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Abstract

Purpose: Radiomics allows for powerful data-mining and feature extraction techniques to guide 

clinical decision making. Image segmentation is a necessary step in such pipelines and different 

techniques can significantly affect results. We demonstrate that a convolutional neural network 

(CNN) segmentation method performs comparably to expert manual segmentations in an 

established radiomics pipeline.

Methods: Using the manual ROIs (regions-of-interest) of an expert radiologist (R1), a CNN was 

trained to segment breast lesions from DCE-MRI. Following network training, we segmented 

lesions for the testing set of a previously established radiomics pipeline for predicting lymph node 

metastases using DCE-MRI of breast cancer. Prediction accuracy of CNN segmentations relative 

to manual segmentations by R1 from the original study, a resident (R2) and another expert 

radiologist (R3) were determined. We then retrained the CNN and radiomics model using R3’s 

manual segmentations to determine the effects of different expert observers on end-to-end 

prediction.

Results: Using R1’s ROIs, the CNN achieved a mean Dice coefficient of 0.71±0.16 in the testing 

set. When input to our previously published radiomics pipeline, these CNN segmentations 

achieved comparable prediction performance to R1’s manual ROIs, and superior performance to 

those of the other radiologists. Similar results were seen when training the CNN and radiomics 

model using R3’s ROIs.

Conclusion: A CNN architecture is able to provide DCE-MRI breast lesion segmentations 

which are suitable for input to our radiomics model. Moreover, the previously established 
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radiomics model and CNN can be accurately trained end-to-end using ground truth data provided 

by distinct experts.
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Introduction

Radiomic analysis has received marked attention over the past several years, with the 

medical imaging community seeking to realize images as mineable data relating to a 

patient’s specific condition as opposed to pictorial representations of their disease or lack 

thereof (1). While imaging currently serves integral diagnostic and prognostic roles in 

oncology, high order feature extraction allows for the development of computational models 

of disease progression and outcome which leverage features that might be difficult or 

impossible for humans to perceive (2).

Whereas radiomics has been identified as an emerging tool to help advance personalized 

medicine without significantly impacting current routine procedures (3), these techniques 

require numerous processing steps which can differ in their implementation and significantly 

impact performance. Despite recent and encouraging endeavors to standardize quantitative 

imaging biomarker research (4), radiomics pipelines require a number of steps which can 

vary across medical centers and vendors. Images must be acquired, reconstructed, processed 

for viewing, segmented and finally have features automatically extracted using any of 

several available software packages or in house programs; finally, a predictive model 

comprising any number of these determined features must be developed. Given the 

numerous steps involved in radiomics processing, it is not surprising that achieving 

reproducible and reliable results—even when applied to data collected at the same center—

is a primary concern within the field (5,6).

Region of interest (ROI) selection/segmentation, the explicit identification of the region to 

be processed, is unique among the aforementioned steps in that not only do radiomics 

features largely demonstrate a dependence upon segmentation method (7,8), but the 

requirement for segmentation is also the primary challenge for the clinical adoption of 

validated radiomics pipelines. Whereas simple methods based on thresholding can be used 

in the case of PET or MRI and CT data demonstrating high lesion contrast, the current bulk 

of radiomics pipelines add to physician workload by requiring manual segmentations (9). 

While semi-automated and interactive methods have been developed, these techniques can 

still be time consuming and are user-dependent, raising concern over their applicability to 

high throughput diseases.

Recently, convolutional neural networks (CNN) (10) have become a preeminent tool across 

virtually all subfields of computer vision, notably including image segmentation (11). CNNs 

provide a rich, neurobiologically-inspired framework for automatically learning abstract 

representations of training data which the network can leverage in order to make accurate 

inferences about prospective data after optimization. In the context of radiomics, CNNs offer 

the possibility of fully automated, accurate segmentation pipelines which require no human 
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intervention after training and thus are capable of providing stable and reproducible ROIs for 

radiomic analysis.

Despite the demonstrated performance of CNNs in the image segmentation community, and 

ideality of the robust, automated segmentations provided, little work has been done to 

examine the possibility of using CNN-derived segmentations for input into established 

radiomics processing pipelines. Whereas recent publications have shown that the latent 

image representations extracted from the hidden layers of CNNs demonstrate predictive 

value for grading glioma (12) and predicting survivability in glioblastoma multiforme (13), 

there is a severe lack of literature assessing the viability of CNN segmentations as input for 

radiomics models dependent upon extraction of hand-crafted features from labeled input 

data.

