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Abstract

Both social and genetic factors contribute to cognitive impairment and decline, yet genetic factors 

identified through genome-wide association studies (GWAS) explain only a small portion of trait 

variability. This “missing heritability” may be due to rare, potentially functional, genetic variants 

not assessed by GWAS, as well as gene-by-social factor interactions not explicitly modeled. Gene-

by-social factor interactions may also operate differently across race/ethnic groups. We selected 39 

genes that had significant, replicated associations with cognition, dementia, and related traits in 

published GWAS. Using gene-based analysis (SKAT/iSKAT), we tested whether common and/or 

rare variants were associated with episodic memory performance and decline either alone or 

through interaction with education in >10,000 European ancestry (EA) and >2,200 African 

ancestry (AA) respondents from the Health and Retirement Study (HRS). Nine genes in EA and 

five genes in AA were associated with memory performance or decline (p<0.05), and these effects 

did not attenuate after adjusting for education. Interaction between education and CLPTM1 on 

memory performance was significant in AA (p=0.003; FDR-adjusted p=0.038) and nominally 

significant in EA (p=0.026). In both ethnicities, low memory performance was associated with 

CLPTM1 genotype (rs10416261) only for those with less than high school education, and effects 

persisted after adjusting for APOE ε4. For over 70% of gene-by-education interactions across the 

genome that were at least nominally significant in either ethnic group (p<0.05), genetic effects 

were only observed for those with less than high school education. These results suggest that 

genetic effects on memory identified in this study are not mediated by education, but there may be 

important gene-by-education interactions across the genome, including in the broader APOE 
genomic region, which operate independently of APOE ε4. This work illustrates the importance of 

developing theoretical frameworks and methodological approaches for integrating social and 

genomic data to study cognition across ethnic groups.
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INTRODUCTION

In 2015, 5.3 million Americans over 70 years of age (22%) were affected with cognitive 

impairment without dementia, 2 million (8%) with Alzheimer’s Disease, and an additional 

1.4 million (5.7%) with vascular dementia (Alzheimer’s Association, 2015). Projections 

about the shifting demographics of the United States indicate that the number of people over 

65 years of age will double between 2010 and 2040 while the number of people over 85 will 

almost triple (Federal Interagency Forum on Aging-Related Statistics, 2016). This 

population increase predicts that despite improvements in the rate of cognitive impairment 

and dementia, cognitive decline will be one of the major defining health concerns of the 

future, and identifying better predictors of cognitive decline will likely improve prevention 

and treatment of cognitive disorders (Langa, et al., 2017). Research in often-disparate fields 

has shown that cognitive impairment and decline are multifactorial and complex. In this 

study, we combine two areas of cognitive decline research: socioeconomic status (SES) and 

genetics. With few exceptions, both have remained independent, focusing on the direct 

effects on cognitive decline as detailed below. However, more recently, research has shown 

the importance of the interactive nature of genes and SES on explaining variation in 

cognitive decline.

Better cognitive function, reduced age-related cognitive decline, and lower rates of dementia 

diagnosis are persistently related to higher SES, specifically educational attainment (Albert, 

et al., 1995b; Cagney & Lauderdale, 2002; Evans, et al., 1997; Lee, et al., 2003; White, et 

al., 1994). Education protects against cognitive impairment by reducing the rate of decline 

and delaying the initiation of that decline (Albert, et al., 1995b; Cagney & Lauderdale, 2002; 

Christensen, 2001; Evans, et al., 1997; Lee, et al., 2003). Possible mechanistic pathways for 

the effect of higher education on cognition include brain development and function, changes 

in health behaviors, and general health advantages of having more wealth and opportunities 

to reduce risk of dementia and cognitive decline. Another explanation for the effect of 

education on cognitive functioning is that education may be a marker for environmental 

experiences that have an effect on cognition and vary with education (Albert, 1995a). In 

short, education has large, replicated associations with cognitive function which likely work 

through several mechanisms both biological and social.

The genomics of cognition and cognitive decline, while far newer compared to SES and 

cognition research, has changed rapidly over the last two decades. Best known are candidate 

genes such as APOE. Specifically, the APOE ε4 genotype has been shown to be associated 

with increased risks for poorer functional status (Albert, et al., 1995c) and lower cognitive 

performance (Bretsky, et al., 2003; Dik, et al., 2001; Fillenbaum, et al., 2001). More 

recently, genome-wide association studies (GWAS) have identified genotypes associated 

with episodic memory, memory decline, and related traits such as hippocampal volume and 
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Alzheimer’s Disease (Davies, et al., 2015; Debette, et al., 2015; Ibrahim-Verbaas, et al., 

2016; Lambert, et al., 2013). GWAS provide markers of potential nearby causal genetic 

effects without adjusting for environmental confounders. By utilizing GWAS “hits” 

(significant, replicated genotype associations), it is now possible to explore genes and 

genomic regions using statistical tools that jointly test large sets of genotypes, in most cases 

single nucleotide polymorphisms (SNPs), in order to better understand the underlying 

biological mechanisms (Lee, et al., 2012; Lee, et al., 2014; Wu, et al., 2011). Gene-based 

statistical techniques have been successfully used to identify 12 aggregate gene regions 

associated with cognitive decline by starting with genes identified in GWAS of Alzheimer’s 

Disease (Nettiksimmons, et al., 2016). The use of gene-based statistical techniques affords 

the examination of important genomic regions where clusters of small associations 

potentially indicate biological mechanisms related to cognitive decline. This may be 

particularly true if genetic variants are rare (i.e. found in less than 1% of the population) – 

which are rarely examined in GWAS studies. Finally, with the exception of APOE, it should 

be noted that most of the work on the genetics of cognition is cross-sectional, not 

population-based, and is conducted in European ancestry samples.

