipsilateral primary sensorimotor representation of the intact 

lower limb).

4.2.3. Use the standard FreeSurfer anatomical Desikan atlas45 to define the entire 

(bilateral) occipital visual cortex for the secondary ROI.

REPRESENTATIVE RESULTS:

Generating the sensation associated with MT using real-time video projection is feasible. 

Participants have subjectively reported that the video image perceived is life-like and the 

sensation is immersive.

Furthermore, the patterns of cortical activation associated with MT (i.e., movement of the 

leg and viewing the projected mirror image) in the scanner environment are robust. In a pilot 

study, the cortical responses to MT were recorded using fMRI in a participant with lower-

limb amputation of the left leg (male, 56 years old, traumatic amputation of lower leg below 

the knee) following the task protocol described above. Comparing leg movement versus the 

rest condition resulted in a robust activation within the sensorimotor representation of the leg 

of the contralateral (i.e., left) hemisphere. Ipsilateral cortical activation was observed within 

the sensorimotor leg area (Figure 4A). The mirror condition versus rest condition also 

confirmed robust contralateral as well as ipsilateral activation of the cortical leg 

sensorimotor representation. Additionally, robust cortical activation was seen with posterior 
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occipital (i.e., visual) cortical areas associated with viewing the projected image of the 

moving leg.

The patterns of activation described represent activations at the baseline condition, that is, at 

the initiation of the therapy period. The initial responses serve to define the baseline 

activation for the purposes of defining regions of interest (ROIs), and a subsequent 

comparison after the MT protocol is completed in each individual.

DISCUSSION:

This protocol describes a novel, feasible procedure that allows investigators to accurately 

characterize the neural correlates associated with MT in individuals with PLP.

As previously mentioned, past studies have attempted to investigate the neural correlates 

associated with MT treatment by incorporating various techniques such as video recording, 

virtual reality, and prerecorded animations9,33,34. However, these approaches have been 

limited in terms of effectiveness37–39. In the protocol outlined here, we incorporate simple, 

commercially available, and low-cost elements to create a life-like and immersive sensation 

associated with MT within the MRI environment. All the equipment used is MRI compatible 

(i.e., nonferromagnetic materials) and can be easily adjusted and modified for each 

individual. The key elements consist of three main subparts: (1) video camera and monitor; 

(2) the reflective mirror attached to the head coil; (3) the large reflective mirror and supports. 

The video is transmitted to the monitor so the subject can watch the leg and mirror leg 

movements in real-time. The orientation of the mirror in the head coil allows the participant 

to view the monitor while lying supine and without excessive movement of the head. The 

mirror is adjusted to the subject’s amputated leg length using an adjustable stand in order to 

avoid any contact with the participant’s leg. From a data acquisition and analysis point of 

view, functional neuroimaging data is analyzed using standard techniques (i.e., region of 

interest analysis) with special emphasis on a pre-post longitudinal design30,41.

Besides the real-life immersive sensation provided to the participant, another advantage of 

this protocol is that the system can be adjusted for the purposes of viewing different limbs 

(upper and lower) and can be used to test any combination of limb movement.

The immersive sensation provided by the video transmission is an important factor when it 

comes to generating the potential therapeutic effect of MT. The use of the real-time video 

captured from the video camera as presented here can be superior to past approaches such as 

computerized images, virtual reality, or prerecorded images. However, we did not compare 

this technique with visual illusion ones. Moreover, a previous study in healthy participants 

evaluated functional brain activation after performing a task with a conventional mirror box 

and a virtual-reality-projected image of the upper limb. In the results of this study, Diers and 

collaborators found no differences between vividness or perceived authenticity of the 

illusion between the visual reality illusion and the mirror box therapy18.

On the other hand, this protocol also has its limitations and challenges associated with it: 

due to the nature of the leg movement, motion artifacts (i.e., associated with excessive head 

movement) may compromise data quality. Although the patient is allowed to see a projected 
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live image of their own limb, the protocol lacks a questionnaire to properly assess the 

vividness and immersion that the participant feels while undergoing the tasks. In addition, 

we did not compare the task performed in this technique with other strategies, such as visual 

stimuli only of a recording of the leg movement without the patient actually performing the 

movement or a virtual reality imaging projection of a lower limb moving. This was done in 

particular because it was not the goal of this protocol and because there are previous studies 

that have already studied and compared these interventions and revealed no difference in the 

pattern of activation, as well as no difference in vividness of the task between interventions, 

as mentioned above18. In addition, to overcome challenges related to the motion, we 

employed current state-of-the-art motion detection and correction strategies26. To further 

improve data quality, new strategies (e.g., physical restraints placed around the subject’s hips 

to help isolate leg motion) are being pursued. Lastly, with regard to modification and 

troubleshooting, we initially had a fixed camera stand that did not allow us to obtain and 

adequately capture the patient’s lower limb reflection in the mirror; however, utilizing an 

adjustable stand, we were able to obtain the most precise and accurate image transmission. 

