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Purpose: Radiomic texture analysis is typically performed on images acquired under specific, homo-
geneous imaging conditions. These controlled conditions may not be representative of the range of
imaging conditions implemented clinically. We aim to develop a two-stage method of radiomic texture
analysis that incorporates the reproducibility of individual texture features across imaging conditions
to guide the development of texture signatures which are robust across mammography unit vendors.
Methods: Full-field digital mammograms were retrospectively collected for women who underwent
screening mammography on both a Hologic Lorad Selenia and GE Senographe 2000D system.
Radiomic features were calculated on manually placed regions of interest in each image. In stage one
(robustness assessment), we identified a set of nonredundant features that were reproducible across
the two different vendors. This was achieved through hierarchical clustering and application of
robustness metrics. In stage two (classification evaluation), we performed stepwise feature selection
and leave-one-out quadratic discriminant analysis (QDA) to construct radiomic signatures. We refer
to this two-state method as robustness assessment, classification evaluation (RACE). These radiomic
signatures were used to classify the risk of breast cancer through receiver operator characteristic
(ROC) analysis, using the area under the ROC curve as a figure of merit in the task of distinguishing
between women with and without high-risk factors present. Generalizability was investigated by com-
paring the classification performance of a feature set on the images from which they were selected
(intravendor) to the classification performance on images from the vendor on which it was not
selected (intervendor). Intervendor and intravendor performances were also compared to the perfor-
mance obtained by implementing ComBat, a feature-level harmonization method and to the perfor-
mance by implementing ComBat followed by RACE.
Results: Generalizability, defined as the difference between intervendor and intravendor classifica-
tion performance, was shown to monotonically decrease as the number of clusters used in stage one
increased (Mann–Kendall P < 0.001). Intravendor performance was not shown to be statistically dif-
ferent from ComBat harmonization while intervendor performance was significantly higher than
ComBat. No significant difference was observed between either of the single methods and the use of
ComBat followed by RACE.
Conclusions: A two-stage method for robust radiomic signature construction is proposed and
demonstrated in the task of breast cancer risk assessment. The proposed method was used to assess
generalizability of radiomic texture signatures at varying levels of feature robustness criteria. The
results suggest that generalizability of feature sets monotonically decreases as reproducibility of fea-
tures decreases. This trend suggests that considerations of feature robustness in feature selection
methodology could improve classifier generalizability in multifarious full-field digital mammography
datasets collected on various vendor units. Additionally, harmonization methods such as ComBat
may hold utility in classification schemes and should continue to be investigated. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13455]
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1. INTRODUCTION

Breast cancer is one of the most commonly screened for
forms of cancer, with 65.3% of women aged 40 and over
reported to having had a mammogram in the past 2 yr.1 Mam-
mographic screening has proved useful in increasing early
detection of breast cancer and reducing disease mortality.2 In
addition to detecting cancer, mammograms provide imaging
phenotypes which may inform lifetime risk. For example, it

has been well documented that mammographic density can
be useful in predicting breast cancer risk.3–5 Typically, per-
sonalized risk models include characteristics such as age,
family history, and certain genetic mutations such as BRCA1/
BRCA2. Developments in computer-aided diagnosis (CAD)
suggest that parenchymal texture may also help inform risk.

Quantitative measures of parenchymal texture have been
successfully applied to evaluate the risk of cancer in asymp-
tomatic females.6–14 These studies use radiomic texture
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features including fractal dimension,6 power law spectral
analysis,7 absolute gray level, gray-level histogram analysis,
neighborhood gray tone difference matrix (NGTDM), and
gray-level co-occurrence matrix (GLCM).15

Risk evaluation stands to be particularly impactful for
patient care due to established high-risk screening recom-
mendations that have been enacted by agencies such as the
American Cancer Society. These recommendations help
translate identification of high-risk individuals to actionable
recommendations, which may lead to improved early detec-
tion of disease.16 The availability of specialized screening
modalities such as MRI and clinical impact of supplemental
screening on high-risk populations has elevated the demand
for strong risk evaluation metrics. The actionable screening
steps available to women at an elevated risk of breast cancer
have motivated continued research in risk assessment in order
to best utilize the available specialized screening modalities.

One challenge faced in developing widely generalizable
imaging phenotypes is the sensitivity of individual texture
features to imaging conditions. Imaging conditions such as
manufacturer, kVp, and processing algorithms may each
affect radiomic feature values.17–21 Studies have been per-
formed to evaluate repeatability (test–retest) and reproducibil-
ity of radiomic features in cancer imaging.

In a study by van Velden et al., the repeatability of radio-
mic features in nonsmall-cell lung cancer (NSCLC) using
positron emission tomography/computed tomography (PET/
CT) images was investigated. The study reported high
repeatability of radiomic features relative to standardized
uptake value measures, and found that more features were
sensitive to delineation than to reconstruction changes.

Hunter et al. studied reproducibility and redundancy of
radiomic features of NSCLC patients and on a texture phan-
tom from CT images.22 The study reported that feature redun-
dancy and reproducibility was highly machine sensitive.