Despite significant achievements in genetic studies of cognition, the size of genetic effects 

found to date are small and explain only a small percentage (<2%) of overall cognitive 

variability (Davies, et al., 2015; Debette, et al., 2015). As with other complex traits, it has 

been hypothesized that some of the lack of explanatory power may be due to rare genetic 

variants having larger (but unexamined) effects, as well as gene-environment interactions 

that are not explicitly modeled (Eichler, et al., 2010). Both genes associated with cognition 

and education may share key mechanisms in influencing cognition such as brain 

development and function, and thus may interact. Indeed, twin studies have shown evidence 

for gene-environment interaction on cognitive ability from childhood to middle adulthood 

(Harden, et al., 2007; Kremen, et al., 2005; Tucker-Drob, et al., 2011), and education may 

also moderate the association between APOE ε4 and memory decline (McArdle & Prescott, 

2010; Seeman, et al., 2005) or dementia-associated brain pathology (Arenaza-Urquijo, et al., 

2015). However, few other genes related to cognition and cognitive decline have been tested 

in any systematic way to examine interactive effects with education.

Here, we utilize GWAS results to indicate genes of interest for further exploration into their 

effects on longitudinal cognitive decline and their moderation of the effect of education on 

cognitive decline. By utilizing all available genetic variation within gene regions, we seek to 

narrow down potential mechanisms, include rare variants, and identify clusters of genetic 

and gene-by-environment effects. Further, although genotype frequencies can differ by 

ancestry, genes have identical functions across ancestry. Thus, gene-based analyses should 

allow for more reasonable analyses across ancestry, even if direct comparisons are difficult. 

More specifically, we use a gene-based strategy to conduct association analysis of memory 

performance and memory decline in European ancestry (EA) and African ancestry (AA) 

respondents from the nationally representative Health and Retirement Study (HRS), using 39 

genes known to be associated with memory phenotypes. We provide the first examination of 

interactions between these gene regions and educational attainment.
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METHODS

Study Sample

The HRS, which began in 1992, is a nationally-representative longitudinal panel study of 

adults over age 50 that assesses metrics of health (including cognition), family, employment, 

and wealth (Sonnega, et al., 2014). Alternating face-to-face and telephone interviews are 

conducted biennially, and face-to-face interviews include the collection of biological and 

physiological measures (Ofstedal, et al., 2005; Sonnega, et al., 2014). This study includes 

respondents over age 50 that provided saliva samples for DNA extraction in 2006–2010. The 

analytic samples were comprised of those who completed at least two episodic memory 

assessments between 1992 and 2014 and who had genetic data (1000 Genomes Project 

(1000G) imputed data and/or exome chip data).

Measures

Memory Performance and Decline—To assess respondents’ memory performance, we 

combined measures of immediate and delayed recall. These tasks are sensitive measures of 

cognitive change (Small, et al., 1999) and have been shown to predict diagnosis of dementia 

(Crimmins, et al., 2011). After hearing a list of 10 nouns, respondents were asked to recall 

them. The total number of words recalled immediately and after a five-minute delay of 

additional test administration, ranging from 0 to 20, comprised the measure of memory 

performance. Previous principal components factor analysis showed that immediate and 

delayed recall could be combined, since they loaded onto a single factor (Ofstedal, et al., 

2005). Early waves of the study (1992 and 1994) used 20 words instead of 10, so memory 

performance scores from these waves were normalized to a range of 0 to 20 using score 

distributions from respondents of similar ages in 1998. In order to minimize the effects of 

item-level non-response among self-respondents, we used the imputed cognition data 

released by HRS (Fisher, et al., 2017). For the small percentage of participants reliant on 

proxy at any given wave who cannot complete the cognitive assessment tasks, the composite 

recall score was randomly imputed between 0–4 for respondents with dementia (classified 

for proxy cases based on methods from Crimmins et al., 2011 and/or self-reported diagnosis 

of Alzheimer’s Disease or dementia in the current or previous waves) and was not imputed 

for respondents without evidence of dementia.

Educational Attainment—For primary analyses, respondents were characterizing as 

having a high school education or equivalent (high school degree) vs. having less than a high 

school degree. In secondary analyses, we also assessed respondents having at least a 4-year 

college education or equivalent (college degree) vs. having less than a college degree.

