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Intensity-based deformable image registration (DIR) requires minimizing an image dissimilarity met-
ric. Imaged anatomy, such as bones and vasculature, as well as the resolution of the digital grid, can
often cause discontinuities in the corresponding objective function. Consequently, the application of
a gradient-based optimization algorithm requires a preprocessing image smoothing to ensure the
existence of necessary image derivatives. Simple block matching (exhaustive search) methods do not
require image derivative approximations, but their general effectiveness is often hindered by erro-
neous solutions (outliers). Block match methods are therefore often coupled with a statistical outlier
detection method to improve results.
Purpose: The purpose of this work is to present a spatially accurate, intensity-based DIR optimiza-
tion formulation that can be solved with a straightforward gradient-free quadratic penalty algorithm
and is suitable for 4D thoracic computed tomography (4DCT) registration. Additionally, a novel reg-
ularization strategy based on the well-known leave-one-out robust statistical model cross-validation
method is introduced.
Methods: The proposed Quadratic Penalty DIR (QPDIR) method minimizes both an image dissimi-
larity term, which is separable with respect to individual voxel displacements, and a regularization
term derived from the classical leave-one-out cross-validation statistical method. The resulting DIR
problem lends itself to a quadratic penalty function optimization approach, where each subproblem
can be solved by straightforward block coordinate descent iteration.
Results: The spatial accuracy of the method was assessed using expert-determined landmarks on ten
4DCT datasets available on www.dir-lab.com. The QPDIR algorithm achieved average millimeter
spatial errors between 0.69 (0.91) and 1.19 (1.26) on the ten test cases. On all ten 4DCT test cases,
the QPDIR method produced spatial accuracies that are superior or equivalent to those produced by
current state-of-the-art methods. Moreover, QPDIR achieved accuracies at the resolution of the land-
mark error assessment (i.e., the interobserver error) on six of the ten cases.
Conclusion: The QPDIR algorithm is based on a simple quadratic penalty function formulation and
a regularization term inspired by leave-one-out cross validation. The formulation lends itself to a par-
allelizable, gradient-free, block coordinate descent numerical optimization method. Numerical results
indicate that the method achieves a high spatial accuracy on 4DCT inhale/exhale phases. © 2019
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13457]
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1. INTRODUCTION

Deformable Image Registration (DIR) algorithms determine a
spatial transformation that best relates the content depicted
within a pair (or sequence) of images, with respect to an inten-
sity and/or physical motion model.1 DIR is essential to a host
of medical imaging applications,2 including lung disease analy-
sis,3 strain-rate imaging,4 and brain morphometry.5 In the
specific example of thoracic 4DCT registration, the utility of
applications such as CT-derived ventilation,6 tumor motion
assessment,7 and even image reconstruction,8 are dependent on
the spatial accuracy of the recovered transformation.9 As such,
DIR algorithm development, validation, and applications are
all active areas of research.

The image registration problem, despite being conceptu-
ally straightforward, is notoriously ill-posed. DIR problem
difficulty can vary greatly according to a number of issues,
including the image modalities, the time frame over which
the images were acquired, and the nature of the depicted
deformation.10 As a result, algorithm development is often
focused on specific settings. Just the specific case of thoracic
inhale/exhale computed tomography (CT) image pair regis-
tration has alone spawned methods based on biomechani-
cal11,12 and elasticity13–15 modeling, as well as methods
focused on efficient numerical optimization for different
parameterizations and image intensity metrics.16,17 These
methods have all demonstrated varying degrees of effective-
ness (see Ref. [18] for a thorough review).
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Ultimately, regardless of modeling approach, intensity-
based image registration often requires solving an optimization
problem defined by an image similarity metric.10 Since imaged
anatomy includes a nonhomogeneous collections of bones and
vasculature, this optimization problem is typically nonconvex,
nonlinear, or possibly discontinuous. Consequently, gradient-
based optimization algorithms, such as Newton’s method,
require image smoothing, possibly at the expense of degrading
fine image features,19 in order to ensure the existence of first
or second-order image derivatives. Moreover, coarse-to-fine
strategies, such as Gaussian pyramid, are often required to
avoid convergence to a local minimum.20