Zhao et al. used same-day repeat CT scans of lung cancer
patients to evaluate the impact of reconstruction settings, slice
thickness, and reconstruction algorithms on feature repeata-
bility.23 The study concluded that most texture features are
repeatable, although they were significantly impacted by
reconstruction parameters.

However, incorporation of repeatability and reproducibil-
ity into feature selection and classification construction pro-
cedures is relatively unexplored. Therefore, this study
proposes methods by which to implement the findings of
robustness studies to the improvement of CAD systems.

Many feature signatures for risk are developed on homo-
geneous databases, and reproducibility over imaging condi-
tions is not always evaluated in imaging phenotype studies.
To ensure generalizability of findings to heterogeneous imag-
ing conditions, this study identifies a parenchymal texture
signature descriptive of risk of breast cancer by emphasizing
both (a) robustness across imaging manufacturer and (b) clas-
sification accuracy in feature selection methodology. This is
important because in clinical practice, images are acquired on
a number of different models from many manufacturers, used
with a range of settings. Our study seeks to present a method

of identifying features that are repeatable over full-field digi-
tal mammography (FFDM) manufacturers and incorporate
the subset of these that are descriptive and nonredundant into
the construction of a classification model. We use the clinical
task of classifying collectively the presence of breast cancer
risk factors. For brevity, we refer to this two-stage method as
robustness assessment, classification evaluation (RACE).

2. MATERIALS AND METHODS

2.A. Image acquisition and database

All images included in this study were retrospectively col-
lected from full-field digital mammograms (FFDM) acquired
under standard clinical protocols. All images were acquired at
the University of Chicago Medical Center. All images used in
this study were collected under an institutional review board
(IRB)-approved, Health Insurance Portability and Accountabil-
ity Act (HIPAA)-compliant protocol. All subjects were classi-
fied as either having or not having a risk factor of breast cancer.
This classification was based on each subject’s family history
of breast cancer, family history of ovarian cancer, personal his-
tory of atypical ductal hyperplasia (ADH), and personal
BRCA1/BRCA2 status. Each subject underwent screening
mammography on a General Electric (GE) system and a Holo-
gic system. The GE images were acquired on a GE Senographe
2000D at 12-bit quantization with a pixel size of
100 9 100 lm. The Hologic images were acquired on a Holo-
gic Lorad Selenia at 12-bit quantization with a pixel size of
70 9 70 lm. Sets of images were separated in time by about
1 yr. The mean age of women without high-risk factors present
was 54.3 yr (range = 39–86), and the mean age of women with
high-risk factors present was 49.7 yr (range = 24–88). No
breast procedures were performed on subjects between the two
studies, and all images were assigned BIRADS 1 (negative) or
2 (benign) when reviewed by a clinical breast radiologist. Char-
acteristics of the study population are summarized in Table I.

A small number of women were excluded from this study
because the breast area in their images was smaller than that
required for placement of the region of interest (ROI). Small
breast area could result from small breast volume, large pixel
size, or the extent of breast compression during image acqui-
sition.

The distribution of time intervals between exams is
described in Fig. 1. This histogram shows the interval of time
between the GE and Hologic exam dates for each patient
included in this study. The distribution of days between
exams for the group with and without high-risk factors
present were not shown to be significantly different by the
two-sample t-test (P = 0.29).24 Thus, this suggests that differ-
ences in time intervals between the two populations can be
explained by random chance.

2.B. Radiomic feature calculation

Radiomic texture features were calculated on square ROIs
of size 512 9 512 pixels which were manually placed in the
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central breast region posterior to the nipple. Previous studies
have shown that this ROI size and placement scheme per-
forms best compared to different locations in the breast.25

Because all images had a negative or benign interpretation,
ROIs were placed over normal background parenchymal tis-
sue. Following manual ROI placement, features were auto-
matically calculated on each ROI. The features were based on
algorithmic implementations of mathematical texture descrip-
tors which have been reported on extensively in the litera-
ture.6,7,15 Specifically, features were based on (a) gray-level
histogram analysis, (b) fractal dimensionality analysis includ-
ing the box-counting method and Minkowski method, (c)
Fourier and power spectral analysis, (d) edge frequency anal-
ysis, and (e) GLCM. The quantity of features calculated from
each group is summarized in Table II. This set of quantitative
features was evaluated because the constituent features have
demonstrated utility in previous studies involving clinical
classifications based on parenchyma regions in FFDM
images.6–8,25

2.C. Robustness assessment

Hierarchical clustering was performed to identify groups
of redundant features.26 Clustering was performed using the
Pearson correlation coefficient as the distance metric.27 Sin-
gle linkage (nearest neighbor) was used to describe the dis-
tance between objects. The number of clusters used in
grouping ranged from 18 to 256 in order to evaluate the
impact of varying levels of strictness in robustness considera-
tions. The lower end of the range of the number of clusters
was chosen because a total of 18 features were ultimately
selected for use in classification as this is close to the optimal
number of features based on our database size.28 The upper
end of the range of the number of clusters was chosen
because a total of 256 radiomic features were calculated in
this study. Therefore, by sorting the features into 256 clusters,
only a single feature persists in each cluster. This therefore
would be analogous to disregarding robustness in feature
selection, as nonrobust features are not removed from subse-
quent analyses.