Genotype Data—HRS respondents were genotyped using the Illumina HumanOnmi2.5 

array and the Illumina HumanExome-12v1 array. Genetic principal components (PCs) were 

calculated for each chip separately, and the first two PCs and self-reported race were used to 

select analytic samples of unrelated EA and AA respondents. Ethnicity-specific PCs were 

then calculated in the EA and AA analytic samples separately. HumanOnmi2.5 genotype 

data was used to impute genotypes using the 1000 Genomes Project phase I integrated 

variant set (v3, released March 2012).
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A literature search of the NHGRI-EBI GWAS catalog (MacArthur, et al., 2017) was 

conducted in October, 2016, to identify genome-wide association studies (GWAS) that had 

at least one autosomal SNP genome-wide significantly associated (p-value < 5×10−8) with 

cognitive function/decline/impairment, episodic memory, memory function, hippocampal 

volume, Alzheimer’s Disease, vascular dementia, or closely related phenotypes. A total of 

17 studies were selected, and SNPs meeting significance criteria were then selected from 

these studies (see Table S1 for additional details). For each SNP of interest, we next 

identified all those that fell within the boundaries of a gene region (including within 5kb 

from the start or end position of the gene). A total of 39 genes were selected (Table S1). For 

each gene, we then defined the gene region by selecting all SNPs between the gene start and 

stop sites, plus a 5kb buffer on either side. The number of SNPs included within a single 

gene region ranged from 30 to 8,817 for EA 1000G data, 31 to 8,627 for AA 1000G data, 1 

to 43 for EA exome chip data, and 1 to 38 for AA exome chip data (Table S2). 1000G data 

for rs429358 was used to classify respondents as APOE ε4 allele carriers (having at least 

one copy of the ε4 allele) or non-carriers.

Statistical Analysis

Modeling memory trajectories—We used a series of unconditional mixed models with 

random effects estimated in MPLUS (Laird & Ware, 1982) to estimate the overall rate of 

memory change allowing random effects for individual differences from the overall pattern 

(Bollen & Curran, 2006; Wilson, et al., 2002). This approach accommodates the unbalanced 

data structure of longitudinal data and has been used successfully in previous HRS studies of 

cognition (McArdle, et al., 2007; Reitz & Mayeux, 2010). Age was coded as [Age at 

interview-65] / 10 to be approximately centered. Thus, the intercept represents the average 

cognitive performance at age 65 and the age coefficient represents the average change in 

cognitive score with each decade. Models were estimated using the full-information 

maximum likelihood estimation with an unstructured covariance matrix for the random 

effects. We compared increasingly complex models including linear, quadratic, and cubic 

polynomials on age as well as linear spline models in an effort to best model the pattern of 

memory change with age, and evaluated fit using BIC. The best fitting model included an 

intercept, a linear age-dependent slope, and a quadratic age slope. Better cognitive function 

was indicated by a higher (more positive) intercept and higher (less negative) slope. The 

intercept was slightly correlated with the linear slope (r=0.061) but highly correlated with 

the quadratic slope (r=−0.996). Thus, we adjusted the linear slope for the intercept in all 

analyses and did not separately analyze the quadratic slope.

Gene-based associations with memory performance and decline—We tested for 

gene-based association between each gene and episodic memory performance (trajectory 

intercept) and decline (trajectory slope) using the sequence kernel association test (SKAT) or 

the SKAT optimal unified test (SKAT-O) (Lee, et al., 2012; Wu, et al., 2011). SKAT is a 

score-based variance component test that evaluates the joint effect of multiple genetic 

variations in a genomic region on an outcome of interest. SKAT assumes that the effect size 

of each individual SNP in the region follows an arbitrary distribution with mean zero. The 

test statistic assesses whether the variance of this distribution deviates from zero, testing the 

hypothesis that at least one SNP in the region is associated with the outcome. The 
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contribution of individual SNPs to the test statistic can be weighted by characteristics 

including minor allele frequency. SKAT-O performs both the SKAT test as well as a genetic 

burden test. The burden test is a method that evaluates whether a composite score of the 

number of minor alleles for the variants in the region is associated with the outcome. Burden 

tests are optimal when all of the rare variants in the gene have identical effect sizes and 

directions. Using the SKAT/SKAT-O methods, we were able to evaluate both the effects of 

all of the SNPs/variants within the entire gene region (including introns and regulatory 

regions) as well as the effects of the rare, potentially functional variants within the exome.

We performed the analyses separately for memory performance and decline, and separately 

by ancestry group. In each model, we included sex and the top 4 ancestry-specific genetic 

PCs to control for population stratification (Model 1). We also adjusted for memory 

performance (intercept) when modeling memory decline (slope). For analysis of the 1000G 

data, we used SKAT with an unweighted kernel [Beta(1,1)] to give equal weight to all SNPs/

variants regardless of allele frequency (hereby referred to as “all SNPs/variants”). For 

analysis of the exome chip data, which is comprised primarily of rare, potentially functional 

variants, we used SKAT-O with a weighted kernel [Beta(1,25)] that dramatically up-weights 

variants with low minor allele frequencies (“rare variants”)..

To determine whether educational attainment and/or presence of the APOE ε4 allele 

attenuated the associations between genes with at least nominal significance and memory 

performance or decline (p<0.05), we further adjusted for education (Model 2), APOE ε4 

status (Model 3), or both (Model 4).

Gene-by-educational attainment interactions with memory performance and 
decline—For each of the 39 genes, we evaluated whether genetic variation interacted with 

education to influence memory using analogous gene-based tests for gene-by-environment 

interaction, iSKAT (Lin, et al., 2016) or iSKAT-O. We were interested both in gene-based 

interactions that were nominally significant (p<0.05) as well as those that retained 

significance after multiple testing correction. For each set of results from the 39 genes (all 

SNPs/variants and rare variants, within each ethnic group, for each memory outcome), we 

calculated the False Discovery Rate (Benjamini & Hochberg, 1995). Results with FDR-

adjusted p-value < 0.1 were considered significant after multiple testing correction.

