
A deep learning- and partial least square regression-based model observer
for a low-contrast lesion detection task in CT

Hao Gong, Lifeng Yu, Shuai Leng, Samantha K. Dilger, Liqiang Ren, Wei Zhou,
Joel G. Fletcher, and Cynthia H. McCollougha)
Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA

(Received 29 November 2018; revised 15 February 2019; accepted for publication 12 March 2019;
published 1 April 2019)

Purpose: This work aims to develop a new framework of image quality assessment using deep learn-
ing-based model observer (DL-MO) and to validate it in a low-contrast lesion detection task that
involves CT images with patient anatomical background.
Methods: The DL-MO was developed using the transfer learning strategy to incorporate a pretrained
deep convolutional neural network (CNN), a partial least square regression discriminant analysis
(PLS-DA) model and an internal noise component. The CNN was previously trained to achieve the
state-of-the-art classification accuracy over a natural image database. The earlier layers of the CNN
were used as a deep feature extractor, with the assumption that similarity exists between the CNN
and the human visual system. The PLSR model was used to further engineer the deep feature for the
lesion detection task in CT images. The internal noise component was incorporated to model the
inefficiency and variability of human observer (HO) performance, and to generate the ultimate DL-
MO test statistics. Seven abdominal CT exams were retrospectively collected from the same type of
CT scanners. To compare DL-MO with HO, 12 experimental conditions with varying lesion size,
lesion contrast, radiation dose, and reconstruction types were generated, each condition with 154 tri-
als. CT images of a real liver metastatic lesion were numerically modified to generate lesion models
with four lesion sizes (5, 7, 9, and 11 mm) and three contrast levels (15, 20, and 25 HU). The lesions
were inserted into patient liver images using a projection-based method. A validated noise insertion
tool was used to synthesize CT exams with 50% and 25% of routine radiation dose level. CT images
were reconstructed using the weighted filtered back projection algorithm and an iterative reconstruc-
tion algorithm. Four medical physicists performed a two-alternative forced choice (2AFC) detection
task (with multislice scrolling viewing mode) on patient images across the 12 experimental condi-
tions. DL-MO was operated on the same datasets. Statistical analyses were performed to evaluate the
correlation and agreement between DL-MO and HO.
Results: A statistically significant positive correlation was observed between DL-MO and HO for
the 2AFC low-contrast detection task that involves patient liver background. The corresponding Pear-
son product moment correlation coefficient was 0.986 [95% confidence interval (0.950, 0.996)].
Bland–Altman agreement analysis did not indicate statistically significant differences.
Conclusions: The proposed DL-MO is highly correlated with HO in a low-contrast detection task
that involves realistic patient liver background. This study demonstrated the potential of the proposed
DL-MO to assess image quality directly based on patient images in realistic, clinically relevant CT
tasks. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13500]
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1. INTRODUCTION

Quantitative and objective image quality assessment is criti-
cal to optimize radiation dose and scanning protocols in clini-
cal CT. Human observer (HO) studies to determine
diagnostic performance and clinical image quality are typi-
cally limited by cost, efficiency, and intra- and interobserver
variabilities. Traditional image quality metrics are inappropri-
ate for the newer CT systems when iterative reconstruction
(IR) or other nonlinear algorithms are used,1–4 and thus have
limited use in quantifying overall image quality for given
diagnostic tasks. The use of mathematical model observers
(MOs), as objective and efficient alternatives to HOs,5–13

have become popular in task-based CT image quality assess-
ment, due to the limitations of traditional methods and the
growing needs for CT protocol optimization. Once MOs are
determined to be highly correlated with HOs in clinically rel-
evant tasks, MOs can be used to estimate the HO perfor-
mance, which is the ultimate measure of diagnostic image
quality.

Strong correlation between traditional anthropomorphic
MOs and HOs has been demonstrated for low-contrast
object detection, localization, and differentiation tasks in
uniform phantom backgrounds with varying experimental
conditions.8,9,14–18 Some of these studies performed a sim-
ple two-dimensional (2D) object detection task in 2D
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static images (i.e., static viewing mode) with real8,9,14 or
simulated uniform phantom background.17,18 Other stud-
ies15,16 performed a three-dimensional object detection task
in a uniform phantom background, where readers scrolled
through multiple images (i.e., cine viewing mode) to iden-
tify lesion-present cases. Nevertheless, these studies did
not include patient anatomical variability and nonunifor-
mity, which may affect HO performance more than
stochastic image noise alone.19–21 Thus, it is not clear if
the performance of traditional MOs would be highly corre-
lated with the performance of HOs for realistic tasks in
real patient images. This is partially due to the difficulty
of obtaining sufficient statistics from the patient images
with largely varying anatomical background.