Additionally, during the first steps of the development of the protocol, the mirror stand was 

fragile and fell easily with any mild movement. This was overcome when sandbags were 

added to give stability to the mirror montage.

Finally, given the ease of implementing the experimental setup, this approach may allow the 

evaluation of the effects of MT not only in limb amputees but also in other conditions which 

use this treatment approach, such as stroke and spinal cord injury.

ACKNOWLEDGMENTS:

This study was supported by an NIH RO1 grant (1R01HD082302).

REFERENCES:

1. Louis ED, York GK Weir Mitchell’s observations on sensory localization and their influence on 
Jacksonian neurology. Neurology. 66 (8), 1241–1244, doi: 10.1212/01.wnl.0000208512.66181.9e 
(2006). [PubMed: 16636242] 

2. Weinstein SM Phantom Limb Pain and Related Disorders. Neurologic Clinics. 16 (4), 919–935, doi: 
10.1016/S0733-8619(05)70105-5 (1998). [PubMed: 9767070] 

3. Rudy TE, Lieber SJ, Boston JR, Gourley LM, Baysal E Psychosocial Predictors of Physical 
Performance in Disabled Individuals With Chronic Pain. The Clinical Journal of Pain. 19 (1), 18–30 
(2003). [PubMed: 12514453] 

4. Whyte AS, Carroll LJ A preliminary examination of the relationship between employment, pain and 
disability in an amputee population. Disability and Rehabilitation. 24 (9), 462–470, doi: 
10.1080/09638280110105213 (2002). [PubMed: 12097215] 

5. Flor H, Diers M, Andoh J The neural basis of phantom limb pain. Trends in Cognitive Sciences. 17 
(7), 307–308, doi: 10.1016/j.tics.2013.04.007 (2013). [PubMed: 23608362] 

6. Flor H, Nikolajsen L, Staehelin Jensen T Phantom limb pain: a case of maladaptive CNS plasticity? 
Nature Reviews. Neuroscience. 7 (11), 873–881, doi: 10.1038/nrn1991 (2006). [PubMed: 
17053811] 

7. Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N Phantom movements and pain. An fMRI study 
in upper limb amputees. Brain: A Journal of Neurology. 124 (Pt 11), 2268–2277, doi: 10.1093/
brain/124.11.2268 (2001). [PubMed: 11673327] 

Velez et al. Page 10

J Vis Exp. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Foell J, Bekrater-Bodmann R, Diers M, Flor H Mirror therapy for phantom limb pain: Brain changes 
and the role of body representation. European Journal of Pain (United Kingdom). 18 (5), 729–739, 
doi: 10.1002/j.1532-2149.2013.00433.x (2014).

9. Subedi B, Grossberg GT Phantom limb pain: Mechanisms and treatment approaches. Pain Research 
and Treatment. 2011, doi: 10.1155/2011/864605 (2011).

10. Elbert T et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous 
system injury. NeuroReport. 5 (18), 2593–2597, doi: 10.1097/00001756-199412000-00047 (1994). 
[PubMed: 7696611] 

11. Diers M, Christmann C, Koeppe C, Ruf M, Flor H Mirrored, imagined and executed movements 
differentially activate sensorimotor cortex in amputees with and without phantom limb pain. Pain. 
149 (2), 296–304, doi: 10.1016/j.pain.2010.02.020 (2010). [PubMed: 20359825] 

12. Chan BL et al. Mirror therapy for phantom limb pain. The New England Journal of Medicine. 357 
(21), 2206–2207, doi: 10.1056/NEJMc071927 (2007). [PubMed: 18032777] 

13. Flor H, Knost B, Birbaumer N Processing of pain- and body-related verbal material in chronic pain 
patients: central and peripheral correlates. Pain. 73 (3), 413–421, doi: 10.1016/
S0304-3959(97)00137-1 (1997). [PubMed: 9469533] 

14. Flor H, Braun C, Elbert T, Birbaumer N Extensive reorganization of primary somatosensory cortex 
in chronic back pain patients. Neuroscience Letters. 224 (1), 5–8, doi: 10.1016/
S0304-3940(97)13441-3 (1997). [PubMed: 9132689] 

15. Bolognini N, Russo C, Vallar G Crossmodal illusions in neurorehabilitation. Frontiers in 
Behavioral Neuroscience. 9 (8), 212, doi: 10.3389/fnbeh.2015.00212 (2015). [PubMed: 26321933] 

16. Senna I, Russo C, Parise CV, Ferrario I, Bolognini N Altered visual feedback modulates cortical 
excitability in a mirror-box-like paradigm. Experimental Brain Research. 233 (6), 1921–1929, doi: 
10.1007/s00221-015-4265-1 (2015). [PubMed: 25850405] 

17. Ambron E, Miller A, Kuchenbecker KJ, Buxbaum LJ, Coslett HB Immersive low-cost virtual 
reality treatment for phantom limb pain: Evidence from two cases. Frontiers in Neurology. doi: 
10.3389/fneur.2018.00067 (2018).