As a follow-up analysis for iSKAT or iSKAT-O (ρ≤0.5) interactions with at least nominal 

significance (p<0.05), we modeled the interaction between education and each SNP/variant 

in the region to identify the specific SNPs that were most strongly contributing to the 

interaction using linear regression with the corresponding adjustment covariates. Results 

were also visualized using LocusZoom if FDR p<0.1 (Pruim, et al., 2010). For single SNP 

interactions of interest, we used the ESTIMATE statement in SAS (SAS Institute, Cary, NC) 

to calculate the effect sizes of SNP genotypes on memory performance/decline for those 

with and without a high school degree. Similarly, for nominally significant iSKAT-O 

interactions with ρ>0.5, we used the ESTIMATE statement to calculate the effect sizes of 

the burden scores separately by education group.
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RESULTS

Descriptive statistics are provided in Table 1. For each ethnicity, sample sizes were similar 

between those with 1000G data and those with exome chip data, as most of the respondents 

had both. Respondents had an average age of 58 (EA) and 57 (AA) years at baseline, and 

58% to 64% of the samples were female. More than half of respondents attained a high 

school degree (62% and 57% for EA and AA, respectively). Estimated memory performance 

at age 65 was higher in EA (10.8 ± 0.02) than AA (9.16 ± 0.04), but estimated memory 

decline was approximately 1.4 words per decade in both groups.

Gene-based associations with memory performance and decline

Of the 39 genes tested, 9 were at least nominally associated (p<0.05) with memory 

performance or decline in EA (Tables 2, S3, and S4). The most strongly associated genes 

were APOE and two proximal genes (TOMM40 and APOC1), which were associated with 

memory performance in analyses with all SNPs/variants, and with memory decline both in 

analyses using all SNPs/variants as well rare variants only. Rare variant associations were 

weighted toward SKAT (ρ=0) for APOE and TOMM40, indicating that effect directions 

and/or magnitudes for the variants in the region were not homogeneous, and toward a burden 

test (ρ=1) for APOC1, indicating relatively homogenous variant effects (p-values ranged 

from 0.039 to 1.5×10−14). In addition, using all SNPs/variants, INPP5D and CEACAM16 
were associated with memory performance (p=0.0001 and p=0.019, respectively), and 

PCALM and PVRL2 with memory decline (p=0.002 and p=0.004, respectively). In rare 

variant analyses, MS4A6E was associated with memory performance (p=0.005, ρ=0.5) and 

the single SNP in HRK was associated with memory decline (p=0.049).

In AA, 5 genes were nominally associated (p<0.05) with memory performance. In all SNP/

variant analysis, MS4A6A (p=0.016), MS4A4E (p=0.039), and CEACAM16 (p=0.031) 

were associated, and in rare variant analysis INPP5D (p=0.013, ρ=0.04) and PICALM 
(p=0.024, ρ=1) were associated with memory performance. We note that MS4A6A and 

MS4A4E are within an LD block, so these may be marking a single association with 

memory performance. One gene, TREM2, was associated with memory decline in rare 

variant analysis only (p=0.018, ρ=0.5).

After adjusting for education (high school degree), the p-values remained nominally 

significant (p<0.05) for all of associations reported above except for MS4A64 and MS4A4E 
with memory performance in EA using all SNPs/variants, which were still suggestively 

significant (p<0.1) (Table 2). After adjusting for the APOE ε4 allele, associations between 

genes in the APOE region (PVRL2, TOMM40, APOE, and APOC1) attenuated (Table S5), 

indicating that associations between variation in these genes and memory was solely due to 

being in linkage disequilibrium with APOE ε4; however, all other genes retained association 

with memory. After adjusting for education and APOE ε4 allele simultaneously, no 

additional associations attenuated (Table S6). Adjusting for college degree gave 

substantively similar results (data not shown).
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Gene-by-educational attainment interactions with memory performance and decline

Of the 39 genes tested, 8 and 9 genes had at least nominally significant interactions (p<0.05) 

with education (high school degree) on memory performance and/or decline in EA and AA, 

respectively (Tables 3 and S7). In EA, 3 genes showed an interaction effect with education 

on memory performance (BCAM and CLPTM1 using all SNPs/variants, and MS4A6E using 

rare variants weighted toward SKAT (ρ=0)). For memory decline, 2 genes (MS4A4E and 

MS4A4A) had an education interaction using all SNPs/variants, and 3 genes (TREM2, CLU, 
SORL1 with ρ=0.5, 1, and 0 respectively) had an education interaction using rare variants. 

In AA, 5 genes had an interaction effect with education on memory performance (CD2AP, 
BCL3, and CLPTM1 using all SNPs/variants, and FRMD4A and CEACAM16 using rare 

variants with burden score weighting (all ρ=1)). For memory decline, 3 genes (EPHA1, 
PICALM, SLC24A4) had an education interaction using all SNPs/variants, and ABCA7 had 

an education interaction using rare variants (ρ=1). After applying FDR correction, education 

had a significant (p=0.003; FDR-adjusted p=0.038) interaction with CLPTM1 on memory 

performance in AA using all SNPs/variants. The CLPTM1-by-education interaction was 

also nominally significant in EA (p=0.026) but was not significant after multiple testing 

correction. Additional adjustment for the APOE ε4 status did not attenuate the CLPTM1-by-

education interaction in AA (p=0.004) or EA (p=0.028). No interactions were significant 

between genes and college degree after multiple testing correction.