A wide range of clusters was investigated in order to
explore the trend in classification performance as restrictions
on robustness varied, thereby permitting for an evaluation of

TABLE I. Demographics of the study population separated by risk of cancer.
Data in parentheses are percentages. Radiologist-reported breast imaging
reporting and data system (BI-RADS) density was not always consistent
between the GE and Hologic imaging exam, so values in this table represent
the density and age reported at the time of the GE exam. Also, summary of
indication for high-risk designation is presented. Some subjects may be des-
ignated as high-risk for more than one factor. Also shown is a breakdown of
database and inclusion. In this context, small breast is defined as breast area
smaller than the size of a 512 9 512 pixel square as this limited our ability to
compute features on images in this analysis.

Variable

Number of
patients without
risk factors
present

Number of
patients with risk
factors present

Mean age (SD) 54.3 (10.5) 49.7 (11.6)

Age (yr)

<40 1 20

40 to 49 31 29

50 to 59 28 37

60 to 69 15 10

70 to 79 7 4

≥80 1 2

Breast density score

A 2 4

B 27 41

C 44 54

D 10 3

Risk factor

Family history of breast cancer – 107

Family history of ovarian cancer – 9

BRCA1/BRCA2 mutations – 3

Personal history of ADH – 1

Breast area exclusion Patients Images Patients Images

Total in database 86 172 112 224

# Small breast 3 9 10 27

# Included in study 83 163 102 197

FIG. 1. Histogram demonstrating the interval of time between the date of the GE exam and the Hologic exam, for each patient included in the study. The time
between exams were not found to be significantly different between women with and without high-risk factors present (P = 0.29). [Color figure can be viewed at
wileyonlinelibrary.com]
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the relevancy of robustness considerations in classification
performance. However, in practical application of the pro-
posed method, it is expected that only one number of clusters
need be considered. In general, the optimal number of clus-
ters may depend on study-dependent factors such as the
specific classification task, the redundancy between features
in the full feature set explored, and the number of patients
evaluated in the study.

Feature robustness across mammography vendors was
evaluated using statistical metrics including (a) mean of fea-
ture ratio (MFR), (b) correlation coefficient, and (c) Kol-
mogorov–Smirnov test statistic.17,29 These robustness metrics
were selected to describe equivalence, correlation and sample
distributions.

A composite indicator (CI) was developed to merge the
three robustness metrics investigated in this study so as to
include multiple aspects of robustness in evaluating features.
The CI was calculated by the weighted sum of metric values
normalized by z-score. Metric z-scores were weighted by +1
when a high value indicates robustness, and by �1 when a
low value indicates robustness. Therefore, the CI for feature f
is defined by Eq. (1), where zcorr,f is the z-value of the corre-
lation coefficient for feature f, zMFR,f is the z-value of the
MFRs for feature f, and zKS,f is the z-value of the Kol-
mogorov–Smirnov test statistic for feature f.

CIf ¼ Zcorr; f � ZMFR; f � ZKS; f (1)

Relative robustness ranking of the investigated texture fea-
tures was performed by ordering features based on their CI
value in descending order, where more positive values of CIf
suggest strong robustness, and more negative values of CIf
suggest weak robustness. The features with the highest CIf in
each cluster were identified and considered in the classifica-
tion evaluation stage.

2.D. Classification evaluation

The classification stage involved using robust, nonredun-
dant features to predict a woman’s risk of breast cancer based
on the presence of risk factors. The workflow for the pro-
posed model is illustrated by Fig. 2.

The robust, nonredundant features identified by stage one
were fed into stepwise feature selection separately for each
vendor. The stepwise feature selection method employed in
this study applies a stepwise regression by iteratively adding
and removing features from a multilinear model.30 Features
are added or removed from the model based on the statistical
significance of the change in performance, with the P-value
of the f-statistic used as the figure of merit. Feature selection
was performed in a leave-one-out manner, and the top fea-
tures were identified as those features selected the greatest
number of times. The top 18 features were used in analysis,
as this is near the optimal number of features for our classifier
given our database size.28 Therefore, in each classification
performed in this study, regardless of the number of clusters
used in the robustness assessment step, exactly 18 features
were ultimately selected. Note that as the number of clusters
is altered, this will alter which 18 features are ultimately
selected for use in the classifier, as the robustness constriction
is tuned by the number of clusters.

