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Purpose: Lung nodules that are missed by radiologists as well as by computer-aided detection
(CAD) systems mostly overlap with ribs and clavicles. Removing the bony structures would result in
better visualization of undetectable lesions. Our purpose in this study was to develop a virtual dual-
energy imaging system to separate ribs and clavicles from soft tissue in chest radiographs.
Methods: We developed a mixture of anatomy-specific, orientation-frequency-specific (ASOFS)
deep neural network convolution (NNC) experts. Anatomy-specific (AS) NNC was designed to sepa-
rate the bony structures from soft tissue in different lung segments. While an AS design was proposed
previously under our massive-training artificial neural networks (MTANN) framework, in this work,
we newly mathematically defined an AS experts model as well as its learning and inference strategies
in a probabilistic deep-learning framework. In addition, in combination with our AS experts design,
we newly proposed the orientation-frequency-specific (OFS) NNC models to decompose bone and
soft-tissue structures into specific orientation-frequency components of different scales using a multi-
resolution decomposition technique. We trained multiple NNC models, each of which is an expert
for a specific orientation-frequency component in a particular anatomic segment. Perfect reconstruc-
tion discrete wavelet transform was used for OFS decomposition/reconstruction, while we introduced
a soft-gating layer to merge the predictions of AS NNC experts. To train our model, we used the bone
images obtained from a dual-energy system as the target (or teaching) images while the standard chest
radiographs were used as the input to our model. The training, validation, and test were performed in
a nested two-fold cross-validation manner.
Results: We used a database of 118 chest radiographs with pulmonary nodules to evaluate our NNC
scheme. In order to evaluate our scheme,we performed quantitative and qualitative evaluation of the pre-
dictedboneandsoft-tissue images fromourmodel aswell as theonesofa state-of-the-art techniquewhere
the“gold-standard”dual-energyboneandsoft-tissueimageswereusedasthereferenceimages.Bothquan-
titativeandqualitativeevaluationsdemonstrated thatourASOFSNNCwassuperior to thestate-of-the-art
bone-suppression technique. Particularly, our schemewas better able tomaintain the conspicuityof nod-
ules and lungvessels, comparing to the reference technique,while it separated ribs andclavicles fromsoft
tissue. Comparing to a state-of-the-art bone suppression technique, our bone images had substantially
higher(t�test;P < 0.01)similarity,intermsofstructuralsimilarityindex(SSIM)andpeaksignal-to-noise
ratio(PSNR),tothe“gold�standard”dual�energyboneimages.
Conclusions: Our deep ASOFS NNC scheme can decompose chest radiographs into their bone and
soft-tissue images accurately, offering the improved conspicuity of lung nodules and vessels, and
therefore would be useful for radiologists as well as CAD systems in detecting lung nodules in chest
radiographs. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.13468]
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1. INTRODUCTION

Chest radiography (chest x-ray: CXR) is used for diagnosing
a wide range of lung diseases including but not limited to
lung cancer, pneumonia, tuberculosis, and pulmonary emphy-
sema. More than nine million people die each year worldwide
because of chest diseases.1 CXR is the most commonly used
imaging technique for diagnosis of lung diseases because of
its cost-effectiveness, availability, and dose-effectiveness.2

Among different chest diseases, lung cancer is the leading
cause of cancer deaths in the world. CXRs are used for

detecting lung cancer3–5 because evidence suggested that the
early detection of nodules (i.e., potential lung cancer) may
allow a more favorable prognosis.6–8

Even though CXRs are widely used for detection of pul-
monary nodules, nodules can be difficult to detect due to
overlap with normal anatomic structures such as ribs and
clavicles. A study9 reported that more than 80% of missed
lung cancers in CXRs were partly obscured by overlying
bones. Similarly, a major challenge in computer-aided detec-
tion (CAD) schemes for nodules in CXRs is the detection of
the nodules overlapping with bony structures, because a
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majority of false positives are caused by these structures.10,11

To address this issue, a dual-energy (DE) radiography sys-
tem12,13 was developed for separating bones from soft tissue
in CXRs by use of two x-ray exposures at two different
energy levels. The technique produces soft-tissue-enhanced
images from which bones are removed. By using these
images, the performance of CAD schemes was improved.14,15

In spite of the advantages, a limited number of hospitals use
DE radiography systems, because specialized equipment is
required for obtaining DE x-ray exposures, and more impor-
tantly, the radiation dose can be double in theory, comparing
to that in standard CXRs.

