Large field of view distortion assessment in a low-field MR-linac
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Purpose: MR-guided radiation therapy (RT) offers unparalleled soft tissue contrast for localization
and target tracking. However, MRI distortions may be detrimental to high precision RT. This work
characterizes the gradient nonlinearity (GNL) and total distortions over the first year of clinical oper-
ation of a 0.35T MR-linac.

Methods: For GNL characterization, an in-house large field of view (FOV) phantom
(60 x 42.5 x 55 cm®, >6000 spherical landmarks) was configured and scanned at four timepoints
with forward/reverse read polarities (Gradient Echo sequence, FA/TR/TE = 28°/30 ms/6 ms). GNL
was measured in Anterior-Posterior (AP), Left-Right (LR), and Superior-Inferior (SI) frequency-
encoding directions based on deviation of the auto-segmented landmark centroids between rigidly
registered MR and CT images and assessed based on radial distance from magnet isocenter. Total dis-
tortion was assessed using a 30 x 30 cm” grid phantom oriented along the cardinal axes over
>1 year of operation.

Results: The scanner’s spatial integrity within the first ~10 months was stable (maximum total dis-
tortion variation = 10/6/8%, maximum distortion = 1.41/0.99/1.56 mm in Axial/Coronal/Sagittal
planes, respectively). GNL distortions measured during this time period <10 cm from isocenter were
(—0.74, 0.45), (—0.67, 0.53), and (—0.86, 0.70) mm in AP/LR/SI directions. In the 10-20 cm range,
<1.5% of the distortions exceeded 2 mm in the AP and LR axes while <4% of the distortions
exceeded 2 mm for SI. After major repairs and magnet re-shim, detectable changes were observed in
total and GNL distortions (20% reduction in AP and 36% increase in SI direction in the 20-25 cm
range). Across all timepoints and axes, 38—53% of landmarks in the 20-25 cm range were displaced
by >1 mm.

Conclusions: GNL distortions were negligible within a 10 cm radius from isocenter. However, in
the periphery, non-negligible distortions of up to ~7 mm were observed, which may necessitate GNL
corrections for MR-IGRT for treatment sites distant from magnet isocenter. © 2019 American Associ-

ation of Physicists in Medicine [https://doi.org/10.1002/mp.13467]
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1. INTRODUCTION

Magnetic resonance image-guided radiation therapy (MR-
IGRT) offers simultaneous tracking of the target during
treatment delivery while taking advantage of the excellent
soft tissue contrast of MRL' Even at low magnetic field
strengths such as 0.35T, visualization of tissues and most crit-
ical structures is superior to cone beam CT (CBCT).? Also,
the use of MR-IGRT can avoid the additional radiation expo-
sure that is inherent to CBCT' and therefore, can enable daily
monitoring of intra-fractional motion as well as treatment
plan adjustments based on changes in anatomy.’ Recently,
MRI has been coupled with a linear accelerator (MR-linac)
offering possibilities such as treatment of small brain metas-
tases in an MR-guided stereotactic radiosurgery (MRgSRS)
setting.*” However, as with any MR imaging system, one of
the challenges in MR-IGRT is dealing with distortions that
are intrinsic to MRI.® Geometric distortions can lead to target
localization uncertainties, which can lead to missing or
underdosing the target during treatment.”'” For high fidelity
MR-IGRT, spatial accuracy is of critical importance for
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accurate treatment execution, thus characterization of these
geometric distortions is particularly necessary.

The major sources of distortion in MRI arise from static
field inhomogeneity, magnetic susceptibility, chemical shift,
and spatial-encoding gradient nonlinearity (GNL).*'" Subject-
specific distortions are mainly due to the chemical shift and
magnetic susceptibility'*>'* while GNL and field inhomogene-
ity are system-specific causes of distortion. Several factors such
as type and field strength of the MR scanner, imaging
sequence, and receiver bandwidth can influence the magnitude
of distortions from one or more of these sources.'” '’ It has
been shown that at low magnetic field strengths, effects of
susceptibility and chemical shift are negligible."" GNL is one
of the major contributors to spatial distortion, which is inde-
pendent of subject and imaging sequence.'® Furthermore, for
most diagnostic MRI scanners and MR simulators (MR-SIMs),
distortion magnitude increases as the distance from magnet
isocenter increases.'” %' Several phantom-based methods have
been developed for measurement and correction of GNL
effects.”’ >* While we have previously reported characteriza-
tion of GNL at varied MRI field strengths using a modular
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in-house large field of view (FOV) phantom,” the characteriza-
tion and understanding of GNL for MR-IGRT is currently lim-
ited. This work sought to characterize the GNL distortion
across a large FOV for a 0.35T MR-linac, with the overarching
goal of quantifying the GNL to assess the necessity of correct-
ing GNL-based distortions for MRI-only planning in an
MR-IGRT clinical workflow.