It is standard in typical radiomics studies to perform fea-
ture selection, such as stepwise feature selection, on the full
set of candidate features with no consideration for feature
robustness. In our study, this standard approach is equivalent
to having the number of clusters equal to the number of can-
didate features, thus causing all features to pass the first stage
of robustness assessment. Specifically, for intravendor analy-
ses in which the number of clusters is equal to the number of
candidate features, no information from the second vendor
system was used in feature selection. Therefore, in this study,
intravendor classification with 256 clusters used shows the
performance of a standard approach in which differences in
FFDM systems is disregarded from analysis. Likewise, the
intervendor classification with 256 clusters used shows the
performance when the effect of vendor differences is maxi-
mized, as no robustness criteria is used in limiting candidate
features considered in stepwise feature selection.

Following feature selection, selected features are used in
leave-one-out QDA to build a model for classification. Mod-
els were built separately for GE and Hologic images. To eval-
uate the classification performance, the full classification
evaluation analysis was performed in a leave-one-out manner
(single fully nested loop). Receiver operating characteristic
(ROC) analysis was used to calculate the area under the curve
(AUC). The AUC was used as the figure of merit in this anal-
ysis.

As illustrated by Fig. 2, stepwise feature selection was
performed on images from a single vendor. However, QDA
was used to construct texture signatures merging the selected
features on each of the two vendor image sets. Performance
was evaluated, and agreement in performance was used to
characterize generalizability of the model across vendors. We
will refer to the vendor on whose images features were
selected as machine one (M1), and the other vendor used to
assess generalizability as machine two (M2). RACE was
repeated with each GE and Hologic data as the primary data-
set. The entire feature selection process (clustering, robust-
ness ranking, stepwise feature selection) was performed once

TABLE II. Quantity of feature types included in the feature set from which
features were selected for classification analysis.

Feature category Number of features

Fourier 148

Box-counting fractal dimension 6

Edge frequency 4

Histogram 38

Minkowski fractal dimension 32

Power law Beta 8

GLCM 14

First order 6

Total 256
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based on clustering features from the GE unit, and once using
features from the Hologic unit. The full classification analysis
(QDA, leave-one-out classification) was performed on each
the GE unit and the Hologic unit for each the set of features
identified using clustering from GE features and using clus-
tering from Hologic features. When clusters were based on
images from GE, then the GE unit was considered M1 in the
analysis scheme. Likewise, when clusters were based on
images from Hologic, then the Hologic unit was considered
M1 in the analysis scheme.

2.E. Comparison against harmonization methods

While the approach to handling heterogeneous feature data
in this paper focuses on limiting feature selection to robust
features through a two-stage analysis (RACE), other groups
have approached the same issue by harmonizing (or standard-
izing) feature data across different imaging conditions. One
such example is the ComBat harmonization method, origi-
nally developed to correct for the “batch effect” in the geno-
mics field, and later applied to Positron Emission
Tomography (PET) radiomics studies.31,32 In a study by Orl-
hac et al., the ComBat harmonization method was applied to
standardize radiomic features extracted from PET images of
breast cancer patients acquired in two different institutions in
order to identify triple negative (TN) lesions.31

As first suggested by Johnson et al. and implemented for
PET radiomics by Orlhac et al., the ComBat harmonization
method functions by estimating the additive scanner effect, c,
and the multiplicative scanner effect, d, using Empirical
Bayes estimates. Thus, the normalized value of features, y,
are described by Eq. (2), where yij is the standardized feature
for ROI j and scanner i, a is the average value for feature y, c
is the additive effect of scanner i, d is the multiplicative scan-
ner effect, and e is the error term.

yComBatij ¼ yij � â� c�i
d�i

þ â (2)

In our evaluation of the ComBat method on our data, we
normalized each of the 256 examined features according to
Eq. (2), and then performed stepwise feature selection and
QDA for leave-one-out ROC analysis, mimicking the classifi-
cation evaluation analysis of RACE (Fig. 2 right). For evalua-
tion of ComBat harmonization, the robustness assessment
stage (Fig. 2 left) was omitted, as feature harmonization is
expected to yield all features robust across imaging condi-
tions. To match the analysis conditions from RACE, a total of
18 features were included in the final radiomic signature con-
struction. Furthermore, robustness metrics were computed
and compared on feature values before and after ComBat har-
monization used a two-tailed t-test.

To explore the potential interplay between the ComBat
and RACE methods, we also initially applied ComBat on fea-
tures for harmonization, and then used these harmonized fea-
ture values in the RACE feature selection method. To match
each of the individual methods, 46 clusters were used in the
RACE method, and 18 features were ultimately selected for
the final radiomic signature construction.

2.F. Statistical analysis

Data series over a number of clusters were evaluated for
presence of a monotonic trend using the Mann–Kendall test
for monotonic trend.33 The Mann–Kendall test evaluates the
presence of a significant trend between the number of clusters
used in analysis, and the direction of the trend (increasing or
decreasing) was computed by the Thiel–Sen estimator.34

Therefore, the sign of the Thiel–Sen estimator indicates
whether the classification performance tends to increase or
decrease as the number of clusters increases.