To gain a deeper understanding of the SNPs or rare variants most strongly driving the gene-

by-education interactions on memory performance, we modeled each SNP-by-education 

interaction separately for all SNPs within the gene regions. For CLPTM1, which is in close 

proximity to APOE, we expanded the single SNP analysis to evaluate a larger region around 

CLPTM1 (±100kb). A regional plot of SNP-by-education interactions in the region for AA 

is shown in Figure 1. The interaction signal was restricted to CLPTM1 and the immediately 

proximal genes (excluding APOE). In AA, the strongest SNP-by-education interaction in 

CLPTM1 was with rs10416261 (p = 3.5×10−5), with the greatest risk of low memory 

performance for those with less than high school education who also carry the minor allele 

(Figure 2). rs10416261 is a common SNP (C/T) with minor allele (T) frequency of 33.3% in 

AA. Analysis of genetic effects separately by educational group showed that rs10416261 

genotype was not associated with memory performance for those with a high school degree 

(p=0.10). However, for those without a high school degree, each additional copy of T allele 

was associated with a decrease of 0.43 words recalled at age 65, and this trend was 

significant (p=1.1×10−4). We also assessed interactions between the top SNP in AA, 

rs10416261, and education in EA. Interaction analyses in EA were consistent in that there 

was a non-significant effect of rs10416261 genotype (minor allele frequency = 40.5% in 

EA) for those with high school education (p=0.51), and a significant effect for those without 

high school education (p=0.004). However, the effect was in the opposite direction from AA, 

with each additional copy of the T allele associated with an increase of 0.22 words recalled 

at age 65 for those without high school education.

The genetic effects of the most significant SNP or the burden score for all interactions that 

showed at least nominal significance (p<0.05), separately by educational group, are reported 

in Table S8. Of the 17 interactions evaluated, 12 (71%) showed that genetic effects were 
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significant (p<0.05) for those without high school education, but not for those with high 

school education. For two of the interactions, genetic effects within educational strata were 

significant and in opposite directions.

DISCUSSION

To our knowledge, this was the first study to evaluate both common and rare variants in 

GWAS-identified genes for cognition and related traits in EA and AA, using longitudinal 

measures of cognition. Using a gene-based strategy, we were able to examine the effects of 

all of the common variants within the entire gene region (including introns and regulatory 

regions) as well as the effects of the rare, potentially functional variants within the exome. 

Although the effects of education on cognitive function likely work through biological as 

well as social mechanisms, little is known about the interplay between these important social 

determinants and genetic variation beyond APOE. Here, we provide the first systematic 

assessment of the interactions between gene regions known to influence cognitive function 

in adulthood and educational attainment, an extraordinarily strong predictor of cognition 

across the lifespan. A deeper understanding of the context-dependent genetic effects on 

cognition in older adulthood may yield insight into the biological etiology underlying 

cognitive decline and dementia, provide opportunities for more effectively identifying at-risk 

population subgroups in order to help alleviate disparities in cognitive health, and help 

formulate more effective biological as well as social interventions.

This study has several other notable strengths. First, by using gene-based approaches 

(SKAT/iSKAT), we were able to test all genetic polymorphisms within the gene 

simultaneously, substantially reducing multiple testing burden. SKAT and iSKAT also allow 

for testing of rare variants by simultaneously assessing clusters of SNPs, which greatly 

enhances power (Lee, et al., 2014). These methods may also be better suited for cross-ethnic 

comparisons than single SNP analyses because differences in SNP correlations (linkage 

disequilibrium) across ethnicities do not hamper the ability to detect associations within 

ethnic group (Ware, et al., 2016). Second, examining memory function as well as decline 

allows for the identification of differential genetic relationships and interactions for each 

trait. Third, the genes selection for examination had significant and replicated evidence of 

association with cognition-related traits in large meta-analyses. This is in contrast to 

candidate gene approaches that rely on a priori knowledge about biological mechanisms 

underlying the disease. A fourth strength is that we examined genes that are associated with 

memory as well as a broader set of traits related to cognition including Alzheimer’s Disease, 

hippocampal volume, and vascular dementia. This is based on the hypothesis that the 

etiology of dementia may be difficult to differentiate given the overlap in symptom 

presentation (Karantzoulis & Galvin, 2011).

Briefly, we found that approximately 1/3 of the genes previously associated with cognition 

and related traits were at least nominally associated (p<0.05) with memory performance 

and/or decline in the HRS EA sample. A smaller number of genes showed significant effects 

in AA, and associated genes did not substantially overlap with those found in EA. 

Differences between findings in EA and AA may be due to power restrictions, the EA-

centric design of the exome chip array which captures a larger proportion of rare variants in 
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EA than AA, the selection of genes based primarily on EA GWAS, or because the genes 

have context-dependent effects (gene-by-environment interactions) such that the genetic 

effects are only operating in certain environmental contexts that also differ by ethnic group 

(Boardman, et al., 2013).

We also observed little overlap in the genes associated with memory performance and 

decline, with the exception of genes in the APOE region. This may be due to different 

genetic underpinnings of cognitive development during childhood and early adulthood, and 

potential disease-related cognitive decline at the end of life. Within these gene regions, there 

was evidence for effects using equal weighting of all SNPs/variants (1000G data) as well as 

upweighting of rare variants (exome chip data). In general, we found more associations 

using equal weighting of all variants, possibly because these genes were detected through 

GWAS which are optimized for detecting common variants. For significant associations 

using rare variants, SKAT-O weighted toward the burden test (ρ=1) more often than the 

SKAT test, indicating that the measured rare variants are more likely to have similar 

magnitudes and effect directions (i.e., multiple rare variants with detrimental effects).