2. MATERIALS AND METHODS
2.A. MR-linac and phantom configuration

All measurements were conducted on the MRIdian Linac
(ViewRay, Mountain View, CA, USA) with a double-donut
superconducting wide bore (70 cm diameter) magnet with
0.35T field strength (50 cm FOV) and a 6 MV flattening fil-
ter-free linac. The system is comprised of five cylindrical fer-
romagnetic compartments around a magnetically shielded
ring located between the double donuts to minimize magnetic
field interference. After installation, the GNL of the MR gra-
dient system was characterized by the vendor via simulations
to characterize the coefficients of the spherical harmonic
polynomials. To compensate for the MR gradient coil impuri-
ties, spherical harmonics coefficients up to the 10th order for
the x, y, and z gradient coils were obtained for >50 cm DSV
and optimized via an iterative calibration procedure. Coeffi-
cients were then translated into the online 3D distortion cor-
rection integrated into image reconstruction by Siemens
(MAGNETOM Avanto, Syngo MR B19). An in-house modu-
lar large FOV phantom was configured to fit the magnet bore.
The details of phantom design and implementation have been
previously reported.”>® Briefly, the phantom is constructed
of layers of low-density polyurethane foam boards (6 Ibs/ft>,
2.5 cm thick) with each board consisting of linear arrays of
6 mm diameter paintballs spaced 2.5 cm apart for signal gen-
eration. The phantom’s external alignment marks were
aligned to the room lasers and the plates were configured to
fill the magnet bore as shown in Fig. 1(a).

2.B. Image acquisition

Computed tomography (CT) datasets were acquired to
serve as the distortion-free reference condition at 120 kVp on
a Philips Brilliance Big Bore (Philips Healthcare, Best, the
Netherlands) with a voxel size of 1.17 x 1.17 x 1 mm?> and
FOV of 600 x 600 x 600 mm’. While the overall geomet-
ric distortion in MRI is the superposition of effects of GNL,
inhomogeneity of the By field, and magnetic susceptibility,
GNL can be isolated using a well-established reverse
gradient technique.''”” When acquiring images based on
the reverse gradient method, by reversing the polarity of the
read gradient, the polarity of the B, and susceptibility
distortions are reversed while the polarity of the gradient
distortions do not change.?” Thus, for each of the x, y, and z
gradients, the phantom was scanned once with positive and
once with negative read encode gradients to represent the
[Left-Right (LR), Right-Left (RL)], [Anterior-Posterior (AP),
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Posterior-Anterior (PA)], and [Superior-Inferior (SI), Infe-
rior-Superior (IS)] orientations in the bore coordinates,
respectively. MR images for measuring the x and y gradient
coil nonlinearity were acquired in axial planes and for the z
gradient coil in sagittal planes(3D Gradient Echo, Repetition
Time (TR)/Echo Time (TE)=30/6 ms, Flip Angle
(FA) = 28°, Bandwidth = 260 Hz/pixel, FOV = 540 x
540 x 528 mm’, Voxel size = 1.54 x 1.54 x 1.5 mm>,
single channel transmit/receive body coil). While other
sequences, such as a 3D spin echo (3DSE) or other weight-
ings could have been used, a 3DSE or T2-weighted acquisi-
tion would have required substantially longer scan times than
3DGRE. Our selection of T1-weighted 3DGRE is also con-
sistent with the literature to enable more direct compari-
son."?7?% It is important to note that all analysis was
performed after vendor-supplied 3D geometry correction was
applied to isolate postcorrection residual distortion.

To assess the temporal stability of the GNL assessment,
acquisition was performed at 2, 8, 10, and 14 months from
the start of the MR-linac operation to characterize GNL three
to four timepoints depending on the axis of acquisition.
Acquisition of the CT image was also repeated at each time-
point to provide an up-to-date reference condition for the
phantom.