FIG. 2. Diagrammatic illustration of steps involved in the robustness assessment, classification evaluation method. Texture features are first clustered and
assessed in terms of robustness using only feature values and vendor information, remaining blinded to risk classification. The union of features identified by
clustering features from M1 (machine one) and M2 (machine two) is the set considered to be robust and nonredundant. The most robust and nonredundant fea-
tures are identified, and only these features are used as feature candidates in classification evaluation. Solid and dashed arrows show two different data pathways
followed to evaluate the generalization of classification of the heterogeneous image datasets. The full analysis was repeated twice; once with the GE unit as M1
and the Hologic unit as M2, and then again but with the GE unit as M2 and the Hologic unit as M1.
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In comparing the RACE method to ComBat harmoniza-
tion, the AUC for both inter- and intravendor performance,
when features were selected each on GE and on Hologic
images, were calculated. The statistical significance of the
difference between AUCs from ComBat harmonization and
from the RACE was calculated using ROCKIT software.35

By applying the Holm–Bonferroni correction for multiple
comparisons, P ≤ 0.17 is required to demonstrate statistical
significance.

3. RESULTS

Features found to be the most robust relative to the other
features examined in this study are summarized in Table III.
Feature families that tended to have a large proportion of
robust features include: box-counting fractal dimension,
power law Beta, and GLCM features. Percentage density also
was robust over vendors, relative to the other features exam-
ined here.

Restricting candidate features to just the most robust fea-
tures was shown to have a significant impact on classification
performance of the intravendor evaluation as demonstrated
by a monotonic increase in AUC with increasing number of
clusters (Mann–Kendall P = 0.0168 and P < 0.001 for GE
and Hologic, respectively). However, the Thiel–Sen estimator
of the rate of increase was still very small (0.0000586 and
0.000120 for GE and Hologic, respectively).

Restricting candidate features to just the most robust fea-
tures was shown to have a significant impact on intervendor
classification performance. The classification performance
was observed to monotonically decrease as the number of
clusters increased (Mann–Kendall P < 0.001) as shown in
Fig. 2.

As more features were considered as candidate features,
generalizability across vendors tended to diminish. This is
demonstrated by the presence of a monotonic trend in the dif-
ference between intra- and intervendor classification perfor-
mance as the number of clusters increased as shown in
Fig. 3 (Mann–Kendall P < 0.001, Thiel–Sen Estimator =
�0.000321 and �0.000191 for GE and Hologic, respectively;
Fig. 4.

While these trends are interesting in a research setting, a
fixed number of clusters would be more useful for practical
application of RACE. In this study, 46 clusters yielded peak
intervendor classification performance when RACE is
repeated with either GE or Hologic as M1. This is illustrated
by a peak in the intervendor curves of Fig. 3 parts (a) and
(b). Therefore, while the full range of numbers of clusters can
help describe trends in performance, this study will also
include discussion of the particular application of RACE
using 46 clusters.

Many of the same features were selected both when GE
was designated as M1 and when Hologic was designated as
M1. As illustrated by Fig. 5, over half of the features selected
on a given vendor’s data were also selected when RACE was
repeated on the other vendor. Considering that 256 total fea-
tures were investigated, the commonalities across the two

selected feature sets suggest that features selected are descrip-
tive on images from both vendors. However, there are some
instances in which features were not selected in both analy-
ses. For example, the feature entropy was selected when
using clusters from GE but not Hologic. Energy was selected
when using clusters from Hologic but not GE. While these
features are calculated by different formulas, each describes
image homogeneity. Furthermore, these features are each
highly correlated with one another. Therefore, while features
selected may have varied, the physical characteristics
described by the features selected remained consistent over
the two vendors.

Furthermore, not all features included in Table III were
necessarily selected for inclusion in the classifier. Reasons
for this may include redundancy, or lack of discriminatory
ability of the feature of interest. Namely, robustness is not a
sufficient condition for inclusion in the final set of selected
features. Features that are robust and not redundant with
other feature candidates are passed from the robustness
assessment to classification evaluation step of RACE, but in
order to be included in the final set of features, the features
must also have discriminatory power in the clinical task in
order to be selected by the stepwise feature selection method.

TABLE III. List of the 20 most robust features over the two vendors examined
in this study. The composite indicator is a measure of robustness, where lar-
ger values indicate a more robust feature relative to the others examined in
this study. The composite indicator is computed according to Eq. (1).

Feature name Feature family
Composite

indicator (CI)

Sum entropy GLCM 5.81

Percentage density Density 5.52

Dim 5 Box-counting
fractal dimension

5.33

Sum variance GLCM 5.26

Beta 3 Power law 5.23

safmp Fourier features 5.18

Beta 1 Power law 5.18

Variance GLCM 5.14

Dim 4 Box-counting
fractal dimension

5.11

Beta 7 Power law 5.09

IMC 2 GLCM 5.06

Maximum correlation
coefficient

GLCM 5.01

Dim 1 Box-counting
fractal dimension

4.99

Correlation GLCM 4.96

Sarms Fourier features 4.91

Beta 5 Power law 4.81

rrms Fourier features 4.80

rfmp Fourier features 4.72

Global Minkowski
dimension

Minkowski fractal
dimension

4.71

Dim Box-counting
fractal dimension

4.66
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For instance, it can be observed from Table III and Fig. 5
that although the 20 most robust features did not include any
edge frequency, first-order, or histogram features, some fea-
tures from each of these categories were ultimately chosen
for inclusion in the final classifier. This happens because
while the RACE method gives preference to the most robust
redundant features, it does not remove features such as those
with moderate robustness from the set of candidates. If a fea-
ture with moderate robustness was clustered with features that
had lower robustness, that moderate feature would be consid-
ered in stepwise feature selection, and thus may be ultimately
included in the final model. This can be illustrated by the
selection of minima, which is a histogram feature with a CI