Cognizant of the numerical difficulties associated with
intensity-based DIR, recent gradient-free methods based on
exhaustive block match searches21 and feature extraction22

have achieved high spatial accuracy. In medical imaging in
particular, robust statistical regression methods for parametric
estimation, such as least squares trimming23 and forward
search,24,25 have demonstrated effectiveness for computing
rigid26 and locally affine27 registration from block match
data. The purpose of this work is to present a spatially accu-
rate, intensity-based DIR optimization formulation that can
be solved with a straightforward gradient-free quadratic pen-
alty algorithm. In addition, a novel regularization strategy
based on the well-known leave-one-out robust statistical
model cross-validation method is introduced. The spatial
accuracy of the proposed Quadratic Penalty DIR method is
assessed using expert-determined landmark point pairs for 10
maximum inhale/exhale 4DCT phases from the publically
available www.dir-lab.com validation data repository.9

2. METHODS

2.A DIR problem definition

The DIR algorithms determine a spatial transformation, /
(x): R3 ! R

3, that maps each voxel within a three-dimen-
sional (3D) reference image, R(x), to its corresponding posi-
tion within a 3D target image, T(x). Often this relationship is
described in terms of a 3D displacement field:

/ðxÞ ¼ xþ d1ðxÞ d2ðxÞ d3ðxÞ½ �T ; (1)

where dk denotes the displacement in the kth spatial dimen-
sion. Block matching is a well-known strategy for finding the
optimal displacement of a single voxel with respect to a spec-
ified image similarity metric via exhaustive grid search.28

The resulting estimates are robust to image noise, image dis-
continuities, and large magnitude voxel displacements. How-
ever, the `estimates are computed independently from one
another, using only a limited amount of localized image infor-
mation. As a consequence, the spatial accuracy of the esti-
mates is not guaranteed26 and block matching-based DIR
methods must account for erroneous displacement estimates
(often referred to as outliers). This is typically accomplished
by postprocessing the block match estimates with a robust
statistical method for outlier detection, such as median filter-
ing27 or estimated variance thresholding.29 Although such

methods have demonstrated a high spatial accuracy, each
block match estimate is computed without taking into
account the motion of neighboring voxels. This limitation
motivates the following general formulation:

min
d1;d2;d3

XN
i¼1

F dðiÞ1 ; dðiÞ2 ; dðiÞ3 ; xi;R; T
� �

þ 1
2a

X3
j¼1

kAdjk2; (2)

where

dðiÞj ¼ dj xið Þ; dj ¼ dð1Þj dð2Þj � � � dðNÞj

h iT
; (3)

represents the 3N unknown discretized displacement
variables, and the matrix A 2 R

N�N encodes a regularization
model, which is enforced as a least squares penalty with
strength specified by the regularization parameter a. Image
dissimilarity is structured as the sum of the individual
dissimilarity contributions associated with each displacement
vector, as quantified by the function F. In other words, image
dissimilarity is separable with respect to each voxel’s
unknown displacement vector components.

2.B. Quadratic penalty function formulation

Problem (2) is a nonlinear and nonconvex optimization
problem, similar to standard intensity-based DIR formula-
tions.10 Introducing auxiliary variables z1, z2, z3 and equality
constraints:

min
dj; zj

XN
i¼1

F dðiÞ1 ; dðiÞ2 ; dðiÞ3 ; xi;R; T
� �

þ 1
2a

X3
j¼1

kAzjk2;

such that dj¼ zj; j¼1;2;3;

(4)

results in a formulation equivalent to (2), but the structure of
the equality-constrained formulation in (4) is well suited for
the quadratic penalty (QP) function optimization method.30

In this instance, the QP method solves a series of subprob-
lems of the form:

min
dj; zj

XN
i¼1

F dðiÞ1 ; dðiÞ2 ; dðiÞ3 ; R; T
� �

þ 1
2a

X3
j¼1

kAzjk2

þ 1
2l

X3
j¼1

kzj � djk2; (5)

for successively smaller values of l (i.e., successively stronger
penalization on equality constraint violations) until conver-
gence to a feasible local minimizer.30 Thus, the effectiveness
of the QP method depends almost exclusively on the quality of
the subproblem solver.

2.B.1. Block coordinate descent iteration

Subproblem (5) can be solved robustly with straightfor-
ward block coordinate descent iteration.
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Algorithm 1: block coordinate descent

Given initial displacement estimates z1, z2, z3,

1) Update dðiÞ1 ; dðiÞ2 ; dðiÞ3 for i = 1, 2, . . ., N:

dðiÞ1
dðiÞ2
dðiÞ3

2
664

3
775 ¼ argmin

c1; c2; c3
F c1;c2;c3; xi;R; Tð Þ

þ 1
2l

X3
j¼1

cj � zðiÞj
� �2

:

(6)

2) Compute:

z�j ¼ argmin
z

1
2a

kAzk2 þ 1
2l

kz� djk2; j ¼ 1; 2; 3: (7)

3) If
P3
j¼1

kzj � z�j k1 ¼ 0; stop with solutions z�j ; j ¼ 1; 2; 3;

Otherwise, set zj ¼ z�j ; j ¼ 1; 2; 3; and go back to Step 1.