2.C. Gradient nonlinearity image processing and
analysis

To establish a mutual coordinate system, MR image vol-
umes were rigidly registered to the reference CT image with
6 degrees of freedom and normalized mutual information as
the cost function, using FSL%° (FMRIB Software Library,
Wellcome Centre For Integrative Neuroimaging, Oxford,
UK). To minimize the impact of the GNL on establishing
the frame of reference, only landmarks within a 15 x
15 x 15 cm® box around the magnet isocenter were used for
rigid alignment. To quantify registration accuracy, MR/CT
registrations were repeated 5 times for each timepoint/axis
combination, and the displacement between the MRI and CT
landmark centroids located at isocenter was calculated.

For GNL distortion quantification, all image processing
was conducted in MATLAB® R2016b (Mathworks, Natik,
MA, USA). Background noise in CT and MR images was
removed by applying a Gaussian blur followed by a rolling
ball algorithm.”® Landmarks were first segmented by thresh-
olding the image and then isolated using the connectivity
of the 26 neighboring voxels belonging to each landmark.”
To measure distortion in each image, landmark centroids were
identified in the CT image and MR images. The distortion at
the landmark location in each GRE image was measured by
calculating the displacement of the centroid along the
frequency-encoding direction with reference to its position in
the reference CT image. By averaging the measured displace-
ment of the landmarks in the forward and reverse gradient
polarity images, isolated GNL distortion was then determined
from the location of each landmark. This procedure was done
for the LR-RL, AP-PA, and SI-IS GRE images to measure
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FiG. 1. (a) Large field of view distortion phantom configured to fit the 0.35T magnet bore. Axial phantom views of the CT image at (b) the isocenter and planes
shown in the inferior direction at (¢) 5 cm (d) 10 cm (e) 15 cm, and (f) 20 cm from the isocenter. Similar patterns were observed at planes superior to the magnet
isocenter. The landmarks demonstrate gradient nonlinearity (GNL) distortions of the MR image isolated along the y-axis measured using the reverse gradient
method (AP gradient encoding) showing the highest magnitude among the three directions studied. The resulting GNL distortion is the residual distortion after
vendor supplied corrections were applied. [Color figure can be viewed at wileyonlinelibrary.com]

GNL distortion along the X, y, and z axes, respectively, for
all landmarks out to a maximum of 25 cm from magnet
isocenter.

The mean and standard deviation of the GNL distortions
were calculated for all landmarks within three radial distances
(0-10 cm, 10-20 cm, and 20-25 cm) from the magnet
isocenter. To avoid the impact of single landmarks, the 1%
(P1) and 99% (P99) percentiles of all measured values were
calculated in lieu of minimum and maximum to examine the
overall range of distortions. To evaluate GNL stability over
time, the standard deviation (SD) of distortions within each
of the three radial ranges from the isocenter was calculated
and compared between timepoints.

2.D. Routine assessment of MRI spatial integrity

Routine MRI spatial distortion arising from all system-
and object-induced distortions of a clinical sequence (termed
“total distortion”) was assessed monthly and after major
equipment repairs over a period of 15 months. A rectangular
box phantom (Fluke Biomedical, model 76-907, signal-gener-
ating solution containing ~400 cylindrical objects spaced
1.45 cm apartin a~30 x 30 cm? area’®?) was imaged using
a 3D gradient, steady-state sequence (TR/TE/FA = 3.36/
1.44 ms/60°, Voxel size = 1.5 x 1.5 x 3.0 rnm3). Three
images of the phantom were acquired with the long axis of the
phantom oriented along the axial, sagittal, and coronal planes.
Positional deviations between the cylindrical objects in the
acquired images and a binary template were evaluated via
vendor supplied, MATLAB-based software, and the differ-
ences were quantified.
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3. RESULTS

Fig. 1(a) shows the large FOV GNL phantom configura-
tion optimized to fit the 0.35T magnet bore. The final assem-
bled phantom consisted of 17 plates and a physical size of
600 (width) x 425 (height) x 550 (length) mm>  with
~6300 landmarks covering a spatial volume of 500 x
400 x 500 mm® within the phantom. Measurement of
post-registration displacement of the centermost landmark
between the MR and CT datasets revealed a residual
difference of 0.04 & 0.08 mm, 0.01 & 0.09 mm, and
—0.16 &+ 0.11 mm in the LR, AP, and SI directions, respec-
tively, across all acquired image volumes and acquisition
timepoints.

