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ABSTRACT Although the critical role of allostery in controlling enzymatic processes is well appreciated, there is a current
dearth in our understanding of its underlying mechanisms, including communication between binding sites. One potential key
aspect of intersite communication is the mechanical coupling between residues in a protein. Here, we introduce a graph-based
computational approach to investigate the mechanical coupling between distant parts of a protein, highlighting effective path-
ways via which protein motion can transfer energy between sites. In this method, each residue is treated as a node on a
weighted, undirected graph, in which the edges are defined by locally correlated motions of those residues and weighted by
the strength of the correlation. The method was validated against experimental data on allosteric regulation in the human
liver pyruvate kinase as obtained from full-protein alanine-scanning mutagenesis (systematic mutation) studies, as well as
computational data on two G-protein-coupled receptors. The method provides semiquantitative information on the regulatory
importance of specific structural elements. It is shown that these elements are key for the mechanical coupling between distant
parts of the protein by providing effective pathways for energy transfer. It is also shown that, although there are a multitude of
energy transfer pathways between distant parts of a protein, these pathways share a few common nodes that represent effective
‘‘chokepoints’’ for the communication.
INTRODUCTION
Allosteric regulation of an enzyme can be viewed as an
equilibrium process (1,2) in which an enzyme binds a
substrate differently depending on whether an effector is
present or absent at a distant site (3,4). Protein dynamics
can influence this process and has recently become a focus
in studies of allosteric regulation of an enzyme (5–8).
Indeed, like the contributions of protein dynamics to other
biological functions (9–13), perturbations to an equilibrium
protein’s dynamics can influence mechanical coupling be-
tween different sites (14). Binding of an effector to an allo-
steric site (1,15), electrochemical activity at a given location
such as electron transport through respiratory complexes
(16), photoisomerization of a cofactor (17), and slow,
large-scale motions of flexible moieties (18) can induce
changes in the energy distribution of a protein that, in
turn, induce an effect in function at a remote site. One
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way to characterize dynamic contributions to allostery is
to evaluate the mechanical coupling between various resi-
dues or structural elements through protein motion and the
role of the protein scaffold in channeling kinetic energy
through these elements.

Understanding mechanical couplings between sites in a
macromolecule requires identifying both 1) the coupled
sites and 2) plausible networks of residues through which
the sites are mechanically coupled. Coupled sites can be
identified by conventional methods for assessing macromo-
lecular dynamics, such as root mean-square fluctuation of
atomic positions and principal component analysis (PCA)
of the covariance of interatomic motions (19,20), along
with systematic mutation studies (21). Normal-mode anal-
ysis, whether derived from molecular dynamics (MD) or
from coarse-grained models, such as an anisotropic network
model (ANM), can provide insight about collective motions
capable of transferring energy between sites, as can NMR-
derived methods (22). Several methods have been developed
for identifying potential allosteric sites based on covariance
of atomic motions and normal-mode analysis, including a
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FIGURE 1 Cartoon representation of the structure of hL-PYK (PDB:

4IMA). The binding sites of the phosphoenolpyruvate substrate (PEP, in

orange) and the activator fructose-1,6-bisphosphate (FBP, in pink) and

the inhibitor alanine (AlaE, in gray) binding site are highlighted for each

chain. The four chains in the protein are color coded and labeled A, B, C

and D on the figure. To see this figure in color, go online.

Mechanical Coupling in Proteins
method by Balabin et al. based on the coupling between
local structural perturbations and normal modes (8) and a
method by Guarnera and Berezovsky (15) in which potential
allosteric sites are stiffened to represent the presence of a
ligand and normal-mode free energies are compared. A
similar method was also previously reported (23).

A complete characterization of the contributions of me-
chanical couplings to an allosteric mechanism will require
a comparison of the mechanical coupling evaluated for the
enzyme in complex with all possible combinations of sub-
strate and allosteric effector binding. For a protein with
one active site and one allosteric site, four structures would
be required to define the allosteric energy cycle: 1) free
enzyme, 2) enzyme-substrate complex, 3) enzyme-effector
complex, and 4) the ternary substrate-enzyme-effector com-
plex (2). With such data available, an analysis of mechanical
coupling could be initiated for respective cocrystalized
enzyme complexes to determine how binding of a ligand al-
ters potential mechanical coupling pathways. However, a
key initial step is to evaluate the mechanical couplings
that exist in currently available protein structures.