Our group has recently developed and validated a radiomics pipeline for predicting sentinel 

lymph node (SLN) metastases from DCE-MRI data in women with breast cancer (14). Our 

model achieved a satisfying prediction performance with a high negative predictive value 

(NPV), providing a non-invasive method to evaluate SLN status. A high NPV could also 

potentially offer greater benefits for patients with negative SLN, helping them eliminate 

unnecessary invasive lymph node removal and associated complications. Despite the 

pipeline’s ability to accurately determine SLN status, its applicability to prospective clinical 

work is severely limited by its dependence upon manual segmentation; this limitation is 

shared by virtually all pipelines for radiomic modelling of breast cancer. Breast cancer is one 

of the most commonly encountered cases in oncology and any clinically viable radiomics 

pipeline must be designed to require as little physician interaction as possible in light of this.

Herein, we discuss an entirely automated CNN approach for segmenting breast lesions from 

the same DCE-MRI input to our previously published radiomics pipeline for predicting SLN 

metastases. Our approach adopts the common U-net architecture (15) and yields 

encouraging segmentation accuracy in a challenging testing dataset which comprises several 

tumor subtypes and anatomical locations within the breast. More importantly, we 

demonstrate that using CNN-derived segmentations for input to our radiomics pipeline not 

only introduces less variance than using segmentations manually drawn by additional 

radiologists, but also that the use of these CNN-derived segmentations does not substantially 

change SLN prediction accuracy. When training the CNN using manual segmentations by an 

expert breast radiologist, we see that radiomics prediction accuracy is higher for the 

automated segmentations than for manual ones drawn by either a radiology resident or a 

second expert radiologist.

In interesting consideration is the fact that the CNN will show some bias towards the expert 

whose manual segmentations were used to train it, which will affect radiomic feature 

calculation. Given the availability of manual segmentations from two experts, we trained 

both our previously established radiomics model and CNN segmentation pipeline using data 

from the second expert radiologist. Interesting, we saw that the end-to-end prediction 

accuracy for automated lesions is comparable to manual segmentations from the second 

radiologist and outperforms manual segmentations from the radiologists. The similar 
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observation across both training paradigms suggests that the proposed technique is optimally 

conducted using CNN and radiomics training data provided by the same observer.

Methods

IRB approval was obtained for this retrospective analysis, alongside a waiver of consent.

Dataset

All MRI scans for the radiomics datasets were performed using 8-channel breast coils on 

1.5T GE Signa HDxt scanners (GE Healthcare, Wauwatosa, Wisconsin). Gadolinium 

contrast (Magnevist; Schering, Berlin, Germany) was injected intravenously at a rate of 

2ml/s for a total dose of 0.2ml/kg; Magnevist injection as followed by a 20-ml saline flush at 

a rate of 2ml/s.

Our retrospective dataset consisted of MRI scans from 317 women who had previously 

undergone DCE-MRI as part of their routine care for breast cancer at our institution. As 

previously described in Ref (14), out of these scans, 109 scans were used to train the 

radiomics model, which was tested in an independent set of 54 subjects. Acquisition for 

these consisted of a pre-contrast and four post-contrast frames, acquired using a sagittal 

VIBRANT multiband sequence (TR=4.46–7.80ms; TE=1.54–4.20ms; flip angle=10°; 

matrix=256×256; pixel size=0.7mm2, slice thickness=2mm). Images were acquired prior to 

injection of contrast, as well as 2, 4, 6 and 8 minutes after contrast administration.

In addition to the same 109 scans an additional 154 scans not used previously to train the 

radiomics model due to slightly different pixel sizes were also included for the training of 

the segmentation CNN. As such, the CNN training set contained all lesions the radiomics 

model was trained upon, without any exclusions, in addition to the additional 154 lesions, 

for a total of 263 training subjects. Acquisition parameters in these additional scans were: 

TR=4.19–7.80ms; TE=1.46–4.20ms; flip angle=10°; matrix=256×256; pixel size=0.63–

1.0mm2, slice thickness=2–2.8mm. Temporal spacing of the frames was the same as above. 