A few recent studies aimed to address the above challenges
by developing new MOs based on deep learning techniques
that use convolutional neural networks (CNN),22–25 since
CNN is biologically inspired multilayer perceptron that could
simulate the human visual cortex. In Alnowami et al.’s work
22 and Massanes et al.’s work,23 CNN-based MOs achieved
object detectability comparable to HOs for detection tasks that
involved simulated or clinical mammograms. In Kopp et al.’s
study,24 another CNN-based MO also achieved similar perfor-
mance to HOs for an object detection task that involved a uni-
form background in CT phantom images. In Zhou and
Anastasio’s study,25 a CNN was trained to approximate the
ideal observer, using computer-simulated uniform background
with correlated noise. These prior studies constructed MOs as
a single CNN model with relatively shallow architecture and
these MOs were typically tested using simplistic detection
tasks that involved neither complicated anatomical back-
ground (e.g., CT chest/liver images) nor the realistic human
visual searching process. They did not include calibration
steps that are typically used to degrade MO performance to
the same level of HO performance. Therefore, the validity of
these previous CNN-based MOs in realistic tasks that involve
significant background variability and real visual searching
process of radiologists remains unclear.

In this work, we propose to develop a new framework of
task-based image quality assessment using deep learning-

based MO (DL-MO) that would directly operate on patient
CT images. Different from previous CNN-based MOs, the
proposed MO is constructed as an ensemble model via trans-
fer learning strategy. We validate the new DL-MO in a low-
contrast lesion detection task that involves CT images with
patient anatomical background.

2. MATERIALS AND METHODS

2.A. DL-MO framework

The proposed DL-MO was constructed as a pipeline of a
pretrained CNN, a PLS-DA model, and an internal noise
component (Fig. 1). First, the input images were prepro-
cessed and fed into the pretrained CNN to generate CNN
codes (i.e., feature vectors). The preprocessing steps are
detailed in Sections 2.B.2 and 2.B.3. Then, CNN codes were
further engineered by a PLS-DA model to generate initial test
statistics k0. Finally, the internal noise was added to k0 to
generate the final test statistics k used for performance analy-
ses. Each component of the proposed DL-MO is further
explained as follows.

2.A.1. Pretrained CNN

In this study, we hypothesized that the state-of-the-art
CNN architectures can mimic the feed-forward information
flow and response of human visual system for lesion detec-
tion tasks. Given ten thousands of free parameters in these
CNNs, direct training of such neural networks from scratch
requires a careful preparation of a huge amount of labeled
training data to avoid overfitting, which is typically not prac-
tical in the field of medical imaging. Thus, we constructed
the DL-MO using the transfer learning strategy, that is, apply-
ing the knowledge gained while solving one task to address a
different but relevant task.26 Briefly, transfer learning adapts
any prior machine learning model (e.g., CNN) pretrained for
a pair of source domain Ds and source task Ts to another pair
of target domain DT and target task TT. The prior model
defines a functional mapping from Ds to Ts:

FIG. 1. The framework of the proposed deep learning-based model observer (DL-MO), including a pretrained deep convolutional neural network (CNN), partial
least square regression discriminant analysis (PLS-DA) model, and internal-noise component.
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Ds ¼ X ; PrfXgf g; (1)

Ts ¼ Y; PrfYjXgf g; (2)

where X ¼ x1; x2; . . .; xm 2 X is the m-dimensional feature
vectors that belong to the source feature space X , Pr {X} is
the corresponding marginal probability distribution of X,
Y ¼ y1; y2; . . .; yn 2 Y is the n-dimensional encoded label in
the source label space Y, and Pr {Y|X} is the corresponding
conditional probability distribution of Y given X. Then, the
prior model is adapted to generate a new mapping from DT to
TT :

DT ¼ X0; PrfX0gf g; (3)

TT ¼ Y0; PrfY 0jX0gf g; (4)

where X0, Pr {X
0
}, Y0, and PrfY 0jX0g are defined similarly as

in Eqs. (1) and (2). Of note, X0 represents the intrinsic fea-
tures that are explored and exploited by the prior model from
the input images. Assuming the similarity between Ds and
DT, the prior model could be used as a fixed feature extractor
to generate new features X0 on DT, and a secondary model
(e.g., statistical model) can be trained over X0 for TT . The
degree of similarity between Ds and DT could be evaluated in
terms of the image content (e.g., the object types) and the
image features that may be relevant to the source/target tasks.

Specifically, when the prior model is a CNN, the feature
(also termed as CNN codes) could be directly extracted from
any intermediate layer in the network architecture. The selec-
tion of CNN layer often follows a generic guideline, that is,
the earlier layers are likely to provide domain-invariant fea-
ture, while the later layers tend to generate domain-specific
feature. In this work, we used a 50-layer Residual net (termed
as ResNet-50)27 as the prior model, which was pretrained
over ImageNet28 (a database of natural images, that is, Ds is
the natural image domain). As pointed out in Ref. [29], resid-
ual net could be interpreted as the encoder part of deep con-
volutional framelets, and thus, the corresponding CNN codes
could be represented in a matrix form:

X0 ¼ U � q H � qðH �WÞ � ~W� �
(5)

where H is the Hankel matrix of the input of the layer used for
feature extraction, Ψ and ~W denote subsequent local bases (i.e.,
convolutional filters) in the same residual block (i.e., the funda-
mental building block in Residual net), q(�) is the ReLU (i.e.,
Rectified linear unit) activation function, and Φ denotes the non-
local bases (e.g., pooling operator). The Eq. (5) provides the
mathematical representation of X0 for the special case that the
prior model is Residual net, and thus, the specific form of X0

would vary if a different prior model is used. Furthermore, the
local and nonlocal bases are redundant and non-orthonormal,
which results in inner correlation and high dimensionality of X0.