A deep-learning-based image processing (DLIP) tech-
nique for separating bones from soft tissue was first intro-
duced by Suzuki et al.16,17 The technique employed a DLIP
technique called massive-training artificial neural networks
(MTANNs) to find the relationship between CXRs and the
corresponding DE bone images, in a supervised learning
framework. Once the MTANN was trained, it could produce
bone and soft-tissue images from a single CXR. An observer
performance study with 12 radiologists demonstrated that the
diagnostic performance of radiologists in the detection of
lung nodules was improved significantly by using the soft-tis-
sue images produced by MTANNs.18 The performance of
MTANNs in suppressing bones, in particular the ribs near
the lung wall and rib edges, was improved by employing an
AS design.19 The method was recently extended for portable
CXRs.20 An independent component analysis based tech-
nique for the suppression of posterior ribs and clavicles was
proposed by Ahmed et al.21 to enhance the visibility of nod-
ules and to aid radiologists during the diagnosis process. A
study22 proposed a supervised filter learning technique for
the suppression of ribs. The procedure is based on K-nearest
neighbor regression that incorporates the information from a
training set of DE soft-tissue images. Recently, a DLIP tech-
nique was proposed by Yang et al.23 to predict bone images
from CXRs in a supervised discriminative fashion.

In this study, we extended the MTANNs to formulate a
general DLIP framework, which we call neural network con-
volution (NNC). We developed a “virtual” DE system based
on NNC for separating bones from soft tissue in CXRs to
improve the performance for nodule delineation and rib edge
removal by incorporating a mixture of orientation-frequency-
specific (OFS) experts together with anatomy-specific (AS)
experts into the NNC framework. Because it is difficult for a
single DLIP model to handle ribs and clavicles in various ori-
entations, the OFS expert architecture allows multiple expert
models to handle such objects in multiple orientations sepa-
rately. Also, because the signal and noise statistics vary sig-
nificantly in different lung regions, the AS expert architecture
helps multiple expert models to separate bony structures from
soft tissue in different lung segments individually.19 In this
work, we mathematically defined the AS NNC model as well
as its learning and inference strategies in a probabilistic deep
learning framework. We further introduced the OFS architec-
ture to decompose bones and soft tissue into specific orienta-
tion-frequency components of different scales. A major

advantage of the anatomy-specific, orientation-frequency-
specific (ASOFS) architecture other than its higher perfor-
mance is that it enables utilizing relatively simple neural net-
work architectures with fewer free parameters, while keeping
a large receptive-field, which would reduce the requirement
of a large number of training data. Perfect reconstruction dis-
crete wavelet transform (DWT) was used for OFS decomposi-
tion/reconstruction, while we introduced a soft-gating layer to
merge the predictions from AS NNC experts. For evaluation,
we used a database of 118 CXRs with pulmonary nodules.
We compared our newly proposed ASOFS NNC scheme,
through quantitative and qualitative evaluation, with our pre-
vious state-of-the-art bone-suppression technique based on
MTANNs.19 An abstract version of our preliminary study
was presented at an Annual Meeting of Radiological Society
of North America in 2017.24

2. MATERIALS AND METHODS

2.A. Virtual DE imaging based on our ASOFS deep
NNC model

Figure 1 shows the schematic diagram of our virtual DE
imaging by means of our ASOFS deep NNC in a test stage.
To convert an original single CXR image to a bone image,
the original image is first decomposed into multiple orienta-
tion-frequency components using a multi-level multi-scale
OFS decomposition. Each image with a specific component
is then decomposed spatially into several anatomic segments
using a gating layer. Each of trained NNC experts then pro-
cess the corresponding regions in a specific lung segment in
a particular orientation-frequency component image to pro-
duce component-wise bone images. The bone predictions by
multiple NNC experts for multiple lung segments are then
merged using a soft-gating layer to form an entire bone com-
ponent image at a specific scale (frequency) in a particular
orientation. The final complete bone image is then obtained
by using the OFS reconstruction. To obtain the soft-tissue
image, the bone image is subtracted from the original CXR.
In a learning stage, we acquired pairs of CXRs and the corre-
sponding “teaching” bone images from a single-shot DE sys-
tem. We decomposed the input and the “teaching” (or
desired-output) bone images into their corresponding orienta-
tion-frequency component in a specific lung segment. We
trained multiple NNC experts individually with their corre-
sponding components. Both training and test stages can be
performed in a fully parallel setting. We now describe the
details of our virtual DE system including the NNC model
and ASOFS decomposition/reconstruction below.

2.B. Neural network convolution

The root of NNC is neural filters25–27 and neural edge
enhancers28,29 that are supervised nonlinear convolution
filters based on neural networks for noise reduction and
edge enhancement, respectively. By extending these filters,
MTANNs30 were developed for supervised enhancement of
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specific patterns in images. In this work, we extended the
MTANNs to formulate a general DLIP framework, which we
call machine learning convolution (MLC). Given an input
image f and the desired output g, the output ĝ of an MLC
model is defined by