The block coordinate descent iteration alternates between
minimizing with respect to the displacement vectors,�
dðiÞ1 ; dðiÞ2 ; dðiÞ3

�T
; i ¼ 1; 2; . . .N; and the auxiliary variables

zj; j ¼ 1; 2; 3; until the magnitude difference between succes-
sive iterates is zero or less than a specified tolerance. Because
the dissimilarity is separable with respect to the individual
displacement vectors, the displacement vector update given
by Eq. (6) can be computed with an exhaustive grid search,
similar to the standard block matching operator. The auxiliary
variable updates in Eq. (7) require solving three linear least
squares problems. Therefore, the quadratic penalty method
and Algorithm 1 can be used to solve Problem (2) without
image gradient information.

2.B.2. Convergence of block coordinate descent

Convergence of block coordinate descent iteration is guar-
anteed when each block coordinate subproblem has a unique
and computable global minimizer (see Chapter 8 in Ref. [31]).
The least squares updates certainly satisfy this condition. The
block matching problems are not guaranteed to possess a
unique global minimizer, but if they do, the exhaustive grid
search will find them. Moreover, the DIR problem can be dis-
cretized such that the unknowns [Eq. (3)] correspond to image
voxel locations with distinct image features or nonflat regions
to reduce the risk of violating the convergence criteria.

2.C. Leave-one-out regularization

Leave-one-out cross validation (LOOCV) is a well-known
statistical method that quantifies the effectiveness of an
approximation model by (a) fitting the model to all but one
data point and then (b) evaluating the approximation’s error
on the remaining (left out) data point. This process is
repeated with each data point being left out once. The

resulting errors provide an estimate for how well each data
point is predicted by the remaining data points.32,33 In con-
trast to standard block matching methods, which apply post-
processing statistical methods to detect potential outliers, the
goal here is to employ the LOOCV metric as a way to regu-
larize the DIR Problem (2). To do this, the unknown displace-
ment field is modeled with the moving least squares (MLS)
approximation.34

The MLS approximation is defined by a set of spatial posi-
tions X ¼ xif gNi¼1 and data values y ¼ y1 y2 � � � yN½ �T :
Evaluating the MLS approximation function, f mls(x) requires
computing a (proximal distance) weighted least squares
polynomial fit to the dataset X, y:

f mlsðx; X; yÞ ¼ pðx; q�Þ;
q� ¼ argmin

q

PN
i¼1

pðxi; qÞ � yið Þ2w kx� xik2ð Þ; (8)

where p is a polynomial parameterized by the vector q and w
(�) is the weighting function. In order to formulate an
LOOCV regularization metric, the MLS approximation
f mls(x) must be expressed as a function of the data vector y.

For specificity, choosing the approximating polynomial in
Eq. (8) to have the form pðx; qÞ ¼ q1x1 þ q2x2 þ q3x3 þ q4
results in the following MLS formulation:

q� ¼ argmin
q

1
2
kWðxÞ Cq� yð Þk22; (9)

where

C ¼
xð1Þ1 xð1Þ2 xð1Þ3 1

xð2Þ1 xð2Þ2 xð2Þ3 1

..

. ..
. ..

. ..
.

xðNÞ1 xðNÞ2 xðNÞ3 1

2
66664

3
77775; (10)

and W(x) is a diagonal matrix with WiiðxÞ ¼ w kx� xðiÞk2
� �

:
The normal equations for Eq. (9) dictate that the MLS
approximation for X, y can be expressed as:

f mlsðx;X; yÞ ¼ x
1

T� �
ðCTWTWCÞ�1ðCTWTÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2R1�N

y ¼ aðx;XÞy:

(11)
Equation (11) expresses the MLS approximation as a vec-

tor multiplication between the data values, y, and the MLS
operator aðx; XÞ. For each xi, the MLS LOOCV error metric,
Eðxi; XÞ, is defined as the squared distance between the data
estimate for xi and the MLS approximation defined by the
data estimates for the remaining points Xnfxig:

Eðxi; X; yÞ ¼ yi � a xi; Xnfxigð ÞHðiÞyÞ
h i2

; (12)

where the indexing matrix H(i) is obtained by removing the ith

row of the N 9 N identity matrix. The MLS LOOCV DIR
regularization model is defined as the sum of the error met-
rics for all data points and can be represented as a least
squares penalization:
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kAyk22 ¼
XN
i¼1

Eðxi; X; YÞ; (13)

where the N 9 N matrix A has the form:

A ¼

1 0 � � � 0

0 1 . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 1

2
6664

3
7775�

a x1; Xnfx1gð ÞHð1Þ

..