Since inner correlation and high dimensionality could degrade
the performance of the secondary model for TT, X0 needs to be
further processed by proper feature engineering methods.

2.A.2. PLS-DA

To construct the secondary model for TT , we selected the
PLS-DA model30,31 which incorporated the model generation
with an embedded feature engineering procedure that
addressed the inner correlation and high dimensionality of
X0. Specifically, we used the PLS-DA that was implemented
with the SIMPLS algorithm.32 The basic principle of PLS-
DA is briefly summarized as follows. The input CNN codes
X0 were standardized and then represented as a linear form:

X0 ¼ V � Pþ E (6)

where V is the X-score matrix (i.e., each column is a PLS
component), P is the predictor loading matrix, and E is the
predictor residual. In this work, TTwas considered as a binary
classification task, and the ideal model response was also rep-
resented as a linear form:

C ¼ U � Qþ F (7)

where C ¼ Ck; k ¼ 1; 2; . . .f g is the ideal model response for
each sample of X’, that is, C is a discrete label vector (Ci = 1
for the ith lesion-present case, and Cj = �1 for the jth lesion-
absent case), U is the C-score matrix (i.e., the linear combina-
tion of the responses that has the maximal covariance with
the PLS components), Q is the response loading matrix, and
F is the response residual. Based on the Eqs. (6) and (7), the
loading matrices P and Q are calculated by regressing X0 and
C across V and U,32,33 respectively, that is, pTj ¼ X0ð ÞT � vj

kvTj vjk
and qTj ¼ CT � uj

kuTj ujk
where pj and qj are the jth row of P and

Q, respectively, and vj and uj are the jth column of V and U,
respectively. In the SIMPLS algorithm, it is assumed that
there exists a linear inner relation U = V � D +F00, where D
is a diagonal matrix and F00 is the residual. Furthermore, the
SIMPLS algorithm calculates the X-score matrix V as
V = X0 � W, where the weight matrix W is calculated in an
iterative process that involves solving the eigenvectors for
the successively deflated X0 � C. More details about this pro-
cess can be found in Ref. [32]. Then, a prediction model was
created by calculating a regression coefficient vector B that
mapped X0 to C as follows:

C ¼ U � Qþ F ¼ X0 � Bþ F0 (8)

B ¼ W � D � Q (9)

When the residual terms F, F0, and F00 are negligible, the
model response C0 (also denoted as PLS-DA model test
statistics k0), for any new CNN codes X0

new from unknown
origin can be simply formulated as C0 ¼ X0

new � B. Further-
more, C0 is typically a set of continuous values, although the
PLS-DA model was trained with the discrete label vector C.
Thus, a decision threshold could be determined to classify
the lesion-present/absent cases.
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2.A.3. Internal noise component

The use of internal noise was to model the inefficiency
and variability of HO performance in lesion detection task.
Specifically, we used the decision variable internal noise as
used in the prior works8,9,15 that employed the conventional
channelized Hotelling observer:

k ¼ k0 þ a � x (10)

where k is the final DL-MO test statistics, a is a constant

weighting factor, and x 2 N 0; stdðk0;bkgÞ2
� �

denotes a nor-

mal random variable with zero expectation and a variance
equal to that of PLS-DA test statistics for lesion-absent cases
(denoted as k0,bkg). The value of a was determined by cali-
brating DL-MO performance and HO performance at one
preselected experimental condition. After calibration, the
same value of a was used in the other conditions.

2.B. Data preparation

Image data were prepared for comparing DL-MO and HO
at different experimental conditions with varying lesion attri-
butes (i.e., size and contrast), radiation dose, and image
reconstruction types. The procedure of data preparation is
summarized as follows.

2.B.1. CT exam data collection

Routine abdominal CT exams of seven adult patients were
selected from our clinical data registry. A staff abdominal
radiologist supervised the procedure of case selection. The
case selection based on the following inclusion criteria:
patients agreed with retrospective usage of their medical
records for research purposes; these exams were acquired
from the same single-source 128 slice CT scanner (SOMA-
TOM AS+, Siemens Healthineer, Germany), following a rou-
tine abdominal CT protocol used at our institution; these
patients were proven to be lesion free via clinical follow-up.
The supervising radiologist excluded the cases that did not
meet the inclusion criteria, had fatty liver, and had obese
patients. Of note, multiple images of each exam were used to
generate the experimental trials for both DL-MO and HO
studies. The major parameters of the scanning and recon-
struction protocol are listed in Table I. A validated noise
insertion tool was used to simulate additional CT exams
acquired with 50% and 25% of the routine radiation dose.34

2.B.2. Data generation for MO and HO studies

The volumetric CT images of a real liver metastatic lesion
were numerically modified to create lesion models with four
different sizes (5, 7, 9, and 11 mm) and three different con-
trast levels (15, 20, and 25 HU). These lesion models were
inserted into multiple locations in normal patient liver
images, using a previously validated projection-based
method.35 The lesion locations were validated by the same

supervising radiologist who selected the original cases. The
projection data, with inserted noise and lesions, were recon-
structed using a weighted filtered back projection algorithm
(WFBP)36 and an iterative reconstruction algorithm—sino-
gram affirmed iterative reconstruction (IR: SAFIRE).37 The
major parameters of image reconstruction are also listed in
Table I. We generated image data for 12 experimental condi-
tions with varying radiation dose, lesions size, lesion con-
trast, and reconstruction methods (Table II), each condition
with 77 pairs of lesion-present and lesion-absent trials. To
generate lesion-present trials, volumes-of-interests (VOIs,
60 9 60 mm2 in axial plane) centered at each lesion were
extracted (Fig. 2). Each VOI included five consecutive
images. Lesion-absent trials were generated in the same way,
but from patient images without the inserted lesions. Both
DL-MO and HO studies were performed on all of these data-
sets (12 conditions 9 154 trials).