ĝ x; yð Þ ¼ Mhðfx;yÞ (1)

fx;y ¼ ff x� i; y� jð Þj i; jð Þ 2 Rg (2)

where ĝ x; yð Þ is the predicted image at spatial coordinates
(x, y), fx,y is an input vector to the model defined by an image
region (image patch or “kernel”) R around (x, y), and
Mh :ð Þ : RN ! R, is a continuous function parameterized by
h , forming a mapping from an N dimensional image patch to
a single output pixel. The output image ĝ can be obtained by
sliding a local window over an image f and applying Mh on
the corresponding image regions. To understand the mecha-
nism of MLC, observe that by setting Mh in Eq. (1) to a lin-
ear function, the standard definition of convolution in the
field of signal processing can be obtained as follows:

Mh fx;y
� � ¼ hT fx;y (3)

ĝ x; yð Þ ¼
X

i

X

j

u i; jð Þ � f x� i; y� jð Þ (4)

where φ is a 2D signal with zero elements outside the region
R (or the kernel of the convolution), and h is the vectorized
version of the nonzero elements of φ. In general, M can be
replaced by any regression model, e.g., support vector regres-
sion and Gaussian process regression models.31 A special
case is when M is a neural network, which we call NNC,
represented by

ĝ ¼ NNCðf Þ (5)

ĝ x; yð Þ ¼ N hðfx;yÞ (6)

where NNC :ð Þ : RNi ! RNo is the main function converting
an Ni-dimensional input to an No-dimensional output, and
N h : RN ! R is a feed-forward neural network regression
model, parameterized by h. The neural network receives pixel
information from an image region (image patch) R in the
input image f. The input data are subject to the processing in
multiple hidden layers, followed by linear transformation in
the output layer. Under this terminology, we can construct a
variety of early26,28 and recent32,33 DLIP models including
fully convolutional networks. We applied NNC for radiation
dose reduction in CT and breast imaging.32,34

Given a set of input and desired output (or “teaching”)
images, one can extract regionsR and the corresponding out-
put pixels, from the input and desired output images, respec-
tively. Having this set, the goal of the machine learning is to
find the best parameter vector h of an NNC model so that the
predictions are closest to the desired values. Formally, we
minimize the mean squared error (MSE) over the empirical
distribution, as follows:

h� ¼ argmin
h

Efx;y;gðx;yÞ�Pdataðf ;gÞ½ðgðx; yÞ � N h fx;y
� �Þ2� (7)

where fx;y and g(x, y) are an input region and a desired pixel,
respectively, and Pdata is the empirical patch-pixel pair distri-
bution. We call this a region-based (RB) learning strategy.
From a probabilistic viewpoint, Eq. (7) is equivalent to maxi-
mizing the conditional log-likelihood of the parameters h,
assuming that the pixels of the desired images are indepen-
dent when the corresponding regions in the input images are
observed, and the underlying conditional distribution is
Gaussian. From an image-processing perspective, this, in
fact, is equivalent to maximizing the peak signal-to-noise
ratio (PSNR). One can use Eq. (7) in its original form to train
an MLC model by replacing N h with Mh. Gradient-based
optimization can be employed to solve this problem. Particu-
larly we used stochastic gradient descent (SGD) with momen-
tum.35 Using an RB strategy, a mini-batch of data can be

FIG. 1. Schematic diagram of our virtual DE system based on our deep ASOFS NNC model in a test stage. The original unseen single CXR is decomposed into
specific orientation-frequency components in multiple anatomic segments. The decomposed components are selectively assigned to corresponding trained NNC
experts by the gating layer. The resulting bone predictions from multiple NNC experts are merged by the soft-gating layer followed by the OFS reconstruction to
form a complete bone image where soft-tissue components are removed, while bone components are maintained. [Color figure can be viewed at wileyonlinelibra
ry.com]
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extracted randomly from the set of all region-pixel pairs. This
ensures that the examples in a mini-batch of data are less
dependent, which is a desired property when employing
SGD.

2.C. Anatomy-specific NNC

Even though a single NNC model was able to separate
bones from soft tissue in the entire lungs,16 it could not sup-
press rib edges and the ribs close to the lung wall suffi-
ciently, due to intensity and structural variations of bony
structures in different lung segments. Theoretically, one can
increase the complexity of a single NNC model to increase
its representation capability in order to capture this bone
variation. However, this would require a larger number of
training examples, which sometimes might not be acceptable
due to a sample size limitation and computational limitation.
To address this issue, AS decomposition/reconstruction was
introduced by Chen et al.19 We used a similar strategy in
this study, and we newly defined AS NNC and its corre-
sponding learning and inference strategies formally in a
probabilistic deep learning framework. As depicted in Fig. 1,
AS decomposition simplifies the bone prediction problem
by spatially decomposing the image into different lung seg-
ments. Note that we focused on prediction/suppression of
bones in the lung field in this study, because this is the most
important region in a CXR. One can easily expand this AS
strategy to include regions outside the lung field. Corre-
spondingly, the lung field was divided into eight anatomic
segments: a left upper segment for suppression of left clavi-
cles and ribs, a left hilar segment for suppression of bone in
the hilar area, a left middle segment for suppression of ribs
in the middle of the lung field, a left lower segment for sup-
pression of ribs in the left lower lobe, a right upper segment,
a right hilar segment, a right middle segment, and a right
lower segment. In this fashion, each NNC is trained to learn
the relationship between the input CXR and desired (teach-
ing) bone images for a particular anatomy. To formally
define AS decomposition/reconstruction using gating and
soft-gating layers, we first redefine the NNC estimation for-
mulation in a probabilistic fashion as a discriminative model
as follows:

ĝ ¼ argmax
g

Pmodelðgjf Þ (8)

Pmodel gjfð Þ ¼
Y

S

Phðg x; yð Þjfx;yÞ (9)

where Pmodel is the conditional probability distribution of the
desired image g given an input image f. As described before,
under a patch-based conditional independence assumption,
the image-to-image model distribution can be decomposed
into a multiplication of the conditional distribution of the pix-
els given the corresponding image patches, as described in
Eq. (9), where S indicates a set of all patch-pixel pairs in a
pair of input-desired images. When Ph is assumed Gaussian
with its conditional expectation being modeled by a neural

network, a maximum log-likelihood estimate of the model
parameters from Eq. (9) corresponds to the NNC MSE train-
ing in Eq. (7). The basic assumption of the AS model is that
the underlying conditional probability distribution changes
from anatomy to anatomy, and we can capture this variability
by using a mixture model. To represent the AS NNC, we can
define

Phðg x; yð Þjfx;yÞ ¼
X

z

Phzðg x; yð Þjz x; yð Þ; fx;yÞPðz x; yð Þjfx;yÞ

(10)

where z x; yð Þ is a latent random variable from a categorical
distribution from the set of lung anatomic segments (e.g., left
upper segment, left hilar segment, etc.) described earlier, and
Phz represents the probability of observing an output pixel
given an input patch and its corresponding segment category.
In Eq. (10), we assumed Phz is a conditional Gaussian model
by utilizing a neural network expert to model the conditional
expectation. Additionally, we modeled the probability of a
lung segment given the input patch, through the segmentation
of the lungs into eight anatomic segments. Optimizing the
log-likelihood with the AS assumption of Eq. (10) requires a
mutual training of the NNC experts because of the summa-
tion over the latent variable z. To simplify the optimization,
we assumed the minimum entropy for Pðz x; yð Þjfx;yÞ (i.e., the
probability of the most probable outcome is one) which cor-
responds to the gating layer in Fig. 1. This, in fact, is a rea-
sonable assumption when z represents the lung segments,
because z cannot belong to more than one category (except
for the segment boundaries). Therefore, the maximum likeli-
hood of the new representation is equivalent to the separate
training of eight NNC experts, following our simplification
rule. For inference, when the input patch belongs to one
specific segment, the processing would be simply the forward
propagation of the corresponding NNC expert. When the
patch belongs to boundaries, we merge the predictions with a
weighted combination of them using Eq. (10). Gaussian
smoothing filtering between the lung segment boundaries is
used in our implementation, to account for the probability of
z given the input patch, which corresponds to the soft-gating
layer in Fig. 1. Equation (10) is described schematically in
Fig. 2.

2.D. Orientation-frequency-specific NNC

To train a DLIP system for bone separation that can gener-
alize well, the receptive-field should be large enough to cover
discriminative information from an input CXR. Intuitively,
the receptive-field should be as large such that it covers bony
structures. This can potentially increase the required number
of free parameters of a neural network substantially. To
address this issue, multi-resolution-based technique was pro-
posed.16 A 2-level pyramidal decomposition was used to
address the receptive-field issue. Additionally, decomposing
an input CXR into multiple orientation-frequency compo-
nents would potentially result in an easier learning scenario
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with limited pattern variations, because the orientation and
frequency components of bony structures differ significantly
from those of soft tissue. A similar assumption was made in a
bone suppression study23 by training convolutional neural
networks in the gradient domain, and it was shown that the
results were improved in comparison to a conventional train-
ing in the intensity domain.

We combined the two ideas and proposed a multi-scale
OFS decomposition/reconstruction, to simultaneously
address the receptive-field and pattern variation issues, and
train multiple experts for specific orientation-frequency com-
ponents. We found DWT as a satisfactory choice for the OFS
design, because firstly we were able to employ perfect recon-
struction filter banks without loss of information, and sec-
ondly the relatively straightforward filtering process of DWT
combines well with our DLIP NNC design. Following this
design, each decomposition/reconstruction level can double
the size of the receptive-field. As depicted in Fig. 1, a single-
level OFS decomposes a CXR into four frequency compo-
nents of different orientations: low-low, low-high, high-low,
and high-high components, where the first-second term

corresponds to horizontal-vertical directions. Following our
AS definition in the previous section, each component can be
then decomposed spatially into multiple lung segments. Mul-
tiple NNC experts are then trained individually for their cor-
responding particular orientation-frequency component
image in a specific lung segment. The merged predictions of
the AS NNCs through the soft-gating layer are then subject to
the OFS reconstruction to form a complete output bone
image. From a deep learning perspective, each decomposition
level introduces a convolution layer followed by a down-sam-
pling (or pooling), while each reconstruction level introduces
an up-sampling followed by a convolution layer, where the
convolution filters are fixed, and the pooling/un-pooling lay-
ers do not lose information if perfect reconstruction filter
banks are used. Figure 3 represents the schematic of OFS
NNC (without the AS design) in a deep learning fashion.