.

a xN ; XnfxNgð ÞHðNÞ

2
64

3
75:

(14)

Constructing the matrix A requires the same computa-
tional workload as evaluating the MLS approximation func-
tion, although the MLS operator in Eq. (11) is not typically
stored in other applications. Moreover, sparsity can be incor-
porated into A with a compactly supported or fast decaying
weighting function w. For instance, functions of the form

wðrÞ ¼ e�rr2 ; (15)

where the parameter r is set with respect to a maximum dis-
tance rmax, such that w(r) � 1 for r ≥ rmax. These type of
weighting schemes are common in MLS applications.35 For
instance, assuming the voxel point cloud X possess points that
are approximately uniformly spaced h millimeters apart, the
MLS weighting function parameter

r ¼ 1
h2

; (16)

implies w(r) � 0 for r > 3h.

2.D. Block matching operator

Equation (6) within the block coordinate descent Algo-
rithm 1 requires solving a series of block matching problems
with general form:

min
c

F c; x;R; Tð Þ þ 1
2l

kc� zk2; (17)

where c; z 2 R
3. A typical block matching operation is

defined by a search window, block window, and image dis-
similarity metric F. The image dissimilarity metric is com-
puted with respect to the image intensities contained within
block windows:

Xðx;2Þ ¼ fx̂ 2 N3 :k x� x̂ k1 	 �g: (18)

For instance, F could represent the sum of squared inten-
sity differences between the image intensity blocks R(Ω(x; e))
and TðXðxþ c; �ÞÞ:

FSSDðc; x;R;T; �Þ ¼
X

xi2Xðx;2Þ

�
RðxiÞ �Tðxi þ cÞ�2 (19)

However, considering that the test images for this study
are inhale/exhale lung CT pairs, the dissimilarity metric

should accommodate intensity variations between the inhale
and exhale images.36 Such metrics include normalized gradi-
ent fields,37 compressible optical flow,27 and those based on
the structural similarity index (SSIM)38:

1� jSSIM�
RðXðx;2Þ;TðXðxþ c;�ÞÞ� (20)

Finally, the search window represents the set of all feasible
displacements which, in this case, is represented as a neigh-
borhood of radius l centered on z:

Sðz; lÞ ¼ c 2 N
3 : kc� zk2 	 l

	 

; (21)

The block match estimated displacement for x:

c� ¼ arg min
c2Sðz;lÞ

Fðc; x;R;T; �Þ þ 1
2l

kc� zk2; (22)

is computed by evaluating the image dissimilarity for each c
in the search window. Without loss of generality, it is
assumed that F 2 R

3 ? [0, 1]. Under this assumption, the
relationship between the search window radius and the pen-
alty parameter l for problem Eq. (17) is given as:

l ¼
ffiffiffiffiffiffi
2l

p
: (23)

This follows from the fact that F(z; x, R, T, �) ≤ 1 and
1
2lkc� zk2 [ 1; 8c 62 S z;

ffiffiffiffiffiffi
2l

pð Þ.

2.E. Quadratic Penalty Deformable Image
Registration algorithm

The proposed Quadratic Penalty Deformable Image Regis-
tration (QPDIR) algorithm solves the formulation in Eq. (2)
with the quadratic penalty function optimization method,
using the block coordinate descent Algorithm 1 to solve the
Eq. (5) subproblem for a series of monotonically decreasing
values of l.

The QPDIR algorithm operates on a subsampling of voxel
locations (the voxel set X in Algorithm 2). A point cloud of
approximately uniformly spaced voxel locations is determined
by a “dart throwing” procedure applied to a simple histogram
segmentation of the inhale lung volume (as done in Ref. [21]).