2.B.3. Data augmentation

To improve the performance of DL-MO, we used several
data augmentation strategies to augment the experimental
trial images, including image conversion, cropping, z-direc-
tion interpolation, and small angle rotation. Image conver-
sion was used to convert the dynamic range of CT images
to that of the natural images in ImageNet, while the other
strategies were mainly used to increase the amount of train-
ing samples. These strategies were briefly introduced as fol-
lows. In image conversion, the original images were
transformed to the grayscale of [0, 255] after applying an
abdominal display window (WW/WL: 400/40 HU), that is,
to make CT images more similar to the natural images in
ImageNet. Specifically, the CT numbers were restricted to
the dynamic range defined by the abdominal display win-
dow (i.e., [�160, 240] HU), and then were normalized to
the range [0, 255]. The central three images of each VOI
were retrieved to form a pseudo color image as the input of
DL-MO, by stacking the three images as RGB channels.
This is because ResNet-50 was pretrained to classify the
natural images with RGB channels. Thus, the first and the
last images of each VOI were excluded from the training of
DL-MO. Nevertheless, we expect such trivial adjustment
will not downgrade DL-MO performance, since the central
three images already contained the most significant signal

TABLE I. Scanning and reconstruction protocol.

Tube voltage 100–120 kV

CTDIvol 11.6 � 3.38 mGy

Effective mAs 245.9 � 40.5

Reconstruction algorithms WFBP/IR (SAFIRE)

Reconstruction kernels B30/I30-2

Slice thickness/increment 3/3 mm

WFBP: weighted filtered back projection; IR (SAFIRE): iterative reconstruction
(sinogram affirmed iterative reconstruction); B30: WFBP reconstruction kernel
with medium sharpness; I30-2: SAFIRE reconstruction kernel with comparable
sharpness to B30 and a strength setting of 2.
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information. As for cropping, additional multisized VOIs
were cropped out of each VOI. The size of these VOIs uni-
formly ranged from 7.4 9 7.4 mm2 to 52.0 9 52.0 mm2 in
axial plane. These augmented VOIs were not resized to
224 9 224 pixels (i.e., the typical image size used in Ima-
geNet), and thus, the dimension of the extracted CNN codes
depended on the size of the input VOI. For instance, a VOI
with 70 9 70 9 3 voxels (i.e., 52.0 9 52.0 9 9 mm3)
would yield a CNN code with 5 9 5 9 256 features, at the
26th convolutional layer. So, zero padding was applied to
each feature channel of the extracted CNN codes from
smaller VOIs to ensure that all CNN codes had consistent
dimension (i.e., 5 9 5 9 256 features per sample). In z-
direction interpolation, a voxel-wise interpolation along z-
direction was used to generate more VOIs (still with 3 mm
slice increment). For small angle rotation, each VOI was
rotated by a random angle from a uniform distribution
within the range of [�5.0°, 5.0°], and a “nearest neighbor”
interpolation method was used to generate the rotated
images, to avoid significantly altering image texture.
Together, these data augmentation strategies generated 9,
424 additional lesion-present and lesion-absent trials for
each experimental condition.

2.C. DL-MO studies

We constructed 12 DL-MOs separately to perform a two-
alternative forced choice detection (2AFC) task, that is, one
DL-MO for each experimental condition. The 26th convolu-
tional layer of ResNet-50 and the most significant 20 PLS
components were used to build each DL-MO. The configura-
tion of the CNN layer and PLS components was empirically
determined using a coarse grid search strategy in each experi-
mental condition, that is, experimentally evaluating DL-MO
performance across different configurations. Note that the
internal noise was excluded during grid search process. The
impacts of different CNN layers and PLS components are
demonstrated in Section 3.A. A resubstitution strategy38 was
used to calculate DL-MO test statistics, that is, the training
dataset and the testing dataset were both generated out of the
same set of CT images. A bootstrapping method was used to
estimate the mean and the standard deviation of the test statis-
tics. The bootstrapping was repeated for 200 times at each
experimental condition. In each bootstrapping iteration, the
training samples were randomly resampled (with replace-
ment) from the augmented dataset, and the number of train-
ing samples was equal to that of the augmented dataset (i.e.,

TABLE II. All 12 experimental conditions in low-contrast lesion detection tasks.

Condition #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Size (mm) 5 7 9 11 5 7 9 11 5 5 5 5

Contrast (HU) 15 15 15 15 15 15 15 15 20 20 20 25

Dose levela FD FD FD FD FD FD FD FD QD HD FD FD

Reconstructionb WFBP WFBP WFBP WFBP IR IR IR IR IR IR IR IR

aFD:full routine dose; HD: half routine dose; QD: quarter routine dose.
bWFBP: weighted filtered back projection; IR: iterative reconstruction (SAFIRE).