18. Diers M et al. Illusion-related brain activations: A new virtual reality mirror box system for use 
during functional magnetic resonance imaging. Brain Research. 1594, 173–182, doi: 10.1016/
j.brainres.2014.11.001 (2015). [PubMed: 25446453] 

19. Makin TR et al. Phantom pain is associated with preserved structure and function in the former 
hand area. Nature Communications. 4, 1570 (2013).

20. Darnall BD, Li H Home-based self-delivered mirror therapy for phantom pain: A pilot study. 
Journal of Rehabilitation Medicine. 44 (3), 254–260, doi: 10.2340/16501977-0933 (2012). 
[PubMed: 22378591] 

21. Rothgangel AS, Braun SM, Beurskens AJ, Seitz RJ, Wade DT The clinical aspects of mirror 
therapy in rehabilitation: a systematic review of the literature. International Journal of 
Rehabilitation Research. 34 (1), 1–13, doi: 10.1097/MRR.0b013e3283441e98 (2011). [PubMed: 
21326041] 

22. Griffin SC et al. Trajectory of phantom limb pain relief using mirror therapy: Retrospective 
analysis of two studies. Scandinavian Journal of Pain. 15, 98, doi: 10.1016/j.sjpain.2017.01.007 
(2017). [PubMed: 28850360] 

23. Tsao JW, Finn SB, Miller ME Reversal of phantom pain and hand-to-face remapping after brachial 
plexus avulsion. Annals of Clinical and Translational Neurology. 3 (6), 463–464, doi: 10.1002/
acn3.316 (2016). [PubMed: 27547774] 

24. Tung ML et al. Observation of limb movements reduces phantom limb pain in bilateral amputees. 
Annals of Clinical and Translational Neurology. 1 (9), 633–638, doi: 10.1002/acn3.89 (2014). 
[PubMed: 25493277] 

25. Datta R, Dhar M Mirror therapy: An adjunct to conventional pharmacotherapy in phantom limb 
pain. Journal of Anaesthesiology, Clinical Pharmacology. 31 (4), 575–578, doi: 
10.4103/0970-9185.169102 (2015).

26. Kim SY, Kim YY Mirror therapy for phantom limb pain. The Korean Journal of Pain. 25 (4), 272–
274, doi: 10.3344/kjp.2012.25.4.272 (2012). [PubMed: 23091690] 

Velez et al. Page 11

J Vis Exp. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Halligan PW, Zeman A, Berger A Phantoms in the brain. Question the assumption that the adult 
brain is “hard wired.” BMJ (Clinical Research ed.). 319 (7210), 587–588 (1999).

28. Flor H et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm 
amputation. Nature. 375 (6531), 482–484, doi: 10.1038/375482a0 (1995). [PubMed: 7777055] 

29. Genius J et al. Mirror Therapy:Practical Protocol for Stroke Rehabilitation. Pain Practice. 16 (4), 
422–434, doi: 10.12855/ar.sb.mirrortherapy.e2013 (2013).

30. Forman SD et al. Improved assessment of significant activation in functional magnetic resonance 
imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine. 33 (5), 636–47, 
doi: 10.1002/mrm.1910330508 (1995). [PubMed: 7596267] 

31. Pinto CB et al. Optimizing Rehabilitation for Phantom Limb Pain Using Mirror Therapy and 
Transcranial Direct Current Stimulation: A Randomized, Double-Blind Clinical Trial Study 
Protocol. JMIR Research Protocols. 5 (3), e138, doi: 10.2196/resprot.5645 (2016). [PubMed: 
27383993] 

32. Goense J, Bohraus Y, Logothetis NK fMRI at High Spatial Resolution: Implications for BOLD-
Models. Frontiers in Computational Neuroscience. 10, 66, doi: 10.3389/fncom.2016.00066 (2016). 
[PubMed: 27445782] 

33. Khor WS et al. Augmented and virtual reality in surgery—the digital surgical environment: 
applications, limitations and legal pitfalls. Annals of Translational Medicine. 4 (23), 454, doi: 
10.21037/atm.2016.12.23 (2016). [PubMed: 28090510] 

34. Nosek MA, Robinson-Whelen S, Hughes RB, Nosek TM An Internet-based virtual reality 
intervention for enhancing self-esteem in women with disabilities: Results of a feasibility study. 
Rehabilitation Psychology. 61 (4), 358–370, doi: 10.1037/rep0000107 (2016). [PubMed: 
27709978] 

35. Henry J Virtual Reality in 2016: Its Power and Limitations. Medium. 514 (2016).

36. Renner RS, Velichkovsky BM, Helmert JR The perception of egocentric distances in virtual 
environments - A review. ACM Computing Surveys. 46 (2), 1–40, doi: 10.1145/2543581.2543590 
(2013).