of �0.70, suggesting that it is marginally below average in
terms of its robustness. Minima was clustered with features
including average, maximum cumulative distribution func-
tion (CDF), minimum CDF, seventy percent CDF, and thirty
percent CDF. Each of these features had a CI between �1.05
and �1.60, suggesting even lower robustness than minima.
Thus, minima would be the most robust feature of its cluster
and would be considered in the next stage of classification
evaluation.

Conversely, highly robust features are not guaranteed to be
selected in stepwise feature selection for inclusion in a final
feature set. For example, the box-counting fractal dimension
feature Dim1 was highly robust with a CI of 4.99. As the

FIG. 3. Resulting performance of classifiers trained on varying quantities of clusters and therefore varying degrees of stringency on the robustness of input
features. Parts (a) and (b) show performance of intra- and intervendor feature selection and classifier construction as the number of clusters, and therefore strin-
gency on robustness, is varied. Parts (c) and (d) show the difference between intra- and intervendor classifier performance to demonstrate generalizability. Parts
(a) and (c) show results for when GE is designated M1 and Hologic is designated M2. Parts (b) and (d) show results for when Hologic is designated M1 and GE
is designated M2. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Results of the Mann–Kendall test for the presence of monotonic trends, and the Thiel–Sen Estimator of such trends for the performance as a function of
the number of clusters. Statistically significant values are denoted by boldface font. Colored results (blue, red) correspond to intravendor comparisons using GE
and Hologic images, respectively. Gray results correspond to intervendor comparisons. [Color figure can be viewed at wileyonlinelibrary.com]
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most robust feature in its cluster, it was considered in feature
selection. However, during stepwise feature selection, Dim1
was not selected for inclusion in the final model.

3.A. Comparison against harmonization methods

Classification performance of the RACE method proposed
in this paper was compared to the ComBat harmonization
method used in previous studies.31,32 The results, summarized
in Fig. 6, suggest that while the two methods perform simi-
larly on intravendor comparisons, RACE had significantly
higher AUC than ComBat harmonization method on inter-
vendor comparisons when training on GE images and testing
on Hologic images.

When ComBat harmonization is applied and followed by
RACE, the results failed to demonstrate significant differ-
ences from either ComBat alone or RACE alone. This trend
held for each of the four combinations of training and testing
data investigated in this study.

In comparing the robustness metrics between raw feature
values and harmonized feature values, it was observed that
the MFR, which characterizes the agreement in feature mag-
nitude, was significantly changed (P < 0.001), while the cor-
relation coefficient of the feature values between vendors was
not significantly different before and after harmonization
(P = 1.000) as shown in Fig. 7. This result suggests that
ComBat harmonization acts to improve agreement in feature
magnitude across vendors but does not impact the correlation
of features across the two systems.

4. DISCUSSION

This study found that many features describing spatial
characteristics tended to be robust. Box-counting fractal
dimension features were observed to be highly robust over
vendors. Fractal dimension characterizes the roughness and
self-similarity of images.36 In the case of breast parenchyma,
this suggests that fractal dimension may describe the

complexity of dense tissue pattern as it appears in the mam-
mogram. Power law features were also observed to be robust
over the two vendors in this study. Previous studies have sug-
gested that power law features are related to the background
parenchymal pattern of breast structure.7,37,38 The power law
exponent, b, indirectly characterizes the frequency content of
the texture pattern and can be mathematically transformed to
fractal dimension.39,40 Therefore, it would be expected that
power law features would demonstrate similar trends in
robustness to the fractal dimension. Derivative statistics from
the GLCM matrix also demonstrated high robustness over
mammographic units. GLCM features describe spatial rela-
tionships between pixels. By calculating how frequently pairs
of pixels with specific values in specific spatial relationships
occur throughout the ROI, descriptors such as energy,
entropy, and correlation were computed.15 Studies that have
investigated the robustness of GLCM features over varying
region segmentations and bin sizes for discretization also
found that GLCM features demonstrate high robustness.41

It is likely that the technical characteristics of the Hologic
and GE unit used to acquire images influence the feature val-
ues extracted, and thus the robustness of such features. A
more focused examination of specific technical parameters
that differ between the two units used in this study can be
found in a study by Mendel et al.24 Briefly, Mendel et al.
reported that the two units differ in pixel size, anode material,
detector size, detector material, and conversion method.24