FIG. 2. Example images of lesion-present and lesion-absent cases (only the middle image out of the five consecutive images for each trial is shown) across differ-
ent experimental conditions. The inset image illustrates the middle slice (zoom reconstruction) of the base lesion model used in this study. Upper left: lesion size
was varied across 5, 7, 9, and 11 mm, lesion contrast was 15 HU, computed tomography (CT) images were acquired at full routine radiation dose (FD) with the
weighted filtered back projection. Upper right: the experimental condition was similar to that in upper left, except that CT images were reconstructed using itera-
tive reconstruction (IR). Bottom left: lesion size was 5 mm, lesion contrast was 20 HU, CT images were acquired with IR, but radiation dose was varied across
full, half and quarter of routine dose level (FD, HD, & QD, respectively). Bottom right: lesion size was 5 mm, CT images were acquired with IR at full radiation
dose, but lesion contrast was varied across 15, 20, and 25 HU. The arrows indicate the lesion locations.
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9424 samples). DL-MO performance was also calibrated with
the averaged HO performance at experimental condition #10,
by adjusting the weighting factor a of the internal noise com-
ponent (See Section 3.C.).

2.D. HO studies

Four medical physicists were recruited to perform the HO
studies. Each reader performed the 2AFC detection task for
the same 12 experimental conditions used in the DL-MO
study in three reading sessions, with four conditions at each
session. For each trial, lesion-present case and lesion-absent
case were displayed side by side with random placement,
using the same graphical user interface as used in prior
works8,15 (Fig. 3). Furthermore, HOs were required to scroll
through five images per VOI to identify the lesion-present
cases (i.e., multislice viewing mode). In each reading session,
HOs were encouraged to take breaks to avoid fatigue, and
they were also allowed to revisit any previous trials and mod-
ify their interpretation. The viewing parameters were fixed:
all images were displayed with the soft tissue window (WW/
WL: 400/40 HU); the viewing distance approximately
50 cm.

2.E. Figure of merit and statistical analyses

For the DL-MO study, the area under receiver operating
characteristic curve (AUC_ROC) was used as the figure of
merit (FOM) to represent the performance at each experimen-
tal condition. The ROC curve was generated by varying the
decision threshold and compared with the test statistics of
signal present and signal absent images. The mean and the
standard deviation (STD) of AUC_ROC were calculated
based on the 200 bootstrapping iterations. For the HO study,
we used percent correct (PC) as the FOM to represent the HO
performance in each 2AFC detection task. In each

experimental condition, PC was calculated by dividing the
number of correctly identified lesion-present cases over the
total number of trials. Note that AUC_ROC is considered to
be equivalent to PC in 2AFC detection task38,39 if the model
observer response follows a normal distribution. Thus, the
normality of DL-MO test statistics was evaluated to verify the
use of AUC_ROC as the FOM of DL-MO in the 2AFC task.
Specifically, we qualitatively tested the normality of k0 (ex-
cluding internal noise) separately for lesion-present/absent
images in each experimental condition, since the internal
noise component had been formulated as a normal random
variable. Finally, the strength of correlation and agreement
between DL-MO and HOs was evaluated across all experi-
mental conditions, using Pearson’s product moment correla-
tion analysis and Bland–Altman plots.

3. RESULTS

3.A. Grid search for optimal CNN layer and PLS
components

An example of coarse grid search is shown in Fig. 4. The
value of AUC_ROC was moved toward saturation, as
the number of PLS components increased. This is because
the feature variance was better represented by more PLS com-
ponents. However, the use of a larger set of PLS components
may result in a higher chance of overfitting the DL-MO, so
we intended to select the fewest PLS components that still
yield a high performance. Furthermore, the 26th convolu-
tional layer was able to achieve higher AUC_ROC with fewer
PLS components, which suggested a higher feature transfer-
ability toward the target task TT. Therefore, we selected the
26th convolutional layer and the first 20 PLS components as
the optimal configuration for building DL-MO.

Several examples of the CNN codes from ResNet-50 are
illustrated in Fig. 5. It is typically challenging for human

FIG. 3. Graphical user interface that was used in human reader studies for the two-alternative forced choice lesion detection task with multislice scrolling viewing
mode.
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readers to directly interpret these CNN codes from the deep
layers. However, the difference between lesion-present/absent
CNN codes revealed the presence of the encoded structural
information around the lesion location, that is, the central
region of each lesion-present image. This phenomenon has
indicated the capability of ResNet-50 in preserving the
lesion-relevant information.

Furthermore, some examples of the PLS components and
regression coefficients (i.e., the template B) are illustrated in
Fig. 6. As presented in Section 2.A.2, the PLS components
were used to generate the template B that provided a set of
weights to combine all features to form the test statistics k0.
The features at the central region of the CNN codes (i.e., the
lesion location) generally received stronger weights than
those at the peripheral region. This finding indicated that the
proposed model observer used the lesion-relevant informa-
tion and the surrounding patient anatomy to form the final
test statistics.