To our knowledge, three studies have utilized SKAT to examine gene-based associations for 

cognitive traits. In a family-based cohort of 550 participants (mixed ethnicities) enriched for 

type 2 diabetes, SKAT was used on a genome-wide level to identify genes associated at 

p<4.7×10−6 with a range of cognitive functions in a cross-sectional analysis (Cox, et al., 

2014). Although this study identified 7 genes, it failed to replicate 31 pre-selected cognition-

associated SNPs, suggesting possible genetic heterogeneity in the etiology underlying 

cognitive function in this cohort compared to previous studies. In accordance with this, none 

of the 7 identified genes overlapped with the known cognition-associated genes explored in 

our study. Recently, SKAT was used to examine the association between previously 

identified genes for Alzheimer’s Disease and longitudinal cognitive decline in two single-

sex cohorts (N=15,000 Caucasians) aged 65 years or older (Nettiksimmons, et al., 2016). 

They identified 12 genes associated with cognitive decline, 10 of which were also evaluated 

in our study. Of these, PICALM was significantly associated with memory decline in EA, 

with memory performance in AA, and had an interaction with education on memory decline 

in AA. MS4A6E was associated with memory performance and had an interaction with 

education on memory performance in EA. In addition, 3 genes (ABCA7, SLC24A4, 
SORL1) had a nominally significant interaction with education on memory performance/

decline (p<0.05), and 3 genes (BIN1, CELF1, CR1) were suggestively associated with 

memory performance/decline (p<0.1) in at least one ethnic group in our study, suggesting 

that we were able to replicate some of the previous findings implicating Alzheimer’s 

Disease-associated genes in longitudinal assessment of cognitive decline. The final study 

applied SKAT to exome sequencing data collected from over 2,500 participants in a single 

gene (DMD) and cognition (Vojinovic, et al., 2015). This gene was not among those that we 

evaluated.

Genetic influences on cognition may be mediated by educational attainment, or may operate 

independently of education. In our study, adjusting for educational attainment did not 

substantively influence the associations for the majority of genes, indicating that these genes 

do not influence cognition primarily through educational attainment in this cohort. This is 
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consistent with some studies (Cox, et al., 2014), though GWAS-identified genes for 

cognition and educational attainment do implicate some shared genetic influences (Davies, 

et al., 2015). We also examined whether the most well-known genetic risk factor for 

Alzheimer’s Disease, APOE ε4, was a driver of the genetic associations detected. Adjusting 

for ε4 attenuated the gene-based associations for genes that share a linkage disequilibrium 

(LD) block with APOE (PVRL2, TOMM40, APOC1); however, it did not substantively 

influence the associations in other genes. Thus, ε4 is the dominating factor associated with 

cognition in the proximal gene region, but does not influence associations with other genes.

We found CLPTM1 and education had a statistically significant interaction on memory 

performance in AA after accounting for multiple testing. Cleft lip and palate transmembrane 

protein 1 (CLPTM1) was identified as being disrupted in a family with cleft lip/palate 

(Yoshiura, et al., 1998), which may be associated with lower cognitive function (Roberts, et 

al., 2012). CLPTM1 may also play a role in cellular differentiation and T-cell development 

(Apweiler, et al., 2004; Roberts, et al., 2012), and overexpression of CLPTM1 has been 

associated with cancer risk (Rossi, et al., 2005). CLPTM1 is located on chromosome 19 

adjacent to the APOE gene region. Analysis of chromatin conformation data hosted by Hi-C 

Unifying Genomic Interrogator shows a strong chromatin interaction between a 40kb region 

containing the most significant SNP in CLPTM1 (rs10416261) and the APOE gene region in 

multiple human tissues and cell lines (Martin, et al., 2017). Since adjustment for APOE ε4 

did not attenuate this interaction, and since we did not detect an interaction between APOE 
and education, it is unlikely APOE SNPs/variants are driving the interaction. This indicates 

that SNPs within CLPTM1 may have regulatory effects on expression of APOE and/or 

surrounding genes due to chromatin level interactions. While some studies have suggested 

that high education may buffer the negative effect of APOE ε4 on dementia (Wang, et al., 

2012), other studies have found that the negative effect of APOE ε4 on cognitive decline is 

stronger in those with higher education (Seeman, et al., 2005), and still other studies have 

shown inconsistent relationships (Ishioka, et al., 2016) or no interaction between education 

and APOE ε4 on dementia or cognitive decline (Hsiung, et al., 2004). The cumulative 

evidence suggests that interaction between education and genetic variations in the larger 

APOE gene region is likely to exist, but that interaction(s) may involve multiple genes 

and/or be inconsistent across populations.

Consistently in both AA and EA, CLPTM1 genotypes were associated with memory 

performance only in those without a high school education. However, the effect sizes were 

relatively small, with the most strongly associated SNP in AA conferring a per-decade loss 

of approximately 0.5 words for each copy of the minor allele. In addition, the effect of the 

top AA SNP was associated with increased memory performance in EA. This may be due to 

underlying differences in the LD structure of AA and EA. That is, the SNPs that showed 

interaction with education were not themselves causal, but were correlated with a set of 

causal (likely rare) variants that differed across ethnic groups. It may be possible that these 

causal variants were not captured on the exome chip, potentially explaining why this gene 

did not interact with education in the rare variants analyses that we performed.