2.E. Implementation

We used a two-level DWT for the OFS decomposition/re-
construction resulting in seven orientation-frequency compo-
nents. We employed the orthogonal Haar wavelet transform
for its efficiency and effectiveness. Our preliminary study
showed no significant performance difference when employ-
ing other variants of wavelet transforms. Specifically, our pre-
liminary evaluations showed similar (no statistically
significance differences) quantitative performance for several
wavelet types such as Haar, Symlet, Daubechies, and Coiflet.
Our previous study16 showed that two levels of decomposi-
tion/reconstruction was sufficient to capture the representa-
tional information from the input CXRs to discriminate
bones from soft tissue. We discuss the choice of OFS levels
in a later section. Histogram-based segmentation was utilized
for AS decomposition to segment the lung field. The lung
field was then segmented further into eight anatomic seg-
ments by selecting the upper third, lower third, and the mid-
dle third segments. The middle segment was halved into hilar
and middle segments. We extracted 128,000 samples from
each particular orientation-frequency component image and a
specific anatomic segment. We trained 56 (seven orientation-
frequency components and eight anatomies each) NNC

FIG. 2. Detailed schematic of our AS NNC with gating and soft-gating layer.
Each NNC is trained through its corresponding patch-pixel pairs in a specific
lung segment. The predictions are combined through a soft-gating layer by a
weighted combination of per-segment predictions. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 3. Detailed schematic of our OFS NNC with OFS decomposition/reconstruction. From a deep-learning perspective, each decomposition corresponds to
convolution followed by a pooling layer. Similarly, reconstruction is equivalent to an up-sampling layer followed by convolution. Each NNC is trained individu-
ally through its corresponding patch-pixel pairs of a specific orientation-frequency component. [Color figure can be viewed at wileyonlinelibrary.com]
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models with the massive training samples from a relatively
small number of cases. Both CXRs and bone images were
normalized to a range of approximately between 0 and 1.
Because of employing our ASOFS design, we were able to
utilize a two-layer architecture neural network regression
including a convolution layer of 9 9 9 filter size and a hid-
den layer of 64 hidden units with sigmoidal activations, fol-
lowed by a linear transformation. We consistently used SGD
with a learning rate of 0.1, a momentum of 0.9, and a batch-
size of 128, and trained each NNC for 100 epochs to mini-
mize the MSE. No explicit regularization36 was used. We
employed a nested two-fold cross-validation (CV) strategy as
follows: for training, we randomly selected 59 CXR-bone
pairs, from which 50 pairs were randomly chosen for training
while the other 9 were used for validation and optimization
of the hyper-parameters. Once the hyper-parameters were set,
the entire 59 pairs were used for training and the correspond-
ing model was tested on the other half of input-CXR bone-
image pairs. We used the same set of hyper-parameters to
train our model on the second half and test on the first half.
We implemented our model using Theano37 running on a
workstation with Intel(R) Xeon(R) CPU E5-1620 v3 @
3.50 GHz and Nvidia GeForce GTX Titan Z GPU (only one
GPU at a time was utilized in our experiments). Because of
utilizing relatively simple neural network architectures, we
were able to train our models on CPU, while we used GPU
implementation for test.

2.F. Dual-energy database

The database used in this study consisted of 118 posterior-
anterior (PA) CXRs acquired with a computed radiography
system with a DE subtraction unit (FCR 9501 ES; Fujifilm
Medical Systems, Stamford, CT, USA) at The University of
Chicago Medical Center. The DE subtraction unit employed
a single-shot DE subtraction technique where image acquisi-
tion is performed with a single exposure that is detected by
two receptor plates separated by a filter for obtaining images
at two different energy levels.38–40 All 118 CXRs were abnor-
mal cases with pulmonary nodules (sizes: 5–30 mm). The
matrix size of the chest images was 1,760 9 1,760 pixels
(pixel size, 0.2 mm; gray scale, 10 bits). The absence and
presence of nodules in the CXRs were confirmed by use of
CT examinations. Most nodules overlapped with ribs and/or
clavicles in CXRs. The registration error between the input
images and the teaching images would be minimum because
of the use of the single-shot DE subtraction technique.