3.B. Normality of test statistics k0

The normality of the test statistics k0 was qualitatively
evaluated using the normal probability plots.40 Briefly, the
sorted samples of k0 (i.e., the y-axis) were plotted against a
theoretical normal distribution (i.e., the x-axis) that was gen-
erated as the normal order statistics medians, and a straight
line was fitted to the sample points to indicate the similarity
to normality, that is, there existed a strong similarity if the
majority of the sample points appeared along this line. As
illustrated in Fig. 7, the statistical distribution of k0 well
approximated normal distribution. Thus, it is reasonable to
consider the AUC_ROC of DL-MO as an equivalent FOM of
the PC of HOs in the 2AFC task.

3.C. Internal noise calibration

The calibration was carried out on the experimental condi-
tion #10. Specifically, the value of the weighting factor a was
increased from 0.1 to 5.5 with an increment of 0.01 per step.
The resultant AUC_ROC of DL-MO was compared with the
averaged PC of HOs at the same condition to determine a
proper value of a (Fig. 8). The value of a was determined to
be 1.1, that is, the internal noise was 1.1 times of the noise of
k0,bkg.

3.D. Statistical analyses

The 12 experimental conditions were regrouped into four
scenarios for convenience of comparing DL-MO with HO
(Fig. 9). The AUC_ROC of DL-MO was comparable to the
PC of HO in each condition. Pearson’s correlation coefficient
was 0.986 (with 95% CI [0.950, 0.996]). Bland–Altman plots
indicated that there was no statistically significant discrep-
ancy between DL-MO and HO (Fig. 10). The bias between
DL-MO and HO was 0.25%. The upper and the lower limits
of agreement were 4.00% (with 95% CI [1.90%, 6.11%]) and
�3.51% (with 95% CI [�5.61%, �1.40%]), respectively.

4. DISCUSSION

In this study, we proposed a framework of DL-MO that
incorporated a state-of-the-art deep CNN, PLS-DA model,
and an internal noise component. The comparison between
the proposed DL-MO and HOs was carried out over multiple
experimental conditions with varying lesion attributes, radia-
tion dose, and reconstruction types. We observed strong cor-
relation and agreement between DL-MO and the averaged
HO performance.

The proposed DL-MO framework was based on a funda-
mental hypothesis that there exists similarity between the
state-of-the-art CNN architectures and human visual system
in object detection. This hypothesis was at least partially sup-
ported by several prior studies, which systematically investi-
gated the correlation between CNN architectures and human
neural response using carefully designed psychophysical

FIG. 4. An example heatmap of the area under receiver operating characteris-
tic curve (AUC_ROC; without internal noise, that is, a = 0) acquired from
the coarse grid search at experimental condition #10, with varying configura-
tions of convolutional layer and partial least square (PLS) components. These
configurations involved the 14th to 38th convolutional layers in ResNet-50,
and the 1st to 100th PLS components. The value of AUC_ROC is represented
by grayscale intensity.

FIG. 5. Examples of the convolutional neural network (CNN) codes and the
corresponding absolute difference from a pair of lesion-present/absent
images, at the 26th convolutional layer of ResNet-50. The inset computed
tomography (CT) images (70 9 70 pixels) illustrate a pair of lesion-present/
absent examples from condition #1, and the arrow indicates the lesion loca-
tion. These CNN codes corresponded to six randomly selected feature chan-
nels at the corresponding network layer. The images at each column
correspond to the same convolutional filter channel. The display window of
the difference images was narrowed down ([0, 0.4]) for the convenience of
illustration.
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experiments.41–43 Nonetheless, the corresponding degree of
similarity varied a lot across different CNN architectures,
which could be attributed to the different feature representa-
tion power of those CNNs. If using a different pretrained
CNN architecture in the DL-MO framework, the strength of
the correlation and agreement with HOs may be altered. In
this work, it is conjectured that the state-of-the-art CNN
architecture is more likely to be human-like, due to the large
feature representation power of these CNNs. The pretrained
ResNet-50 was used in this study, since it has demonstrated
outstanding learning capacity in comparison with other net-
works in multiple challenging image classification and object

detection tasks.27 It is possible that other state-of-the-art
CNN architecture may also work, but thus far, there is still a
lack of theoretical guideline on what types of CNN architec-
tures could be optimally correlated with HOs. The experi-
mental validation similar to the current study is an effective
way to select a proper architecture from the existing CNNs.

Besides the internal noise weighting factor a, DL-MO has
two additional free parameters, that is, the CNN layer used
for feature extraction, and the number of PLS components
used for building PLS-DA model. These two parameters need
to be properly determined to achieve reasonable DL-MO per-
formance in the target task TT. It is difficult to provide a

FIG. 6. Examples of partial least square (PLS) components and regression coefficients (i.e., the template B), from the experimental condition #1. The corre-
sponding convolutional neural network (CNN) codes were extracted from the 26th convolutional layer of ResNet-50. (a) The most significant 20 PLS compo-
nents from a pair of lesion-present/absent images. (b) The PLS regression coefficients with respect to the randomly selected feature channels from the 26th
convolutional layer of ResNet-50 and were reshaped to match the spatial location of image features, for the convenience of illustration. The display window was
[0, 0.06].