We identified additional gene-by-high school education interactions that had at least nominal 

significance in EA and AA (p<0.05), but these interactions did not reach statistical 
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significance after FDR correction. While it is critical to replicate these findings in 

independent samples, together they indicate that genetic effects on memory performance and 

decline may be operating more strongly in those without high school education. 

Inconsistency across ethnic groups may be a consequence of the same level of educational 

attainment having differential effects on cognition for EA compared to AA (Barnes, et al., 

2011). While other studies have observed stronger effects of education on cognitive 

performance than decline (Wilson, et al., 2009), our study found a similar number of 

nominally significant gene-by-education interactions on performance and decline. However, 

the only interaction significant after FDR correction was for cognitive performance. We did 

not observe any gene-by-college education interactions that were significant after multiple 

testing correction. This may be because high school education is the strongest educational 

driver of dementia prevalence rates in the HRS (Langa, et al. 2017).

Our study is not without limitations. First, we assessed episodic memory, which is only one 

aspect of cognition. Associations with the examined genes may be different by cognitive 

domains. Further, we combined immediate and delayed recall into a single summary score in 

order to obtain better (less noisy) estimates of memory. Given this approach, we cannot 

determine whether observed genetic effects are driven by immediate or delayed recall, and 

future studies could separate the two measures and/or evaluate the residual of delayed recall 

after adjusting for immediate recall (for example, see Arpawong, et al., 2017). Separating 

the measures may also help to elucidate the biological mechanisms underlying normative 

cognitive aging versus disease etiology (Wolk, et al., 2011). Second, our use of gene-based 

methods required using a two-step process to first model cognitive trajectories and next 

assess the relationship between genetics and features of the trajectories; we were not able to 

directly model the genetic effects with the raw repeated measures data. Third, we evaluated 

interactions with education, which is only one aspect of SES and may differ in its 

relationship to SES across ethnic groups. Further, we evaluated only limited aspects of 

education – having a high school degree or a college degree – and due to the limitations of 

the SKAT methodology, were not able to evaluate education as a multi-level variable (for 

example, including both high school and college degree simultaneously). Fourth, although 

we detect statistical gene-by-education interactions, we do not have the means to examine 

the biological mechanisms underlying these interactions. We observe that for the majority of 

interactions, genetic effects are present only in those without high school education, 

corresponding to a stress diathesis model (Boardman, et al., 2013). This may be due to 

increased vulnerability to genetics as a consequence of exposure differences (i.e., social 

stressors, psychosocial factors, environmental toxicants), behavioral differences, reduced 

access to health care, or other factors. Future studies are needed to characterize the 

mechanisms of these interactions. Fifth, our sample is nationally representative; however 

there is selective mortality at older ages (Domingue et al., 2017). Also, since older 

individuals both with and without cognitive deficits are included in the analysis, it is 

possible that those with cognitive deficits are driving some of the identified associations, 

particularly since some genetic associations tend to be stronger with age (Lindenberger, et 

al., 2008). Sixth, while we examined genetic effects in multiple ethnic groups, the genes that 

have been identified to date are from GWAS consisting of primarily EA samples. Thus, 

using both common and rare variants, we found that the majority of genes had weak or no 
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association with memory performance or decline in the AA sample, while a larger number 

of genes had detectable effects in the EA sample. This may also be attributable to more 

limited power in AA due to reduced sample size compared to EA. Inconsistent findings 

across analyses (all SNPs/variants vs. rare variants), both for gene-based associations and 

interactions, may also be partially attributable to reduced power. Finally, although we used 

standard variant weightings for SKAT (Wu, et al., 2011), our results may have changed 

under different weighting schemes.

CONCLUSION

Our study indicates that genetic effects on memory function primarily independently of 

educational attainment, but that there may be important interactions between education and 

genes in the broader APOE genomic region that are not limited to the APOE ε4 allele, as 

well as elsewhere across the genome. This work illustrates the importance of considering 

trajectories of behavioral data in genetic research, delving deeper into genetic regions 

discovered in GWAS to explain missing heritability, and developing theoretical frameworks 

and methodological approaches for integrating social and genomic data to study cognition in 

across ethnic groups.
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• Investigates genetic effects on longitudinal trajectories of memory 

performance

• Evaluates whether education modifies genetic effects on memory trajectories

• Genetic effects on memory were not mediated by educational attainment

• Education may offset genetic influences on memory performance and decline
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Figure 1: LocusZoom plot of p-values for single SNP analysis of CLPTM1-by-high school 
education interaction on memory performance African ancestry HRS respondents
Left Y-axis: −log10(p-value) from interactions between high school education and SNPs in 

CLPTM1 and the surrounding region on memory performance (memory trajectory intercept 

at age 65), adjusting for sex and the top 4 ancestry-specific genetic principal components. 