Fig. 1(b)-1(f) show axial views of the CT image volume
at the central slice and at 5, 10, 15, and 20 cm, respectively,
inferiorly from the isocenter, overlaid with corresponding
landmarks representing the overall GNL distortions along the
y-axis from the reverse gradient method for the AP fre-
quency-encoded MRI datasets, highlighting the worst results
obtained. The landmark position represents the residual GNL
distortion after 2D and 3D vendor supplied corrections were
applied. Displacement of the landmarks from their original
location (based on the reference CT image) was clearly more
pronounced near the phantom periphery. Missing landmarks
from the edges of the image occurred when the landmarks
shifted outside of the useable FOV and thus these landmarks
could not be analyzed. At farther distances from isocenter,
the residual GNL distortion increased, most notably as shown
in the 15 and 20 cm axial planes where the central landmarks
show deviations from the CT dataset.
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Fig. 2 highlights the GNL results at four timepoints for distortion in the LR-RL, AP-PA, and SI-IS directions in the

each axis. In this figure, each dot represents one landmark scanner coordinates. Baseline SI-IS data were lost due to
and its deviation along the vertical axis is the measured operator error.
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FiG. 2. Gradient nonlinearity distortions in the Anterior-Posterior (AP-PA), Left-Right (LR-RL), and Superior-Inferior (SI-IS) directions at distances of 0-25 cm
from the magnet isocenter. Plots show distortion measurement results at 2, 8, 10, and 14 months from the start of operation of the MR-linac. [Color figure can be
viewed at wileyonlinelibrary.com]
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FiG. 3. Temporal mean and standard deviations of the total distortions measured within the Axial, Coronal, and Sagittal planes using the spatial integrity
phantom at different timepoints. At week ~45, major MR-linac repairs yielded a detectable change in the distortions as assessed by this routine quality assurance

procedure.

detailed GNL measurements that were performed after the
major repair, particularly in the SI direction where the per-
centage of landmarks >1 mm more than doubled at distances
greater than 10 cm from isocenter (Table I). The maximum
total distortions over all observed timepoints were 1.41 mm
(Week 0) in the axial plane, 1.56 mm (Week 27) in the sagit-
tal plane, and 1.73 (Week 45) in the coronal plane (results not
shown).

4. DISCUSSION

In this work, we characterized GNL and total distortions
of a 0.35T MR-linac over the course of 1 yr to assess the
necessity of geometric distortion correction in MR-IGRT
applications, as well as to explore the temporal stability of
geometric distortions. For measuring GNL distortions, we
used an in-house large FOV modular phantom?® to isolate
these distortions in the LR-RL, AP-PA, and SI-IS directions.
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Our measurements in the MR-linac resulted in outcomes sim-
ilar to those measured by our group in other MR scanners.
GNL distortion across three different MRI platforms was
found to be <1 mm within 10 cm of magnet isocenter along
all three axes,” which is comparable to the distortion mea-
sured in the 0.35T MR-linac. Similarly, distortion along the
LR and SI directions started to increase above 1 mm in all
scanners as the radial distance from the isocenter increased;
however, for the 1.5T and 3T scanners the AP distortions
stayed almost within 1 mm. Similar to what has been
observed in diagnostic and MR-SIM scanners,”> GNL-based
distortions in the MR-linac increased in all three dimensions
as the distance from the magnet isocenter increased. A nota-
ble observation in the distortion patterns as seen in Fig. 2 is
the different behavior of GNL distortion in the z direction
compared to distortion in the x and y directions. These plots
show that compared to the x and y directions, a higher magni-
tude of distortion is seen in the z direction near the isocenter
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but lower magnitude at farther distances. These differences
can be due to a different design of the z coil or a worse shim
in the z direction as suggested by Torfeh et al. based on
observing higher distortions in the z direction compared to
the x and y directions on a 1.5T MR-SIM unit.*'

This study evaluated the GNL distortion based on a large
FOV phantom and total distortion using a different, smaller
FOV spatial integrity phantom. It is important to note that
equivalence between the measures cannot be expected as
the total distortion results represent a maximum distance
from isocenter of <17.5 cm from a single plane oriented at
isocenter, whereas the large modular FOV phantom is used
to isolate contributions from GNL for each axis over
>6,000 landmarks at a much greater radial distance (ie, a
volume) from magnet isocenter. In a previous study on a
0.35T MR-Co®® using the same 2D spatial integrity phan-
tom,™ total distortion measurement over a larger FOV was
accomplished by placing the phantom at different longitudi-
nal distances from isocenter, yielding total distortions of up
to 8 mm at 25 cm from isocenter. Extrapolating these results
to this study, Table I shows that the GNL component of the
total distortion along a single axis across all timepoints
ranged from —7.3 mm to 5.39 mm for regions located
20-25 cm from magnet isocenter, which is similar in
magnitude.