FIG. 7. Examples of normal probability plots of test statistics k0 (without internal noise) for lesion-present/absent cases in experimental conditions #10 (upper
left), #9 (upper right), #7 (bottom left), and #8 (bottom right). The distribution of k0 approximated the normal distribution.
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theoretical prediction of the optimal configuration of CNN
layer and PLS components, which is partially attributed to
the extreme complexity of estimating the feature

transferability of different layers. The feature transferability is
negatively affected by two issues: the specificity of the CNN
layers and the coadaption among neighboring layers.44 That
being said, it is more likely for the features to transfer more
poorly, when the following scenarios occur: source task Ts is
less similar to target task TT, the CNN layer has higher spe-
cialization toward Ts, or the CNN was split at the coadapted
layers. On the contrary, it is straightforward to experimentally
validating the DL-MO performance with respect to varying
configurations of CNN layer and PLS components, that is,
the coarse grid search strategy, to determine the appropriate
CNN layer and PLS components that drive the DL-MO to
achieve high efficiency. Therefore, we used the coarse grid
search strategy to empirically determine a proper selection of
CNN layer and PLS components.

Conventional anthropomorphic MOs can estimate the
effect of varying technical parameters on human perception
for simple target structures and tasks using computer simula-
tion or phantom images, while the proposed framework will
provide a new MO, using deep learning techniques, which
will enable the direct estimation of diagnostic performance
using patient CT images for optimizing the CT protocols.
Nevertheless, there exists some similarity between the DL-
MO framework and conventional anthropomorphic MOs.

FIG. 8. The weighting factor a was adjusted to calibrate deep learning-based
model observer (DL-MO) performance to the averaged human observers
(HOs) performance at the experimental condition #10, that is, lesion size was
5 mm, lesion contrast was 20 HU, radiation dose was half of routine dose
level, and computed tomography images were reconstructed by iterative algo-
rithm. The value of a was varied from 0.1 to 5.5 with a uniform interval of 0.1.
Every second sample was plotted out for the convenience of illustration. The
error bars indicate the standard deviation of DL-MO performance. AUC_ROC
denotes the area under the receiver operating characteristic curve.

FIG. 9. Comparison of deep learning-based model observer (DL-MO) and human observer (HO) in four scenarios. (a) Lesion size was varied across 5, 7, 9, and
11 mm, lesion contrast was 15 HU, computed tomography (CT) images were acquired with iterative reconstruction (IR) at full routine dose (FD). (b) Similar to
the scenario in (a), but CT images were reconstructed with weighted filtered back projection (WFBP). (c) Lesion size was 5 mm, lesion contrast was 20 HU, CT
images were reconstructed with IR across full, half, and quarter of routine radiation dose level (FD, HD & QD). (d) Lesion size was 5 mm, lesion contrast was
varied across 15, 20, and 25 HU; CT images were acquired with IR at FD. The error bars indicate the standard deviation of the area under receiver operating
characteristic curve (AUC_ROC).

Medical Physics, 46 (5), May 2019

2060 Gong et al.: A DL and PLS based model observer for CT 2060



Take the channelized Hotelling observer (CHO) as an exam-
ple: the pretrained CNN served as the fixed feature extractor,
which may be viewed as a generic extension of the explicitly
crafted channel filters (e.g., Gabor filters or dense difference
of gaussian filters); the regression coefficient vector B (from
the PLS-DA model) was analogous to the template vector x
used in CHO; the internal noise component was directly
extended from its counterpart in CHO. Furthermore, the
AUC_ROC of DL-MO and the PC of HOs were considered
as equivalent FOMs as was done in the prior works8,15 that
involved CHO, since the DL-MO response followed normal
distribution. If DL-MO response failed the normality test, the
“template application”39 may be used as an alternative
method to calculate PC as the FOM of DL-MO. Briefly, the
template would be directly applied to each pair of lesion-pre-
sent/absent cases, and the cases with larger test statistics
would be typically considered as the lesion-present ones.
Thus, the PC of DL-MO can be calculated across all experi-
mental conditions. A systematic comparison between DL-
MO and the conventional MOs could be an interesting topic.
However, there has been no agreement on how to apply con-
ventional MOs to acquire sufficient statistics from the largely
varying anatomical background. Thus, the comparison
between DL-MO and the conventional MOs is beyond the
scope of the current study.

The application of data augmentation is not limited to the
training of deep CNN models. In this work, the augmented
data were used to improve the performance of PLS-DA
model, instead of fine-tuning the pretrained ResNet-50. The
data augmentation was expected to induce more image fea-
ture variability and capture the underlying image statistics,
which would be useful for improving the PLS-DA model
robustness and reducing overfitting. Similarly, previous stud-
ies have already used different types of data augmentation
strategies with PLS and other classical machine learning
techniques. For instance, noise augmentation was used to
suppress the overfitting and improve PLS robustness against
various types of random noise.45,46 Elastic deformation and

affine transformation were also effective in reducing overfit-
ting and improving the accuracy of support vector machine
and extreme learning machine.47

A large independent testing dataset was not prepared to
evaluate the DL-MO performance, as the data acquisition
procedure was very resource-intensive, especially for the col-
lection of human reader performance. To complete this study
with a comprehensive evaluation of DL-MO performance,
we present here a preliminary validation of the estimated DL-
MO generalization accuracy (i.e., the AUC on unseen data)
with respect to the configuration of the 26th convolutional
layer and the most significant 20 PLS components. Briefly,
the estimated AUC from the resubstitution method was com-
pared with the counterparts from two additional cross-valida-
tion methods, including the tenfold cross-validation (10f-CV)
and the bootstrap cross-validation (BS-CV) methods48