Among these individuals, 32 had benign lesions which further precluded them from 

inclusion in the original radiomics study. The CNN model was tested using the same 54 

subject datasets as the radiomics model. Figure 1 shows the schema of this study with the 

distribution of training and testing data.

In all cases, only slices containing lesion volume were extracted from PACS. Lesions were 

subsequently segmented on the first post-contrast frame by three radiologists: an expert 

radiologist in breast MRI with over a decade of experience in the field (R1), a first year 

radiology resident (R2) who was trained by R1, and lastly another expert radiologist (R3) 

with similar clinical experience to R1. As R1 was the radiologist involved in the original 

study, they determined the slices which were extracted from PACS. R1 and R3 segmented all 

lesions used in this study while R2 segmented only the testing set lesions. All radiologists 

used the pre- and first post-contrast frame to determine lesion location, and drew their ROIs 

on the post-contrast frame. Figure 2 shows an example segmentation in the testing set by all 

three radiologists as well as the CNN.
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Convolutional Neural Network Training and Evaluation

A U-net architecture was implemented in Tensorflow (16) to address the challenge of 

automatically segmenting breast lesions in DCE-MRI for the radiomics pipeline. Figure 3 

shows the network architecture.

Two input channels were provided, namely the pre-contrast and first post-contrast frames. 

This allowed the network to utilize the same information the used by the radiologist to 

determine ROIs. Both input channels were independently normalized using the mean value 

and standard deviation within that channel across the entire training set; during evaluation, 

normalization was again performed using mean and standard deviation values determined in 

the training set. During training, input MRI data were rotated by up to 5° about a random 

axis prior to presentation to the network for data augmentation. This data augmentation was 

performed on-the-fly at each iteration. The network was trained using the Adam optimizer 

with a learning rate of 10−5 and first and second moment exponential decay rates of 0.9 and 

0.999, respectively (17). All weights were initialized using the Glorot method (18), biases 

were initialized to zero. The network was trained in 2D, minibatches of individual slices 

were randomly selected from the entire training set. The training objective was to minimize 

the cross entropy loss between the network’s output and radiologists’ hand drawn 

segmentations; this cost function was averaged over slices in each minibatch for each update 

step. In addition to cross entropy loss, an L2-regularization was imposed upon all network 

weights (regularization magnitude = 0.01). The network was trained with an Nvidia Titan 

XP on a workstation running Ubuntu 18.04 LTS for 50,000 iterations using a minibatch size 

of 32. The network was initially trained using R1 manual segmentations.

The CNN output was compressed to the range (0,1) using a sigmoid function. An optimal 

threshold for binarizing the CNN output was determined in the training set; 1,000 

incremental values were applied as thresholds, with the optimal threshold being that which 

led to the highest Dice coefficient averaged at the subject-level across the training set. 

Binarized outputs using the optimal threshold were used as the CNN segmentation.

CNN performance was assessed in two ways: pure segmentation accuracy was assessed 

using the Dice coefficient between manual segmentations and the thresholded network 

segmentations at the subject-level; more importantly, the CNN segmentations in the testing 

dataset were then presented to a previously published radiomics pipeline that had been 

developed using R1 manual segmentations, the predictive accuracy when using CNN-

derived segmentations was then assessed in comparison to evaluation using manual 

segmentations from R1, R2 and R3.

Following analysis using R1 manual segmentations as ground truth, both the radiomics 

model and segmentation network were retrained using R3 manual segmentations as ground 

truth. The same analyses were performed.

Radiomics

Radiomics training and testing were conducted using data from 163 patients as previously 

described(14). Patient characteristics are provided in Supporting Information Table S1.
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Summarily, to train the radiomics model, three maps independent of original MR signal 

intensity were generated to allow for direct comparison across patients: wash-in maps ((S1-

S0)/S0)100%, wash-out maps ((S1-S4)/S1))100% and signal enhancement ratio (SER) maps 

((S1-S0)/(S4-S0))100%, where S0, S1, and S4 are the pre-contrast, first post-contrast and 

fourth (final) post-contrast images, respectively. The intratumoral ROIs were defined as the 

largest volume of the ROIs if multiple regions were segmented (for both manual and 

automated segmentations). Peritumoral regions were obtained by dilating the intratumoral 