Algorithm 2: QPDIR

Given a set of voxel locations X ¼ xif gNi¼1 with correspond-
ing initial displacement estimates z1, z2, z3, a regularization
parameter a, and an initial value for the penalty parameter l:

1. Compute z�j ; j ¼ 1; 2; 3; by solving the QP subproblem
defined by l in Eq. (5), using block coordinate descent
(Algorithm 1) and initial guess zj; j ¼ 1; 2; 3:

2. if l < 0.5, stop with solution z�j ; j ¼ 1; 2; 3;
Otherwise,

set zj ¼ z�j ; j ¼ 1; 2; 3;
set l = 0.5 l,
go back to Step 1.

3. Apply MLS to compute full displacement field.
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As dictated by Eq. (23), the QP stopping criterion l < 0.5
corresponds to a block match search window with radius
<1.00. This reflects the resolution of the block matching
operator, considering that it is defined on integer grid values.
A flowchart representation of Algorithm 2 is given in Fig. 1.

2.E.1. Moving least squares displacement field

A full DIR displacement field is obtained from the Algo-
rithm 2 solution, X; fz�j g3j¼1, by applying the MLS approxi-
mation. Specifically, for each voxel x within the lung region
of interest, the displacement vector is computed as:

dðxÞ ¼
d1ðxÞ
d2ðxÞ
d3ðxÞ

2
4

3
5 ¼

f mlsðx; X; z�1Þ
f mlsðx; X; z�2Þ
f mlsðx; X; z�3Þ

2
4

3
5; (24)

where the MLS function fmls is defined according to Eq. (8),
using the weighting function defined by Eqs. (15) and (16).

A desirable property of practical DIR algorithms is that
the determinant of the transformation’s Jacobian is guaran-
teed to be strictly positive. Physically, this property prevents
tissue folding in the resulting DIR solution. As described, the
QPDIR algorithm does not explicitly prevent tissue folding,
or equivalently, the determinant of the DIR transformation
Jacobian is not required to be strictly positive. Although no
negative Jacobian determinant values arise in the numerical
experiments presented in Section 3, a nonfolding constraint
can be incorporated into the QPDIR numerical implementa-
tion (or any DIR method applied to 4DCT inhale/exhale

phases) using the postprocessing method described in Ref.
[39].

2.E.2. Numerical implementation

The current numerical implementation of QPDIR utilizes
the LOOCV regularization metric defined by Eqs. (14) and
(15), and minimizes the structural similarity metric defined
by (20). The software is implemented in CUDA C++ and uti-
lizes the openMP shared-memory parallel programming
library. Graphics processing unit (GPU) computing handles
the bulk of the computational workload, namely the embar-
rassingly parallelizable block matching minimization (Algo-
rithm 1, Step 1). The least squares updates (Algorithm 1, Step
2) are computed by applying the conjugate gradient method
to the normal equations for Eq. (7).

All numerical experiments presented in Section 3 were
obtained on a Dell Precision Laptop with an Intel i7-6920HQ
processor (2.90 GHz 9 8), a Quadro M5000 Nvidia GPU,
and 64GB of RAM.

3. RESULTS

3.A. DIR-LAB 4DCT cases

A dataset (Table I) comprised of ten maximum inhale and
exhale 4DCT phase pairs, each with a corresponding set of
300 expert-determined landmark points,9 was used to assess
the spatial accuracy of the QPDIR algorithm. All data are
available for public download at www.dir-lab.com.

FIG. 1. A flowchart representation of the full QPDIR algorithm. For a given penalty parameter l, the method alternates between the block matching and least
squares subproblems until there is no difference between successive iterates. At that point, if the penalty parameter is sufficiently small (less than one), then the
full MLS displacement field is computed. Otherwise, the penalty parameter is updated and the process repeats.
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3.B. Parameters

Since 4DCTs are acquired while the patient is free-breath-
ing, the maximum magnitude displacements for these test
cases are generally under 15 voxels. As such, an initial search
window size of 15 [Eq. (23)] and initial guess of zero was
employed within the QPDIR algorithm to achieve the results
in Table I. Block window size was set to be approximately
isotropic in millimeters, which translates into 7 9 7 9 3
voxel windows. The computational point cloud, X, was
acquired with the dart throwing method using an approximate
isotropic millimeter spacing of 7.5 mm. This resulted in voxel
point clouds with 15k–30k points per lung with approxi-
mately 3 9 3 9 1 component distance between voxel points,
and an MLS weighting parameter [as defined by Eq. (16)] of
h = 7.5. The regularization parameter a = 1 [see Eq. (2)] for
all cases.

