Skip to main content
. 2019 Mar 12;46(5):2145–2156. doi: 10.1002/mp.13455

Table 3.

List of the 20 most robust features over the two vendors examined in this study. The composite indicator is a measure of robustness, where larger values indicate a more robust feature relative to the others examined in this study. The composite indicator is computed according to Eq. (1)

Feature name Feature family Composite indicator (CI)
Sum entropy GLCM 5.81
Percentage density Density 5.52
Dim 5 Box‐counting fractal dimension 5.33
Sum variance GLCM 5.26
Beta 3 Power law 5.23
safmp Fourier features 5.18
Beta 1 Power law 5.18
Variance GLCM 5.14
Dim 4 Box‐counting fractal dimension 5.11
Beta 7 Power law 5.09
IMC 2 GLCM 5.06
Maximum correlation coefficient GLCM 5.01
Dim 1 Box‐counting fractal dimension 4.99
Correlation GLCM 4.96
Sarms Fourier features 4.91
Beta 5 Power law 4.81
rrms Fourier features 4.80
rfmp Fourier features 4.72
Global Minkowski dimension Minkowski fractal dimension 4.71
Dim Box‐counting fractal dimension 4.66