ROI 4mm. A total of 590 radiomic features were extracted from both intratumoral and 

peritumoral regions on three maps for each patient, please refer to our previous publication 

(14) for the list of features used. Moreover, seven clinicopathologic characteristics were 

collected from patient medical records and combined with the radiomic features, including 

age, tumor location, histological type and grade of invasive carcinoma, molecular subtype, 

lymph-vascular invasion (LVI) and multifocality. In order to avoid overfitting, the dataset 

was randomly divided into two independent subsets as mentioned: a training set (~67%, 109 

patients with 37 positive SLN) and a testing set (~33%, 54 patients with 18 positive SLN). 

The training set was used for feature selection and prediction model generation. The feature 

selection method, as described in our previous work (14), is provided in Supporting 

Information. Using the features generated from R1’s manual ROIs, six significant features 

were finally selected to establish the prediction model using logistic regression, these 

features are discussed in our previous manuscript (14). Using R3’s manual ROIs for this 

radiomic analysis using the same method, there were also six features selected in the final 

prediction model. The details of these two models derived from the ROI segmentations of 

different expert radiologists (R1 and R3) were provided in Supporting Information (see 

Supporting Information Table S2 and Supporting Information Table S3). For prediction 

assessment, the ROC curves were plotted with the optimal thresholds determined by 

maximizing the Youden index (sensitivity+specificity−1). The AUC, sensitivity, specificity 

and NPV were then calculated.

Task-based assessment of CNN segmentation

The prediction models trained by R1 and R3 were further tested in the independent testing 

set using the features from the ROIs generated by R1, R2, R3 and CNN, respectively. The 

same thresholds determined in the training set was applied in the testing set. The 

corresponding ROC curves, AUC, sensitivity, specificity and NPV were calculated in 

MATLAB R2017b. The AUCs derived from the radiologists’ manual segmentations and 

CNN-based automated segmentation were compared using DeLong test(19) in MedCalc 

(Version 18.11.6). The level of statistically significant difference was set at p<0.05.

Results

CNN Segmentation Accuracy

For the CNN trained using R1’s manual ROIs, the optimal threshold for the CNN output was 

determined when the highest Dice index of 0.99±0.02 was achieved in the training set. After 

applying this optimal threshold to the testing set, the CNN segmentations achieved a mean 

Dice coefficient of 0.71±0.16 relative to R1’s manual segmentations. The CNN’s Dice 

coefficient relative to R2 was 0.61±0.17 and for R3 was 0.67±0.18.
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Similarly, for the CNN trained using R3’s manual ROIs, the optimal threshold for the CNN 

output was determined when the highest Dice index of 0.98±0.02 was achieved in the 

training set. After applying this optimal threshold to the testing set, the CNN segmentations 

achieved a mean Dice coefficient of 0.67±0.20 relative to R3’s manual segmentations. When 

trained by R3, the CNN’s Dice coefficient relative to R2 was 0.64±0.22 and for R1 was 

0.61±0.18.

To contextualize the CNN’s performances in both instances, the mean Dice coefficient 

between R1 and R2 is 0.61±0.17, between R1 and R3 is 0.68±0.15 and between R2 and R3 

is 0.63±0.19. The CNN trained on R1 significantly outperformed the agreement between R1 

and R2 (p<10−5, paired t-test), no other significant differences are observed when comparing 

automated lesions to the radiologist they were trained upon to the other radiologists.

Figure 2 shows an example from the testing set with the manual ROIs from three 

radiologists and the automated ROIs from the network when train by R1 and R3. It is noted 

that the CNN-based automated segmentation mimics the drawing behavior of the radiologist 

whose ROIs were used to train the CNN.

Figure 4 shows the frequency histograms of Dice coefficients between R1 and CNN trained 

by R1, and between R3 and CNN trained by R3 in the testing set.

Radiomics Results

The original radiomics model was trained using R1’s manual segmentations. For this 

original model, Figure 5(a) demonstrates the ROC curves of using features from ROIs 

generated by R1, R2, R3 and the CNN trained by R1, respectively. The corresponding 

prediction results are demonstrated in Table 1, with the DeLong test p value between the 

AUCs derived from R1 and the CNN trained by R1. Figure 5(b) demonstrates the same ROC 

curves yielded by training both the radiomics model and CNN using R3’s manual 

segmentations. The corresponding prediction results are demonstrated in Table 2.