3.C. Spatial accuracy assessment

Spatial error is defined as the Euclidean distance (in mil-
limeters) between the expert-determined landmark position
and the estimated landmark position provided by the DIR.
The average interobserver spatial error between three expert
readers is also provided with the dir-lab validation data-
sets.9,40 This interobserver error measurement represents the
resolution of the landmark error assessment. Concretely, an
average DIR spatial error below the interobserver error
implies that the DIR algorithm is generating landmarks with
an accuracy that is indistinguishable from that of human
experts. The spatial accuracy of the QPDIR algorithm and
the highest spatial accuracy achieved by a published algo-
rithm (to the best of author’s knowledge) for each of the ten
4DCT cases is provided in Table I. These algorithms include:
the LandMark Penalty method,17 Semi-Global Scan-Line
Integration method,41 Isotropic Total Variation for Parametric
Image Registration methods (isoPTV)42 and (pTV),43

Normalized Gradient Field method,44 and diffeomorphic
variational normalized gradient fields.45

The QPDIR algorithm achieved an average spatial error
(for inhale-to-exhale motion recovery) at or below the inter-
observer variance on six of the ten cases. In aggregate, previ-
ous methods achieved this level of accuracy on only five
cases. Moreover, the QPDIR achieved an average spatial error
at or below those produced by the best previously reported
methods on all ten test cases. Moreover, the computation run-
times varied between 1 and 3 min per case.

The Jacobian values (determinant of the first derivative of
the spatial transformation) for all ten cases were approxi-
mated from the QPDIR displacement fields. As illustrated by
Fig. 2, the distribution of Jacobian values indicates that the
inhale-to-exhale motion is primarily contractive and the
QPDIR method did not produce any negative Jacobian val-
ues. Figure 3 illustrates the displacement field and Jacobian
map for DIR-LAB Case 6. This particular case is designated
as a digital phantom test case by the AAPM Radiation Ther-
apy Committee Task Group on the use of DIR algorithms in
radiotherapy.46

4. DISCUSSION

A key difficulty in computing accurate DIR is numeri-
cally optimizing a similarity metric defined by the image
data. Medical imaging often depicts a nonhomogeneous
array of complex anatomical structures. As a result, the
similarity objective function can be nonlinear, nonconvex,
or discontinuous. These properties are known challenges
for numerical optimization algorithms such as gradient
descent and Newton’s method. In fact, guaranteed conver-
gence for Newton-type methods requires the existence of
smooth objective function derivatives.30 Since this prop-
erty does not hold for CT images, gradient-based DIR
optimizers require a smooth, continuously defined image
interpolant (such as B-splines or tri-linear interpolation)

TABLE I. Dataset 4DCT: Ten 4DCT maximum inhale/exhale phase pairs.

Case Interobserver error (mm) Average displacement (mm) QPDIR avg. error (mm) Best algorithm error (mm) Best algorithm

1 0.85 (1.24) 4.01 (2.91) 0.71 (0.91) 0.74 (0.90) LMP

2 0.70 (0.99) 4.65 (4.09) 0.69 (0.91) 0.72 (0.87) SGM3D

3 0.77 (1.01) 6.73 (4.21) 0.87 (1.05) 0.91 (1.05) isoPTV

4 1.13 (1.27) 9.42 (4.81) 1.19 (1.26) 1.21 (1.19) pTV

5 0.92 (1.16) 7.10 (5.12) 1.07 (1.50) 1.07 (1.46) NGF

6 0.97 (1.38) 11.10 (6.98) 0.89 (0.94) 0.85 (0.89) isoPTV

7 0.81 (1.32) 11.59 (7.87) 0.80 (0.91) 0.80 (1.28) isoPTV

8 1.03 (2.19) 15.16 (9.11) 1.03 (1.21) 1.03 (1.19) NLR

9 0.75 (1.09) 7.82 (3.99) 0.90 (0.91) 0.91 (0.93) SGM3D

10 0.86 (1.45) 7.63 (6.54) 0.86 (0.91) 0.83 (0.92) isoPTV

isoPTV, Isotropic Total Variation for Parametric Image Registration methods; LMP, LandMark Penalty; NLR, normalized gradient fields; SGM3D, Semi-Global Scan-Line
Integration method; NGF, Normalized Gradient Field;
A summary of the ten 4DCT inhale/exhale phase test cases provided by www.dir-lab.com, as well as the spatial accuracies achieved by the QPDIR algorithm is detailed.
The highlighted entries denote that the algorithm achieved an average error below the interobserver error. For comparison, the lowest average error achieved by a previously
published algorithm for each case is also given.
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on which to operate. Such approximations have the poten-
tial to over smooth data, which could possibly lead to
poorer accuracy.19 With these issues in mind, the motiva-
tion for this work was to develop a robust DIR framework
tailored to suit the inherent properties of 4DCT DIR opti-
mization, namely, a discontinuous objective function

defined on a discretized digital image grid and moderate
(<20 voxel) magnitude displacements.