The monotonic trends observed in this study suggest that
considerations of feature robustness in feature selection tend
to improve generalizability of models across vendors. While
a trend was observed, the nature of this trend was not
explored beyond the monotonic direction (increasing or
decreasing). In standard practice, robustness and repeatability
of radiomic features across imaging machines is typically not
evaluated or included in the feature selection process. The
results of this study suggest that conventional methodology
may not be reproducible on data acquired on a different
machine. This may also pose problems in studies which

FIG. 5. Summary of features selected for the classifier when robustness assessment, classification evaluation is performed either with GE designated as M1 or
Hologic designated as M1. The results presented in this figure are specifically from selection after grouping features into 46 clusters. This number of clusters was
chosen as it provides the best intervendor performance for each manufacturer. Selected features were recorded from each leave-one-out iteration during stepwise
feature selection, and the 18 features most frequently selected for each manufacturer is recorded here. [Color figure can be viewed at wileyonlinelibrary.com]
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perform classification using data from multiple acquisition
systems, if consideration is not given to feature robustness.

While this study observed superior intervendor results of
RACE over ComBat harmonization, this could be due in part

to the intended use of the two algorithms. While this study
developed the two-stage method with the goal of developing
a texture signature which is robust in intervendor compar-
isons, the study by Orlhac et al. only performed classifica-
tions using single features, as opposed to feature signatures.31

Specifically, the calculation of a radiomic signature may
accommodate for normalization differences over the two ven-
dors, thus reducing the utility of a harmonization step prior to
signature calculation. Therefore, this study suggests that
RACE is useful in producing intervendor radiomic signa-
tures, while ComBat may be useful when performing classifi-
cations using a single radiomic feature.

When applying ComBat harmonization followed by
RACE, the resulting AUC values failed to show a statistical
difference from those obtained when using RACE alone. The
failure to observe a significant difference between ComBat
harmonization alone and ComBat harmonization followed by
RACE suggests that after performing feature harmonization,
further application of robustness assessment does not signifi-
cantly impact the classification performance. Likewise, the
failure to observe a significant difference in this study
between RACE alone and ComBat harmonization followed
by RACE suggests that adding the standardization step of fea-
ture harmonization does not significantly improve the perfor-
mance of robustness assessment for classification. A possible
explanation for this could be that by following ComBat

FIG. 6. Performance in the task of classifying the presence of risk factors of breast cancer of three analysis methods: (a) robustness assessment, classification
evaluation, (b) ComBat, and (c) ComBat followed by robustness assessment, classification evaluation. In each method, 18 features were included in the ultimate
radiomic signature construction, and leave-one-out cross-validation was performed. While intravendor comparisons were not significantly different between the
three methods, intervendor comparisons were significantly different, with the two-stage method performing better as judged by the area under the curve (AUC).
Recall that M1 refers to the vendor on whose images features were selected as machine one, and M2 refers to the vendor used to assess generalizability. By the
Holm–Bonferroni correction for multiple comparisons, P < 0.017 is required to demonstrate statistical significance. [Color figure can be viewed at wileyonline
library.com]

FIG. 7. Summary of trends in robustness metrics computed on features
before and after ComBat harmonization. mean of feature ratio (MFR) near
zero indicates high robustness, and correlation near 1 indicates high
robustness. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (5), May 2019

2153 Robinson et al.: Radiomics robustness assessment and classification evaluation 2153

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


harmonization by RACE, feature reduction is being per-
formed on the candidate feature set prior to stepwise feature
selection. Thus, it is possible that the stepwise feature selec-
tion algorithm employed in this study is better suited to appli-
cations on already reduced feature sets. Another explanation
could be the limited size of our dataset. Future work will
investigate benefit of stepwise feature selection when applied
on feature sets containing various numbers of features.

Importantly, the pixel size of images collected on the two
systems was not consistent. As demonstrated separately by
Mendel et al. and Mackin et al., varying the pixel size
impacts the radiomic features calculated from images.17,39 In
efforts to harmonize pixel size for feature calculations, Men-
del et al. found reduced feature robustness following pixel
interpolation on FFDM to produce consistent pixel size, com-
pared to no preprocessing.24 Likewise, Mackin et al. found
increased feature variability following voxel resampling on
computed tomography images to produce consistent pixel
size, compared to no preprocessing.39 Studies have used
methods such as image resizing followed by Butterworth fil-
tering, low-pass filters, band-pass filters, or Gaussian filters
in order to harmonize images prior to feature calcula-
tion.19,42–45 In this study, we chose not to apply these steps to
force consistent pixel size as the presented method seeks to
address image heterogeneities through feature selection as
opposed to image processing. However, image harmonization
steps may further improve feature robustness.

While this study proposes a two-stage feature selection
process for building reproducible classifiers (RACE), this
study is not without limitations. Firstly, reproducibility data-
sets consisting of patients imaged on separate machines are
relatively uncommon in medical imaging. Therefore, this ini-
tial investigation applied the proposed methods to only one
task on only one dataset. In general, the proposed methods
could be applied to a number of applications given that
repeatability data are available.