Previously, Hu et al. measured the total geometric distor-
tions in the 0.35T field of a ®*Co MR-IGRT unit using an
American College of Radiology phantom using a balanced
steady-state free precision 3D sequence.”* Their results
showed maximum distortions of 1.5 and 2.7 mm within
diameter spherical volumes of 20 and 35 cm (which is equiv-
alent to the 10 and 17.5 cm radii in the current work). These
measurements show a higher magnitude of distortion
compared to our routine spatial distortion results, likely due
to the phantom extending over a larger FOV. In a simi-
lar study, Ginn et al. characterized total spatial distortions in
a 035T °“Co MR-IGRT unit using 2D and larger
(465 x 350 x 168 mm3) 3D distortion phantoms.33 The
maximum distortion within 10 cm radius of isocenter was
1.15 mm using the 2D phantom. Based on their measure-
ments, the maximum distortion within the 3D phantom was
8.13 mm, which is similar to the values obtained in our study.
In both comparative studies, GNL was not isolated and total
distortion was reported using the clinically released TrueFISP
sequence. Furthermore, differences could also be attributed
to the ®*°Co MR-IGRT unit only incorporating static passive
shims placed into shim trays in the gradient coil along with
cryoshim coils, whereas the MR-linac design includes an
additional rotational passive shim component within the
bore.

The pattern of spatial distribution of the AP-PA GNL
distortions as displayed in Fig. 1 shows that while GNL
distortions are generally worsened in the peripheral land-
marks as the distance is increased from the isocenter,
landmarks close to the central axis have small distortions,
even up to 20 cm from the isocenter. A notable aspect
of our study is repeated measurement of distortions over
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the course of 1 yr to assess spatial integrity of the scan-
ner and temporal stability of distortions. Prior to a major
equipment replacement, variations of distortion at differ-
ent timepoints were relatively low (<10% for both GNL
and total distortions along all axes and in all planes);
however, after the change in the scanner hardware, con-
siderable changes were observed in measured distortions.
Although geometric distortions were still within the
acceptable range, this highlights the necessity of distor-
tion assessment after any hardware change in the scanner.
Excluding the possibility of such changes and considering
that GNL has been shown to be stable over time,35 one
benefit of isolating GNL is that distortion correction
maps can be created to correct GNL distortions in MR
images especially for situations where the anatomy of
interest is not located near the magnet isocenter (ie, lat-
eral treatments such as breast cancer36).

One limitation of our study is the requirement of an MR/
CT coregistration of the large FOV phantom. However, by
performing a spatially constrained registration to the
15 x 15 x 15 cm® volume around isocenter, distortions
were not expected to contribute to the registration process,
with no systematic offset observed near magnet isocenter as
shown in Fig. 2. This was confirmed by measuring the dis-
placement of the landmark located at the isocenter, with
respect to its position on the CT image yielding displace-
ments <0.2 mm for all axes, which is equivalent to a fraction
of the acquisition voxel size. One other limitation of this work
is that the analysis was based on discrete landmarks spaced
2.5 cm apart, yielding noncontinuous results shown in
Fig. 2. However, given that >6000 landmarks were evaluated,
the overall sampling across the large FOV was considered
sufficient. To generate more continuous distortion maps of
the full 3D space, methods such as singular value decomposi-
tion (SVD) can be used to interpolate the data by fitting it to
polynomials.”® Another limitation is that this work does not
isolate the BO inhomogeneity. However, early results have
shown a dependence on gantry angle,”>"" making it
beyond the scope of the current work and worthy of a more
detailed investigation. We should note that eddy currents gen-
erated by rapidly pulsed gradients may potentially influence
image distortion,”” which was not investigated in this work.
However, when the impact of eddy currents on GNL results
was acquired on a 1.0 T magnet over a range of TE values,
the mean distortion in the transverse, coronal, and sagittal
planes varied <0.2 mm over all TE settings.”® Similarly,
Baldwin et al. found negligible uncertainty (<0.3 mm)
was introduced as a result of varying TE for a 3.0 T cylindri-
cal magnet’” A comprehensive evaluation of different
sequences, including T2-weighted and spin echo sequences
often used for pelvis and abdominal imaging, and the impact
of eddy currents on GNL will be explored in future work.
Finally, the results presented here are limited to the design
and specific properties of the first 0.35T MR-linac installa-
tion. Previously reported work in diagnostic MRI scanners
has shown that GNL is magnet and platform specific,”'*>*’
thus it is expected that each MRgRT device will have its
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own characteristics. Nevertheless, in the absence of major
hardware changes, the GNL was found to be stable over time
for this specific MR-linac.