(Fig. 11). Note that the internal noise was excluded from the
comparison. In the 10f-CV method, the original experimental
trials were randomly split into ten independent sub-groups.
Then, a single subgroup was selected as the validation data-
set, while the other subgroups were used for training the
DL-MO. This process was repeated for ten times till each
subgroup had been used once as the validation dataset. The
averaged AUC across all ten validation datasets was used as
the estimated DL-MO generalization accuracy. In the BS-CV
method, the 10f-CV was nested within the standard boot-
strapping. The bootstrapping was repeated for 200 times with
replacement (i.e., 200 resampled datasets), and the 10f-CV
was carried out on each resampled dataset to calculate the
mean AUC from the validation datasets. Then, the mean
AUC from the 200 resampled datasets was further averaged
to estimate the DL-MO generalization accuracy. In both
methods, data augmentation was only applied to the training

FIG. 10. Bland–Altman plot of the difference of area under the receiver oper-
ating characteristic curve across all 12 experimental conditions. The two
dashed lines denote the upper and the lower limits of agreement (LOA). The
solid line denotes the bias. The error bars indicate the 95% confidence
interval of LOA.

FIG. 11. Comparison of the deep learning-based model observer generaliza-
tion accuracy that was estimated for the configuration of the 26th network
layer and the most significant 20 PLS components, using the resubstitution
(denoted as “Resub”), tenfold cross-validation (denoted as “10f-CV”), and
bootstrap cross-validation [denoted as bootstrap cross-validation (“BS-CV”)]
methods, respectively, across all 12 experimental conditions. The generaliza-
tion accuracy was gauged with the area under receiver operating characteris-
tic curve (AUC_ROC). The condition indices were rearranged in the
ascending order of the AUC_ROC value, for the convenience of illustration.
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subsets to generate additional training samples, while each
validation dataset had a small number of trials (n = 14 per
condition). Of note, the 10f-CV method tends to underesti-
mate the generalization accuracy with a large variance, espe-
cially when using a small dataset.49 Compared to 10f-CV, the
BS-CV method could achieve a more accurate estimation of
the generalization accuracy with small samples, while sup-
pressing the variance.48,50 Considering the characteristics of
these methods and the small size of the validation datasets,
the three methods yielded comparable estimation of the gen-
eralization accuracy across all experimental conditions. Thus,
we consider that there was no significant bias (i.e., overfit-
ting) in the estimated DL-MO performance. Note that the dif-
ference among the three methods shall further diminish as the
sample size increases.

We acknowledge several limitations in the present work.
First, we recruited nonradiologist readers (i.e., medical
physicists) for HO study, and the number of readers may be
limited. Second, although multislice scrolling was used as
the viewing mode to mimic realistic tasks, the 2AFC lesion
detection task is the simplest form of localization tasks, in
which the lesion characteristics and locations were known
exactly. Thus, the effects of anatomical background variabil-
ity and tissue nonuniformity on HOs performance might be
limited, compared with clinically realistic tasks. Third, we
used only one base lesion model and one type of CT exam
in data preparation. In clinical practice, radiologist readers
are typically challenged to identify lesions with various
imaging features. Meanwhile, it is desirable if the correla-
tion between the proposed DL-MO and HOs could be deter-
mined in multiple types of CT exams. Finally, the use of
resubstitution method may result in positive bias in the
FOM of DL-MO, although such bias could decrease as the
number of samples increases.38 We aim to address these
limitations in the follow-up study that employs radiologist
readers and more realistic lesion localization tasks with
patient abdominal/chest CT exams. Our preliminary results
have suggested that a strong correlation between the pro-
posed DL-MO and HOs may be established in those chal-
lenging scenarios.51

The proposed DL-MO framework could be readily applied
for similar lesion detection tasks that involve different types
of scanning protocols, lesion models, CT systems, and recon-
struction algorithms, by retraining the DL-MO using the
images acquired from the new experimental conditions. In
our ongoing work,51 we have observed the possibility of reus-
ing the same configuration of CNN layer and PLS compo-
nents for abdominal and chest CT exams with different base
lesion models, whereas the weighting factor of the internal
noise component needs readjustment. The further study
would be necessary to validate these preliminary findings
with additional types of CT exams and lesion models. If the
retuning of the DL-MO parameters (e.g., CNN layer and PLS
components) is needed, one could still use the straightforward
grid search strategy to find a proper configuration of DL-MO
parameters. Although the PLS has been successfully used in
many data analytics tasks that involved small sample size

with much larger feature dimensionality,52–54 the data aug-
mentation strategies tend to be helpful to further enhance the
model performance.

5. CONCLUSION

A framework of deep learning-based model observer for
task-based image quality assessment was introduced. The per-
formance predicted by DL-MO was highly correlated with
the HO performance in a 2AFC lesion detection task that
involved realistic patient liver background and multislice
viewing mode. This validation provided preliminary evidence
for using DL-MO to evaluate diagnostic image quality in
realistic CT tasks.
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