37. Huang MP, Alessi NE Current limitations into the application of virtual reality to mental health 
research. Studies in Health Technology and Informatics. doi: 10.3233/978-1-60750-902-8-63 
(1998).

38. Ballester BR et al. Domiciliary VR-Based Therapy for Functional Recovery and Cortical 
Reorganization: Randomized Controlled Trial in Participants at the Chronic Stage Post Stroke. 
JMIR Serious Games. 5 (3), e15–e15, doi: 10.2196/games.6773 (2017). [PubMed: 28784593] 

39. Bower KJ et al. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. 
Journal of Neuroengineering and Rehabilitation. 12, 63, doi: 10.1186/s12984-015-0057-x (2015). 
[PubMed: 26233677] 

40. Reed SK Structural descriptions and the limitations of visual images. Memory & Cognition. 2 (2), 
329–336, doi: 10.3758/BF03209004 (1974). [PubMed: 24214763] 

41. Boynton GM, Engel SA, Glover GH, Heeger DJ Linear Systems Analysis of Functional Magnetic 
Resonance Imaging in Human V1. The Journal of Neuroscience. 16 (13), 4207 LP-4221 (1996).

42. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM FSL. NeuroImage. 62 (2), 
782–790, doi: 10.1016/j.neuroimage.2011.09.015 (2012). [PubMed: 21979382] 

43. Smith SM et al. Advances in functional and structural MR image analysis and implementation as 
FSL. NeuroImage. 23, Supple, S208–S219, doi: 10.1016/j.neuroimage.2004.07.051 (2004). 
[PubMed: 15501092] 

44. Siegel JS et al. Statistical Improvements in Functional Magnetic Resonance Imaging Analyses 
Produced by Censoring High-Motion Data Points. Human Brain Mapping. 35 (5), 1981–1996, doi: 
10.1002/hbm.22307 (2014). [PubMed: 23861343] 

45. Desikan RS et al. An automated labeling system for subdividing the human cerebral cortex on MRI 
scans into gyral based regions of interest. NeuroImage. 31 (3), 968–980, doi: 10.1016/
j.neuroimage.2006.01.021 (2006). [PubMed: 16530430] 

Velez et al. Page 12

J Vis Exp. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Video camera and mirror set up.
The mirror is positioned between the legs at an angle of about 45°, depending on the 

participant’s height and amputation level. The goal is to cover the residual limb and make it 

invisible to the video systems. Sandbags are used to keep the mirror in the correct position. 

The camera positioning is also adaptable and can be easily changed using the tripod or the 

adaptable hock (changes the angle of the camera).

Velez et al. Page 13

J Vis Exp. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Schematic of video camera and image projection in the scanner environment.
The real-time video projection of the mirror therapy system consists of three subsystems. 1) 

Camera and monitor subsystem. The video is transmitted to the monitor, so the subject can 

watch the leg and mirror leg movements in real-time. 2) The head coil with the mirror 

attached. The mirror in the head coil allows the participant to watch the monitor without 

moving their head. The mirror is at a 45° angle at eye level. 3) The mirror and sandbags. The 

MRI-compatible mirror is carefully placed between the legs and the residual limb in a way 

that it covers the residual limb and allows for the best image to be shown.

Velez et al. Page 14

J Vis Exp. Author manuscript; available in PMC 2020 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Task design.
The task design consists of three steps. During the first “leg” step, the subject is instructed to 

move the leg (flexing the foot) at a pace of about one movement every 2 s (10 movements in 

20 s), with their eyes closed. For the second “mirror” step, the participant has to keep 

moving the leg (10 movements in 20 s) while looking at the video monitor displaying the 

online real-time mirror image of the legs. The last step instructs the subject to rest.
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Figure 4: Representative example of the cortical activations in response to mirror therapy in the 
MRI scanner.
(A) Comparing leg movement versus the rest condition resulted in a robust activation within 

the sensorimotor representation of the leg of the contralateral (i.e., left) and ipsilateral 

cortex. (B) The mirror condition versus rest condition also confirmed a robust contralateral 

and ipsilateral activation of the cortical leg sensorimotor representation, as well as occipital 

(i.e., visual) cortical activation associated with viewing the projected image of the moving 

leg.
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