3. RESULTS

3.A. Quantitative and qualitative evaluation

We compared our newly developed ASOFS NNC scheme
with our previous state-of-the-art bone-suppression tech-
nique, namely AS MTANNs19 quantitatively in terms of
PSNR and structural similarity index (SSIM).41 Both PSNR
and SSIM have been widely used for quantitative

comparisons of pairs of images. The PSNR between two
images ĝ and g can be calculated as follows:

PSNR ĝ; gð Þ ¼ 10� logð p2

MSE ĝ; gð ÞÞ (11)

where p is the peak intensity value of the image, which can
be set for the entire database in advance, and MSE is the aver-
age squared intensity difference between the two images. For
our evaluations, g was set to the “gold-standard” DE images,
while ĝ was set to the predictions by our model. Note that the
soft-tissue image and bone image comparisons were per-
formed separately. While the PSNR value can be used to
compute the similarity of two images in a pixel-wise manner,
the SSIM considers also the similarity of two images over
several regions-of-interest (ROI). In fact, to calculate the
SSIM between two images, one can first calculate the per-
ROI SSIM values over the entire possible image positions
and then take the average of these values over a specific
image region. The per-ROI SSIM for a square ROI consists
of a multiplicative combination of the luminance, contrast,
and structure similarities which can be simplified as follows:

SSIMROI a; bð Þ ¼ ð2lalb þ c1Þð2rab þ c2Þ
ðl2a þ l2b þ c1Þðr2a þ r2b þ c2Þ (12)

where a and b are two image ROIs (7 9 7 squares in our
experiments), la and lb are the mean intensity of a and b,
respectively, ra, rb, and rab are the standard deviation of a,
standard deviation of b, and the covariance between a and b,
respectively, and c1 and c2 are two constant factors to stabi-
lize the divisions.

The DE bone and soft-tissue images from our single-shot
DE database were used as the reference standard for the com-
parisons. We compared the bone predictions of our scheme
and those of the reference-standard technique, with the “real”
DE bone images directly. Because of the nonlinear sophisti-
cated contrast enhancement of the commercial DE systems,
we applied histogram matching for both our proposed and
the reference technique, when comparing the soft-tissue pre-
dictions quantitatively. The comparisons were performed over
the lung field of the CXRs because both techniques were
designed to suppress the bones in the lung field. Tables I and
II show the corresponding PSNR and SSIM values for bone
and soft-tissue comparisons, respectively. The similarity of
the original CXRs with respect to the DE bone images in
terms of PSNR and SSIM is also represented in Table I, as a
reference. As seen in Tables I and II, quantitative evaluation
showed that our new scheme was superior in terms of PSNR
and SSIM. We performed statistical analysis (paired two-
tailed t-test; a significance level of 0.01) in our evaluation,
which revealed that the difference between the two techniques
was statistically significant. For a better understanding of the
pair-wise comparison of bone and soft-tissue images of our
new scheme with regards to the reference-standard technique,
we also represented the sorted pair-wise SSIM and PSNR
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differences between the two techniques in Fig. 4. As
explained in Section 2.5, our results were obtained through a
nested two-fold CV protocol. In order to show the robustness
of our scheme to the training and test images, we also showed
the per-fold results, including both PSNR and SSIM values,
for two different folds for both bone and soft-tissue image
comparisons in Table III. The statistical analysis (paired two-
tailed t-test; a significance level of 0.05), between the results
obtained for different folds, showed no statistically significant
differences, showing the robustness of our scheme to the
training and test images.

Figure 5 shows two examples of soft-tissue images pro-
duced from single CXRs with our new ASOFS NNC scheme
in comparison with the reference-standard technique. The
original CXRs and the “real” DE soft-tissue images are also
shown as references. As seen, our scheme was better able to
suppress bones including the ribs near the lung wall and the
clavicles, and specifically rib edges, than the reference tech-
nique. Additionally, our new scheme was better able to main-
tain the conspicuity of soft-tissue structures such as lung
nodules of various sizes and vessels under the clavicles and
with overlapping ribs. This was achieved through a more
accurate prediction of the bone images by decomposing the
prediction task into multiple specific orientation-frequency
component-wise predictions.

3.B. Virtual dual-energy bone images

To decompose a single CXR using our scheme, we first
predicted a bone image and then subtracted the bone image
from the input CXR to obtain a soft-tissue image. It was
shown that the performance of a DLIP system was improved
by using DE bone images as targets.16 Figure 6 illustrates an
example of a bone image produced from a single CXR using
our scheme. As seen in Fig. 6, our scheme was able to suc-
cessfully convert a single CXR to its corresponding bone
image. Particularly, our scheme was able to predict both pos-
terior and anterior ribs. Figure 6 also represents how our

FIG. 4. Pair-wise comparison of our ASOFS NNC scheme with the refer-
ence-standard AS MTANN technique in terms of (a) SSIM and (b) PSNR for
both bone and soft-tissue images. The difference metrics between the two
techniques were sorted in an ascending order. Note that the x-axis is the
sorted image index and does not necessarily correspond to the image index.
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. Quantitative evaluation of the soft-tissue and bone prediction
images of our ASOFS NNC scheme, in terms of SSIM and PSNR, for two
different folds in the two-fold CV. DE images from our DE database were
used as a reference. The statistical analysis (paired two-tailed t-test; a signifi-
cance level of 0.05) between the results obtained for different folds showed
no statistically significant differences, showing the robustness of our scheme
against different training and test images.