The QPDIR algorithm is based on reformulating the DIR
problem so that it lends itself to the quadratic penalty func-
tion optimization method. The formulation utilizes three sim-
ple but robust image and data processing methods: block

FIG. 2. A box plot of the Jacobian values computed from the QPDIR solution for each of the ten cases in Table I. The plot was created using MATLAB (release
2017b, The Mathworks Inc., Natick, Massachusetts, United States) boxplot function. On each box, the central mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers. The bulk of the
values are all below 1.00, indicating a primarily contractive lung motion from inhale-to-exhale.

FIG. 3. Coronal (left), sagittal (middle), and axial (right) slices of the QPDIR displacement field (top row) and the corresponding Jacobian map (bot-
tom row) for case 6 in Table I. The color code denotes the Jacobian values for inhale-to-exhale lung motion. Most values are less than one, indicating
a contractive motion.
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matching, MLS, and LOOCV. While each has been reported
on in previous methods, these components have never been
incorporated into a single DIR formulation (to the best of the
Author’s knowledge). The QP framework, therefore, provides
a novel mechanism for combining block matching, MLS, and
LOOCV into a simple numerical method, specifically
designed for 4DCT lung motion. The resulting method
achieves accuracies higher than those previously published,
indicating that QPDIR is better suited for 4DCT DIR than
existing methods.

Quadratic penalty DIR requires the image dissimilarity
metric to be separable with respect to individual displacement
vectors. In this way, the quadratic penalty subproblems can
be solved with a gradient-free block coordinate descent
numerical optimization method. By employing brute-force
exhaustive searches, this approach mitigates the challenges
associated with numerically optimizing the similarity metric.
However, block match-generated displacement estimates
alone are known to be error prone and insufficient for DIR
since the matches rely only on local image information.21 Pre-
vious block match DIR algorithms rely on robust statistical
methods to filter outliers from block match-generated data.
For simple transformations with few degrees of freedom,
such as affine functions, the process of filtering out outliers
is straightforward.26 For functions with a large number or
parameters, the task becomes computationally burdensome
due to the combinatorial nature of outlier detection.47 The
QPDIR method, on the other hand, incorporates the outlier
detection within the DIR formulation. This is accomplished
by reformulating the LOOCV mismatch penalty defined by a
MLS parameterization as a matrix-vector multiplication suit-
able for optimization. This allows for all displacements to be
computed simultaneously with respect to both the image sim-
ilarity metric and the resulting LOOCV outlier detection pen-
alty. For comparison, on the same ten test cases in Table I, an
algorithm that first applies the least median of squares filter
to remove erroneous block match-generated displacement
estimates and then interpolates the trusted estimates with
MLS results in average spatial accuracies between 0.74 (0.99)
and 1.33 (1.51), while achieving an average mm error below
the interobserver variance on only one case.27 The QPDIR
algorithm produces average mm errors between 0.69 (0.91)
and 1.19 (1.26), and achieves an average mm error below the
interobserver variance on six cases. These results imply that
incorporating the outlier metric into the DIR minimization
problem improves spatial accuracy.

On all ten 4DCT test cases (Table I), the QPDIR method
produced spatial accuracies that are superior or equivalent to
those produced by current state-of-the-art methods. More-
over, QPDIR achieved accuracies at the resolution of the
landmark error assessment (i.e., the interobserver error) on
six of the ten cases, whereas, in aggregate, previous methods
achieved this level of accuracy on five cases. Among the most
successful of these methods (based on Table I) is the elegant
isoPTV method described in Ref. [42]. This method is based
on minimizing a computationally intensive isotropic total
variation (TV) regularization metric and local block