As shown in Table 1 and 2, the CNN-based ROIs exhibit very comparable task-based 

performance in the radiomic model when compared to manual ROIs from the radiologist 

whose data were used to train the model and CNN (no statistically significant difference was 

found in the AUCs using DeLong test). Moreover, in both instances, automated ROI 

prediction performance is slightly superior to the manual ROIs drawn by other radiologists.

Discussion

The primary conclusion of this task-based assessment is that CNN segmentations are 

sufficient for the radiomics processing task in the presented pipeline. Additional validation 

for separate cases would be beneficial to the radiomics community. The conclusion is 

supported by two primary observations. Most importantly, the U-net approach achieved 

predictive accuracy similar to expert radiologists’ manual segmentations for this specific 

task. Outside of this, comparison to other radiologists, with varying levels of experience, is 

one of the strongest methodological aspects of this work, and when possible should be 

included in future task-based assessments. It is extremely encouraging to note that our 
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previously published model can be trained “end-to-end” using data from different expert 

radiologists to serve as a standalone, fully automated, prediction pipeline.

Despite a suboptimal training dataset, which was limited in size and contained some 

heterogeneity of MRI parameters, the U-net achieved comparable Dice coefficient 

performance to recently published methods (9,20). This segmentation accuracy is achieved 

in a realistic, clinically challenging dataset which comprises several breast cancer subtypes 

and presentations. A consequence of the limited dataset size is the fact that the CNN, when 

trained using data from either R1 or R3, generally overfit the training data, yielding a higher 

Dice coefficient across the training dataset than the testing set in both instances. Despite this, 

testing set batch statistics were logged throughout training and the maximum Dice 

coefficient was seen to plateau as opposed to degrade overtime, suggesting that the near 

perfect training set performance did not come at the expense of testing set performance. In 

the future, an expanded dataset will allow for a held-out validation population, enabling 

hyperparameter and network tuning in a manner free of bias towards testing set 

performance, as well as selection of segmentation thresholds outside of the training set.

A substantial strength of this approach is that the presented network is in no way dependent 

upon modelling of gadolinium kinetics, or any other assumption about the underlying 

behavior of lesions in an image, unlike many other comparably performing candidate 

strategies (21). As such, neural network approaches have the benefit of not only being fully 

automated but also being adaptable to training with multiple contrasts such as diffusion or 

T1/T2 weighted MRI as are commonly acquired in routine clinical cancer imaging. 

Furthermore, giving this flexibility, transfer learning could be used to apply our now fully 

automated model to other disease cases while requiring a smaller amount of data to train the 

segmentation pipeline. CNN models are the ideal framework for radiomics segmentation in 

many regards, including notably the results herein, and the community will benefit from 

their adoption and task-based assessment in future radiomics works.

In this study, we utilized the manual segmentations from two expert radiologists and 

repeated the study (both CNN segmentation and radiomic analysis) using the same method. 

Our results show that the CNN-based ROIs exhibit very comparable or even slightly better 

prediction performance in the radiomic model than manual ROIs from the same radiologist 

who had drawn the CNN training set, and also the prediction performance is superior than 

the manual ROIs drawn by other radiologists. Our segmentation accuracy approaches that of 

contemporary state of the art hand-crafted, semi-automated methods(22). When training 

with either R1 or R3 ground truth, the CNN shows testing set segmentation accuracy which 

is strictly noninferior to that demonstrated by separate radiologists’ hand drawn 

segmentations. At the same time, our method achieves this impressive result without the 

need for semi-automated approaches or use case-specific modelling of acquisition physics or 

gadolinium kinetics, a key facet of other DCE-MRI segmentation pipelines. Previous 

radiomics-oriented segmentation work has been conducted using semi-automated pipelines 

which are more heavily dependent upon specific modelling of DCE-MRI acquisition (9). On 

contrast, our purely CNN framework shows promise for general use in radiomics processing; 

this is, in part, supported by our ability to retrain the model end-to-end using ground truth 

data from R3.
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Our study admits a handful of limitations which must be noted. The first among these is the 

fact that we were required to train our CNN in 2D given the relative paucity of training data. 