Trained on fold 1
Tested on fold 2

Trained on fold 2
Tested on fold 1

Bone image comparison

SSIM 0.798 � 0.032 0.797 � 0.036

PSNR 23.87 � 1.95 23.37 � 2.20

Soft-tissue image comparison

SSIM 0.910 � 0.032 0.914 � 0.018

PSNR 29.66 � 1.60 29.98 � 1.37

SSIM, structural similarity index; PSNR, peak signal-to-noise ratio.

TABLE I. Comparison of the bone prediction images of our ASOFS NNC
scheme with those of the reference-standard AS MTANN technique in terms
of SSIM and PSNR. DE bone images from our DE database were used as the
reference. The original CXRs were also compared to the DE bone images as
a reference. Note that the difference between our ASOFS NNC and the state-
of-the-art AS MTANN was statistically significant (paired two-tailed t-test; a
significance level of 0.01).

Original CXR AS MTANN Our ASOFS NNC

SSIM 0.604 � 0.051 0.772 � 0.039 0.798 � 0.034

PSNR 7.79 � 1.21 22.04 � 2.56 23.62 � 2.10

SSIM, structural similarity index; PSNR, peak signal-to-noise ratio.

TABLE II. Comparison of the soft-tissue prediction images of our ASOFS
NNC scheme with those of the reference-standard AS MTANN technique, in
terms of SSIM and PSNR. DE soft-tissue images from our DE database were
used as a reference. Note that the difference between our ASOFS NNC and
the state-of-the-art AS MTANN was statistically significant (paired two-
tailed t-test; a significance level of 0.01).

AS MTANN Our ASOFS NNC

SSIM 0.902 � 0.024 0.912 � 0.027

PSNR 26.37 � 1.30 29.82 � 1.50

SSIM, structural similarity index; PSNR, peak signal-to-noise ratio.

Medical Physics, 46 (5), May 2019

2238 Zarshenas et al.: ASOFS deep neural network convolution 2238



scheme was able to predict well the bone crossings and the
ribs near the lung wall.

We proposed to simplify the learning process by decom-
posing input CXRs into multiple orientation-frequency com-
ponents using our OFS decomposition technique. It would be
interesting to visualize the component-wise bone predictions
in the wavelet domain, as depicted in Fig. 7. Our OFS mix-
ture-of-experts model was able to predict well the bone com-
ponents of different frequencies from different orientations.

The previous state-of-the-art bone-suppression tech-
nique, namely, AS MTANNs, used a pyramidal decompo-
sition to both CXRs and bone images. The pyramidal
decomposition, however, disregards the orientation informa-
tion by considering the low-frequency and high-frequency
components only. In contrast, a wavelet decomposition

preserves the orientation information by decomposing an
image into multiple orientation-frequency components of
different scales. The intuition behind using the orientation
information was to assist the learning process by including
the orientation information as the input, because the bony
structures contain major dissimilarities to soft tissue in
terms of orientations. Our experimental results and com-
parison to the state-of-the-art demonstrated quantitative and
qualitative bone suppression improvements, meaning such
decomposition was beneficial.

3.C. Training and processing time

The processing of a single case took less than a second on
a regular PC with a GPU (described earlier). This was

FIG. 5. Qualitative comparison of (c) our ASOFS NNC scheme with (b) the reference-standard AS MTANN for two cases. A region-of-interest with a nodule is
enlarged in each case for visual assessment. The (a) original CXRs and (d) “real” DE soft-tissue images from our DE database are shown as references. [Color
figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Qualitative assessment of the bone images produced by our (b) ASOFS NNC scheme. (a) The original CXR image and (c) the “real” DE bone image
from our DE database are shown as references. Note that the bone images that we used for training were preprocessed in order to reduce the effect of noise of the
bone images from the DE system.
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achieved through the parallel nature of our ASOFS design,
and the fact that we were able to use a relatively simple neural
network architecture. The training of our 56 NNCs in a serial
implementation on CPU took 3.3 hr. Even though we did not
found parallel training of the NNC experts necessary, the
training time would be decreased by a factor of approximately
56, if all of the NNC experts were trained in parallel, simulta-
neously.