correlation similarity metric. The optimization problem is
solved efficiently using the alternating direction method of
multipliers (ADMM), which is similar in structure to the QP
method, but isoPTV solves the ADMM subproblem with the
qausi-Newton BFGS method. The primary differences
between the ADMM and QP optimization algorithms are (1)
ADMM estimates the Lagrange Multipliers associated with
the equality constraints and (2) the penalty parameter l is
typically held constant. Adjusting the QPDIR algorithm
framework (Fig. 1) to accommodate the ADMM method is
trivial (the subproblem structure is equivalent). And although
the results are not reported in Section 3, this adaptation does
not lead to improved convergence properties or increased
spatial accuracy when applied to the DIR-LAB test cases. In
this instance, QP is the more suitable approach because the
computational workload of the block coordinate descent iter-
ation is dictated by the block matching search window size,
which is proportional to l. Within the ADMM framework,
choosing a small constant l implies that the optimal displace-
ment values for large magnitude displacements are not con-
tained in the search window radius and will consequently
require more iterations to arrive at the solution, thus increas-
ing the chances of converging to an undesirable local mini-
mum. However, choosing a large constant l implies that the
ADMM iterations will be more computationally expensive,
due to the increase in block match search window size,
whereas the QP algorithm subproblem becomes less compu-
tationally intensive as l decreases (and the block matching
search window size decreases). This particular issue is not
relevant to the isoPTV algorithm since it relies on gradient-
based optimization to solve the ADMM subproblem. More-
over, the TV regularization strategy allows the isoPTV
method to accommodate discontinuities in the displacement
field, such as sliding boundaries. While the QPDIR algorithm
achieved superior accuracies on the presented test cases, the
LOOCV regularization is not suitable for cases with displace-
ment field discontinuities and, consequently, operates on the
segmented lung volumes. An immediate area of future
research is to implement the TV regularization strategy
within the general QP DIR framework, or within an ADMM
adaptation, in order to determine if the superior accuracies
can be maintained while removing the need for lung segmen-
tation.

Considering that its computational workload is dominated
by the block matching operator, as currently implemented,
the QPDIR algorithm is ideal for the 4DCT test cases since
they depict maximum magnitude displacements on the order
of 15 voxels. The algorithm runtime is competitive with the
commercially available Velocity (Varian Medical Systems,
Palo Alto, CA, USA) B-spline method, which required an
average runtime of approximately 145 s to register the same
test cases, albeit with significantly less spatial accuracy.48

However, runtime is highly dependent on the available com-
putational resources. This is especially true for the block
matching-based QPDIR algorithm. Block matching is essen-
tially a stencil operation and its implementation on GPU has
been thoroughly investigated.49–51 Considering that (a) block
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matching is known to scale well with GPU resources and that
(b) the bulk of the computational workload for the QPDIR
algorithm is dominated by the block matching operation,
QPDIR has the potential to be sped up dramatically using
state-or-the-art GPU cards or by adopting a multi-GPU imple-
mentation.

For cases with larger magnitude displacement (on the
order of 100 voxels in some cases),40 the block matching
operations become computationally intractable. Moreover,
such cases often possess extreme deformations, which could
impact the convergence requirements (unique global mini-
mizer for each block match) of the QP algorithm. Further-
more, while no negative QPDIR Jacobian values were
encountered on the 4DCT test case solutions, the algorithm
does not guarantee this property. Intuitively, the likelihood of
negative Jacobian values would be higher on cases depicting
more exotic deformations. An immediate area of future
research is to augment the basic QPDIR framework to
account for large magnitude displacements, possibly via stan-
dard method such as Gaussian pyramid, and to formulate a
separable objective function with more desirable properties
(i.e., convexity, provably unique global minimizers) in order
to generalize to more complex problems.

5. CONCLUSIONS

A gradient-free optimization algorithm for intensity-based
DIR was presented. The algorithm is designed around a block
coordinate descent strategy, which results in a simple itera-
tions of block matching operations and linear least squares
solves. In comparison to current state-of-the-art DIR meth-
ods, the QPDIR algorithm achieves equivalent or superior
spatial accuracies on ten 4DCT inhale/exhale phase test
cases. However, additional mathematical modeling and test-
ing is required to extend the utility of the algorithm to more
challenging cases. The simplicity of the underlying optimiza-
tion iteration allows for an efficient parallel numerical imple-
mentation. The algorithm runtime ranged between 1 and
3 min for each test case using a Quadro M5000 GPU. Con-
sidering the highly parallelizable structure of the QPDIR
algorithm, a real-time implementation is possible on multi-
GPU system architectures. An immediate area of future
research is to explore the extent to which the QPDIR’s high
spatial accuracy improves clinical applications, including CT-
derived ventilation6,39 and radiotherapy response of the brain
as measured by morphometric analysis.52
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