Additionally, this study applied the methods to a challeng-
ing task, in which high performance is not necessarily
expected. Several studies have used radiomic texture analysis
to address risk of breast cancer based on screening images;
however, even studies with well-separated patient populations
(i.e., unilateral cancer vs low risk cancer) had only moderate
performance8. Previous studies have also measured reduc-
tions in classification performance when women with differ-
ent types of risk factors are analyzed together (e.g.,
classifying BRCA2 vs low-risk controls, compared to classi-
fying BRCA1/2 vs low-risk controls). In this study, the group
with high-risk factors present had a range of factors including
BRCA1/2 gene mutations, family history of breast or ovarian
cancer, and personal history of ADH, meaning that this group
was likely heterogeneous in its true overall lifetime risk of
breast cancer. Therefore, there existed greater variability
within groups in this study which may have contributed to
low performance values. This study did not test the classifica-
tion of specific risk factors from low-risk controls because of
the limited database size. Furthermore, differences other than
the presence of high-risk factors existed between the two

groups. One such measured difference was the difference in
mean age (54.3 and 49.7 yr for risk factors absent and pre-
sent, respectively). Parenchymal texture has been observed to
change over a woman’s lifetime, and therefore this confound-
ing factor could impact the results of this study.

Another consideration for further optimization of the
methods proposed in this study includes closer examination
of the optimization of ROI size and location. In this study,
regions with size 512 9 512 pixels were placed in the cen-
tral region directly behind the nipple as this location was
shown to perform well in previous risk assessment studies.25

However, because of differences in database and analysis,
these parameters are not necessarily optimal in the present
study. Thus, while it has not been proven that size and loca-
tion used in this study are optimal, their utility in previous
studies makes them logical choices. This study used radio-
mic features of the breast parenchyma to predict risk, and
dense component, if present in the breast, is typically
located in the central region immediately behind the nipple.
Thus, the location used is a practical choice as it was where
the tissue of interest is typically located. Furthermore, the
study by Li et al. found that classification performance did
not significantly decline as the ROI size changed. Instead,
the study reported that there was no statistically significant
difference observed as the size of the ROI decreased.25

Therefore, significant differences in the outcome of this
study would not be expected if a different ROI size were
used.

As this was a retrospective study, the imaging units on
which images were collected are no longer considered state-
of-the-art. The GE Senographe 2000D unit was first released
in 2000. Compared to newer GE units, the GE Senographe
2000D has a smaller field of view and lower detective quan-
tum efficiency (DQE) and normalized noise power spectrum
(NNPS) due to improvements in electronic noise in latter
models.46 The Hologic Selenia is also different from later
models, as the unit used in this study had a molybdenum–
molybdenum (Mo-Mo) target-filter. This target-filter material
has been shown to result in higher average glandular dose
compared to molybdenum–rhodium (Mo-Rh) or rhodium–
rhodium (Rh-Rh) target-filter combinations.47 This is because
Mo-Mo target-filter combinations results in a softer x-ray
beam. Mo-Mo has also been shown to result in lower contrast
in dense breasts compared to the other target-filter material
combinations, making it less optimal.47 Newer Hologic sys-
tems use a tungsten–silver (W-Ag) target-filter combination,
which results in a harder x-ray beam.48 These physical differ-
ences in image acquisition between the models used in this
study and the models used clinically today may cause differ-
ences in image feature values and appearance, yet the meth-
ods proposed in this would likely remain relevant for varying
image parameters or system vendor.

Additionally, the average mean glandular dose (MGD) of
the two vendors’ units is different. As reported by Hendrick
et al., the GE system had a MGD of 1.69 mGy per view and
4.02 mGy per exam, and the Hologic system had a MGD of
2.50 mGy per view and 5.03 mGy per exam.
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Future steps include evaluation of this method on different
data for different clinical tasks, such as lesion characteriza-
tion or disease detection. Additionally, a wider range of radio-
mic features will be evaluated with this method to explore
whether the proposed method may be applied to wider analyt-
ical questions. Investigation into changes in radiomic features
over time will also be investigated in future studies. Studies
in PET have suggested that factors such as aging and meno-
pausal status may impact radiomic features, and a temporal
set of mammograms will facilitate investigations such as
this.49

5. CONCLUSIONS

This study proposed a two-stage method (RACE) for
robust radiomic signature construction. RACE was demon-
strated in the task of breast cancer risk assessment. The
results suggest that feature generalizability monotonically
decreases as reproducibility decreases. This trend shows that
considerations of feature robustness could improve classifier
generalizability in multifarious datasets collected on multiple
mammography units. Furthermore, the same trend was
observed when either vendor was used for feature clustering
thus supporting that this finding can be generalized. An
investigated harmonization method (ComBat) was not shown
to have strong classification performance when used on its
own, but when ComBat harmonization was followed by
RACE, classification results appeared similar to RACE alone.
Thus, harmonization steps in conjunction with robustness
assessment warrant future investigation in feature selection
and classifier construction methods.
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