4. DISCUSSION

We performed an experiment to investigate the effect of
the OFS decomposition level. Particularly, we compared our
two-level ASOFS NNC scheme with a three-level decomposi-
tion counterpart. Figure 8 represents an example of a bone
image produced by our schemes using two and three levels of
decomposition. We found that two levels were sufficient
which produced qualitatively more appealing bone images
than did the three-level decomposition. We believe the reason
for the failure of the higher level of decomposition is two-
fold: first, with a higher decomposition level, single compo-
nents contain less spatial information which might be neces-
sary to predict the bones; and second, similar to other
mixture-of-experts models, it is not a straightforward task to
balance the prediction errors, when the number of experts is
high.

Figure 9 represents an example of a lung segment-wise
bone prediction of our scheme through AS decomposition for
the lowest resolution/frequency image. See how the NNC
expert for each specific segment had a higher performance on
the corresponding segment, e.g., the NNC on the left middle
section successfully detected the ribs near the left lung wall,
while it failed to detect the ribs in the left hilar area, compar-
ing to the NNC expert of the left hilar area. Similar trends
can be seen for the experts for the other lung segments.

Use of DE soft-tissue images can improve the detection of
focal soft-tissue opacities, such as lung nodules, that may be
partly obscured by overlying bony structures.14,40 Despite the
advantages, a very limited number of hospitals use radiogra-
phy systems with DE subtraction, because specialized equip-
ment for obtaining DE x-ray exposures is required. More
importantly, the radiation dose can be double or more

compared with standard chest radiography. In previous stud-
ies, the average skin entrance radiation dose with the dual-
shot DE technique was 119–130 mR,42 and that with the

FIG. 8. Comparison of (a) two-level and (b) three-level OFS decomposition
in terms of the bone images using our ASOFS NNC schemes.

FIG. 7. Component-wise bone predictions using our (b) OFS mixture-of-experts deep NNC scheme. Our scheme was able to successfully convert different orien-
tation-frequency components of (a) the original CXR into its corresponding bone components, which was similar to (c) the wavelet decomposition of the corre-
sponding “real” DE bone image from our DE database.

FIG. 9. Predictions of the AS NNC experts for different lung segments for
the lowest resolution/frequency. Each NNC was trained using the patch-pixel
pairs of its corresponding segment.
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single-shot DE technique was 60–100 mR,38 both of which
are greater than the 15–20 mR used in standard chest radiog-
raphy. In a more recent study, a 2.4 times higher radiation
dose was used for DE radiography compared with conven-
tional radiography in order to obtain the same noise level.43

The major advantages of our technique compared to a DE
subtraction technique are that our technique requires no addi-
tional radiation dose to patients and no specialized equipment
for generating DE x-ray exposures.

A major challenge in current CAD schemes is the detec-
tion of nodules overlapping with ribs and clavicles, because
most false positives are caused by these structures.9–11 The
distinction between nodules and other anatomic structures
such as ribs and clavicles is improved in our soft-tissue images
with our technique; therefore, these images could improve the
performance of nodule-detection CAD schemes.44

There is room for improvement of this study. In this study,
we used the same set of hyper-parameters for all of the 56
NNC experts. Tuning the per-NNC hyper-parameters on a
validation set can potentially improve the bone-suppression
performance, while it can be potentially a time-consuming
task. In addition, if one or more of the NNC models are not
trained sufficiently (e.g., MSE is not converged), fusing them
to other experts can decrease the final performance. This can
be potentially addressed by combining all NNC experts in a
single framework during both the learning and test processes.

A major advantage of single-shot DE imaging over dual-
shot DE imaging is less motion artifacts in soft-tissue and
bone images. Limitations of single-shot DE imaging are, in
general, a slightly increased noise level and slightly poor
energy separation. Because virtual DE imaging based on
deep learning16–24 requires pairs of input chest radiographs
and corresponding “teaching” DE bone and/or soft-tissue
images with no/little motion, single-shot DE imaging is sui-
ted for creating images for training deep learning models.

5. CONCLUSION

We proposed and designed an ASOFS deep NNC scheme
to develop a virtual DE imaging system. Acquiring a DE data-
base, our scheme was able to learn to predict bone and soft-
tissue images from single standard CXRs. While the AS was
designed previously under the framework of MTANNs, in this
work, we newly formally defined the AS decomposition/re-
construction in a probabilistic deep-learning framework, and
showed how it can be optimized and implemented practically
using our gating and soft-gating layers. In addition to that, we
newly proposed and developed the novel OFS mixture-of-
experts models to address the receptive-field and pattern-var-
iation issues and to decompose the prediction task into sim-
pler component-wise predictions. We compared our scheme
with a state-of-the-art bone-suppression technique quantita-
tively and qualitatively. Our bone and soft-tissue images had
higher PSNR and SSIM values than did those of the refer-
ence-standard technique with a statistically significant differ-
ence. In particular, qualitative assessment showed that our
scheme suppressed bones more than the reference technique,

while it was better able to preserve soft-tissue structures such
as lung nodules and vessels. Therefore, our improved virtual
DE system would be beneficial to radiologists as well as CAD
schemes in the detection of lung nodules in CXRs.
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