SNPs include those within the gene plus a 100kb buffer on either side. Right Y-axis: SNP 

recombination rate based on 1000 Genomes Nov2014 AA panel (hg19). X-axis: 

chromosomal location of genes. r2: degree of linkage disequilibrium between each SNP and 

rs10416261 (the SNP with the strongest interaction with education in African ancestry 

respondents; purple diamond).
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Figure 2: Interaction between rs10416261 and high school education on memory performance in 
African ancestry HRS respondents
Average predicted memory performance (memory trajectory intercept at age 65) for African 

ancestry respondents by rs10416261 genotype, adjusting for sex and the top 4 ancestry-

specific genetic principal components. Black bars indicate 95% confidence intervals for the 

average predicted memory performance estimates.
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Table 1.

Descriptive statistics of demographics and memory trajectories for HRS respondents with 1000 Genomes 

Project imputed data and exome chip data

European Ancestry African Ancestry

Variable
a

1000G N=9,914 Exome N=10,462 1000G N=2,223 Exome N=2,249

Age at baseline (years) 58.3 (7.9) 58.4 (7.9) 56.6 (6.5) 56.6 (6.5)

Gender (0=male, 1=female) 58% 58% 63% 64%

Educational attainment

Less than high school degree 13% 12% 30% 30%

High school degree or equivalent 62% 62% 57% 57%

4-year college degree or equivalent 25% 26% 13% 13%

Dependent Variable
b

Memory performance (trajectory intercept at age 65) 10.80 (0.02) 10.80 (0.02) 9.16 (0.04) 9.16 (0.04)

Memory decline (trajectory slope per decade) −1.41 (0.01) −1.40 (0.01) −1.42 (0.01) −1.42 (0.01)

1000G = sample with 1000 Genomes Project imputed data. Exome = sample with exome chip data.

a
Mean (standard deviation) or percentage is presented.

b
Mean (standard error) is presented.
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Table 2:

P-values for gene-based association between genes and memory trajectories (performance and decline) for 

European ancestry and African ancestry HRS respondents, before and after adjusting for high school 

education

A. European Ancestry

Gene Memory Performance Memory Decline

All SNPs/variants Rare variants All SNPs/variants Rare variants

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

INPP5D 0.0001 3.0×10−5 - - - - - -

MS4A6E - - 0.005 0.007 - - - -

PICALM - - - - 0.002 0.002 - -

HRK - - - - 0.049 0.052

CEACAM16 0.019 0.024 - - - - - -

PVRL2 - - - - 0.004 0.004 - -

TOMM40 0.039 0.047 - - 2.1×10−8 2.1×10−8 0.046 0.046

APOE 0.001 0.002 - - 2.0×10−11 2.0×10−11 7.7×10−5 7.7×10−5

APOC1 0.0002 0.0002 - - 1.5×10−14 1.5×10−14 0.003 0.003

B. African Ancestry

Gene Memory Performance Memory Decline

All SNPs/variants Rare variants All SNPs/variants Rare variants

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

INPP5D - - 0.013 0.010 - - - -

TREM2 - - - - - - 0.018 0.018

MS4A6A 0.016 0.088 - - - - - -

MS4A4E 0.039 0.098 - - - - - -

PICALM - - 0.024 0.020 - - - -

CEACAM16 0.031 0.031 - - - - - -

SKAT/SKAT-O was used to model the effect of each gene region separately on memory performance (memory trajectory intercept at age 65) and 
decline (memory trajectory slope per decade), adjusting for sex and the top 4 ancestry-specific genetic principal components (Model 1). Additional 
adjustment for high school education was included in Model 2. All models for memory decline (slope) also adjusted for memory performance 
(intercept). SKAT using the Beta(1,1) weighting was used for 1000G data analyses (all SNPs/variants); SKAT-O using the Beta(1,25) weighting 
was used for the exome chip data analyses (rare variants).

P-values are reported only for gene-based associations that were significant (p<0.05) in Model 1.
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Table 3:

P-values for gene-by-high school interactions on memory trajectories (performance and decline) for European 

ancestry and African ancestry HRS respondents

A. European Ancestry

Gene
European Ancestry

Memory Performance Memory Decline

All SNPs/variants Rare variants All SNPs/variants Rare variants

TREM2 - - - 0.003

CLU - - - 0.042

MS4A4E - - 0.028 -

MS4A4A - - 0.048 -

MS4A6E - 0.033 - -

SORL1 - - - 0.038

BCAM 0.011 - - -

CLPTM1 0.026 - - -

B. African Ancestry

Gene
African Ancestry

Memory Performance Memory Decline

All SNPs/variants Rare variants All SNPs/variants Rare variants

CD2AP 0.040 - - -

EPHA1 - - 0.043 -

FRMD4A - 0.028 - -

PICALM - - 0.046 -

SLC24A4 - - 0.013 -

ABCA7 - - - 0.006

CEACAM16 - 0.026 - -

BCL3 0.029 - - -

CLPTM1 0.003* - - -

iSKAT/iSKAT-O was used to model the interaction between high school education and each gene region separately on memory performance 
(memory trajectory intercept at age 65) and decline (memory trajectory slope per decade), adjusting for sex and the top 4 ancestry-specific genetic 
principal components. Models for memory decline (slope) also adjusted for memory performance (intercept). iSKAT using the Beta(1,1) weighting 
was used for 1000G data analyses (all SNPs/variants); iSKAT-O using the Beta(1,25) weighting was used for the exome chip data analyses (rare 
variants).

P-values are reported only for significant gene-by-high school interactions (p<0.05).

*
Asterisk indicates interactions with FDR p-value<0.1.
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