This, in combination with data augmentation, allowed the network to undergo more distinct 

update steps than 3D training would provide. Despite this, a 3D CNN would likely be able to 

leverage interslice spatial information to achieve more accurate predictions. Further 

improvements may be afforded by the integration of recurrent neural network models into 

our U-net approach, which may allow for the exploitation of gadolinium kinetics beyond the 

two frames used in presented segmentation, although this would come at the expense of the 

ability to easily adapt our network for other disease cases where temporal data might not be 

available. The application of our end-to-end pipeline to other radiomics tasks will be a key 

avenue moving forward. An additional limitation of our study is the fact that DCE-MRI data 

were originally extracted solely to develop the radiomics model and, as such, only slices that 

R1 deemed to contain lesion were included. This limits the network’s applicability slightly 

in the sense that it never was exposed to genuinely negative data and, moreover, slightly 

biases the dataset towards R1’s interpretation of lesion area. Additional fine-tuning using 

only lesion-free slices will likely be necessary before application to prospective datasets.

In recent years, deep learning-based techniques have been published which either synergize 

hand crafted features with automated feature representations achieved using deep learning 

(23), or simply extract features exclusively using deep CNNs (12). However, traditional 

radiomics support is valuable for many reasons. Primarily, a large amount of preexisting 

work is underpinned by more hand-crafted methods such as our original pipeline. In 

demonstrating the suitability of fully automatic prediction, from segmentation to clinical 

endpoint, such models can achieve many of the same discussed benefits of deep learning-

predicated pipelines, namely robustness against interobserver segmentation variance and 

general convenience for physicians utilizing the pipelines. Moreover, hand crafted feature 

pipelines benefit from a reduced need for training data and better interpretability given their 

predication upon analytically derived features. In the future, we will investigate methods to 

synergize our current two step approach, although our primary interests moving forward will 

be the adaptation of this end-to-end automated pipeline to other clinical decision cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schema of the study design, showing the distribution of training and testing data and the 

methods for both the CNN and radiomic analysis. Note that the radiomic training dataset is a 

subset of the CNN training dataset.
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Figure 2. 
ROI comparison of an example from the testing set. (a) first post-contrast frame, (b)~(f) 

lesion segmentations are superimposed on the first post-contrast frame in red (the manual 

ROIs from the three radiologists and the CNN-based ROIs trained by R1’s and R3’s 

segmentations, respectively).
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Figure 3. 
A U-Net CNN architecture that was employed in this study.
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Figure 4. 
Frequency histograms of Dice coefficients in the testing dataset, (a) CNN-R1 (CNN-based 

ROIs trained by R1) vs R1, (b) CNN-R3 (CNN-based ROIs trained by R3) vs R3.
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Figure 5. 
ROC curves with AUC corresponding to Table 1(a) and Table 2(b).
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Table 1.

Performance metrics for SLN prediction based on the radiomic model trained by R1’s ROIs in the training 

dataset alongside testing set performance with R1, R2, R3 and CNN segmentations trained by R1’s ROIs.

Training set R1 Testing set

R1 R2 R3 CNN (trained by R1)*

AUC 0.914 0.869 0.838 0.803 0.875

Sensitivity 0.901 0.778 0.722 0.833 0.778

Specificity 0.833 0.861 0.806 0.722 0.833

NPV 0.896 0.886 0.853 0.897 0.882

*
p=0.869, DeLong test between AUCs of R1 and CNN trained by R1.
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Table 2.

Performance metrics for SLN prediction based on the radiomic model trained by R3’s ROIs in the training 

dataset alongside testing set performance with R1, R2, R3 and CNN segmentations trained by R3’s ROIs.

Training set R3 Testing set

R1 R2 R3 CNN (trained by R3)*

AUC 0.908 0.826 0.841 0.847 0.880

Sensitivity 0.910 0.722 0.778 0.722 0.722

Specificity 0.736 0.778 0.778 0.861 0.889

NPV 0.898 0.848 0.875 0.861 0.865

*
p=0.395, DeLong test between AUCs of R3 and CNN trained by R3.
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