One potential concern regarding MR distortions is the
effect it can have on dosimetric endpoints. Yan et al. studied
the impact of MRI distortions on the dose delivered to the tar-
get and organs at risk in 14 patients.*' Based on their simula-
tion and using vendor-corrected MR images, they found that
MR distortions can lead to <4% of the target volume cover-
age loss and potential increased doses to organs at risk of 5—
6 Gy. In another recent study, Adjeiwaah et al. estimated
<0.5% difference in the PTV dose in prostate cancer patients
arising from residual system and patient induced susceptibil-
ity distortions."? Data are still emerging to determine the
acceptable magnitude of geometric distortions for MRgRT.
More specifically, recommendations for GNL distortion
accuracy are not currently well defined for MRgRT and are
currently being addressed in AAPM TG-284 for MR simula-
tors and MRIs sited in Radiation Oncology. For most radia-
tion therapy applications, an accuracy of 1 mm or higher is
necessary.”’ In cases where the target size is smaller, geomet-
ric accuracy becomes a more critical issue, for example, for a
target size of 3 cm, geometric distortions of 1.5 mm may
impact the dose to 95% of the volume."” According to a
recent consensus paper from seven clinical institutes, in the
case of MRI simulation for external beam radiation therapy,
geometric distortion of <2 mm in the central region of treat-
ment is deemed to be acceptable for sites such as brain, head
and neck, and cervix.*? For real-time MRgRT the desired
precision has also been reported to be 2 mm.®

A clinical solution currently being implemented is to dis-
play iso-distortion contours (typically 2 mm or 3 mm) to
define the spatial accuracy of the image and alert the user to
regions that have less geometric fidelity. If the distortion is
found to exceed the expectations of the clinic, end users may
work with their vendor colleagues to address the accuracy of
the spherical harmonics solution and work to improve the dis-
tortion across a large FOV. Recent work by Tao et al. found
that by using high-order terms up to the 10th order, root mean
square error could be reduced from 0.7 mm (5th order) down
to 0.36 mm for a compact, asymmetric MR gradient system
used for brain imaging.** This suggests that introducing addi-
tional terms into the solution may offer further potential to
reduce GNL.

Potential clinical solutions include positioning the lesion
closer to magnet isocenter by changing the patient setup or
immobilization or incorporating the distortion uncertainty
into the treatment planning margin. Based on our measure-
ments, for cases where the anatomy of interest is within a
range of 10 cm from the magnet isocenter, distortion can be
considered to be negligible. However, our findings suggest
that GNL distortions on the 0.35T MR-linac may need to be
accounted for when considering large FOV MR-only plan-
ning on an MR-linac or for instances when the anatomy is
positioned away from magnet isocenter such as lateral lesions
or targets that extend laterally or superiorly/inferiorly, such as
with lymph nodes.
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5. CONCLUSION

In the absence of hardware changes, GNL distortion was
found to be reasonably stable for this particular MR-linac.
Measured GNL distortions were negligible within a 10 cm
radius of isocenter in the L-R, A-P, and S-I directions. How-
ever, in the periphery (>20 cm from isocenter), non-negligible
distortions up to ~7 mm were observed, which may necessitate
GNL corrections for MR-only planning, particularly in distant
regions from the isocenter. Overall, when imaging is per-
formed for larger anatomies or for MR-only planning, distor-
tion corrections might be necessary to support high precision
radiation therapy for this specific MRgRT system.
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