Graph-based methods provide an intuitive route for ad-
dressing mechanical coupling. Complex chemical systems
can be converted to a reduced, graph-like representation
of their connectivity based on interatomic distances and
other structural parameters, in which nodes are formed
from atoms or collections of atoms (e.g., protein residues),
and edges connecting them represent interactions (bonded
or noncovalent). The resulting graphs can be traversed to
identify local structural features, such as noncovalent clus-
ters (24), cyclic structures in glasses (25), or paths between
points that minimize a parameter of interest. Graph-based
methods have had a long history in analyzing protein struc-
ture (26). For instance, a shortest-path (parameter minimiza-
tion) approach has been applied by Beratan and co-workers
for analyzing electron transfer pathways in proteins (27).
Graph-based methods (28) have also previously been used
for characterizing allosteric coupling in proteins (7),
whether based on normal-mode analysis (29–31), PCA
(32), NMR-derived covariances of interatomic motions
(33), discrete MD-derived contacts and covariances of inter-
atomic motions (7), sampling of multiple MD trajectories
(6,17,34,35), clustering based on energies of side-chain in-
teractions (36–38), or evolutionary optimization of ANM-
type models (39). Building upon this work, we report a
novel, to our knowledge, graph-based method for represent-
ing coupling between sites that can be applied to either a
crystal structure (via ANM-generated covariances of inter-
atomic motions) or MD data, using either an all-residue or
secondary structure representation, that generates a two-
dimensional map of mechanical coupling, analogous to
those generated by Balabin’s method (8). Our principal
goals in developing a new graph-based method were 1) to
be able to efficiently determine the extent to which struc-
tural elements with correlated motion are mechanically
coupled and 2) to identify the key structural elements
involved in the transduction of the mechanical force be-
tween sites, which may proceed through a large ensemble
of pathways involving those residues.

Consistent with our interest in allosteric regulation, our pri-
marymodel system for evaluating our graph-basedmethod for
predicting mechanical coupling through proteins is the allo-
sterically regulated human liver pyruvate kinase (hL-PYK).
We chose pyruvate kinase because it is a soluble, globular pro-
tein (which avoids having to account for the presence of a
membrane in the model) with multiple well-characterized
allosteric sites (Fig. 1) (21,40–42). Although the enzyme cat-
alyzes a phosphate transfer from phosphoenolpyruvate (PEP)
to ADP to form ATP, only the PEP affinity is allosterically
regulated. Fructose bisphosphate (FBP) causes increased
PEP affinity (43), whereas the alanine effector (AlaE will be
used to distinguish when alanine is the effector ligand) re-
duces PEP affinity (42). Tang and Fenton recently character-
ized the contribution of nearly all residues to allosteric
regulation in the protein by a systematic mutation study
(alanine scan; AlaM will be used to distinguish when alanine
is a replacement amino acid in the protein) (21).

Using hL-PYK as a testbed, first, we demonstrate how our
graph-based representation can identify pairs of residues
(protein sites or secondary structure elements) that have
correlated motions and are mechanically coupled via spe-
cific pathways throughout the protein structure. A key
advance of our method is the ability to filter out pairs of res-
idues whose covariant motion is purely coincidental. To
examine broader applicability, we also apply our method
to two membrane proteins previously examined using
Balabin’s method (8). Taking a step further, we will demon-
strate how it is possible to identify residues that are critical
for mechanical coupling between two distant parts of a
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protein. Specifically, we will show that mechanical coupling
between binding sites occurs through an ensemble of path-
ways between the sites. These pathways share a few crucial,
common nodes that represent effective ‘‘chokepoints.’’
Because these nodes are central to many mechanical
coupling pathways, any effort to rationally design proteins
with altered dynamics could focus on modifying them.
Furthermore, given the observed high correlation between
the mechanical couplings and residue positions that
contribute to allostery (21), we can speculate that targeting
these chokepoints may be an effective way to alter allosteric
regulation in enzymes.
METHODS

The proposed graph-based representation of the mechanical coupling is

introduced using the crystal structure of the hL-PYK tetramer crystallized

with FBP bound, with citrate present in the PEP binding site and with the

AlaE site empty (Protein Data Bank (PDB): 4IMA). Because of unresolved

residues, particularly in chain D, the crystal structure tetramer was recon-

structed and symmetrized based on the nearly complete chain A. Symme-

trization has little to no effect on the calculated properties, as discussed

in the Supporting Materials and Methods, including Fig. S2.

The method treats each residue as a node on a weighted, undirected

graph, in which the edges are defined by locally correlated motions of those

residues and weighted by the strength of the correlation. The workflow for

building such a graph and extracting quantitative information about the me-

chanical coupling between distant sites is illustrated in Fig. 2. We start from

two input quantities: 1) a correlation matrix (normalized covariance matrix

of interatomic motions) C (Fig. 3, top) and 2) a minimal (Euclidean) dis-

tance matrix D (for example, see Fig. S3, first panel). The correlation ma-

trix can be obtained from an ANM, an MD trajectory, or from experimental

(e.g., NMR) data. Thus far, our method has been used with normalized cor-

relation data; however, in principle, it could be used with non-normalized

covariances as well. We chose normalized correlation data to facilitate a

bounded, linear, and consistent dynamic range that would allow a common

set of parameters to be applied to multiple model systems. The correlation
1600 Biophysical Journal 116, 1598–1608, May 7, 2019
matrix elements Cij represent the extent to which the motion of residues i

and j are correlated, with a value of 1 indicating perfectly correlated

(parallel) motions, a value of �1 indicating perfectly anticorrelated

(antiparallel) motions, and a value of 0 indicating uncorrelated (orthogonal)

motion. The correlation matrices discussed here were based on Ca ANM

models derived from crystal structures and calculated using ProDy (44)

using default settings. The distance matrix is obtained from the same struc-

tural data.

For a large protein, data on interatomic motions and distances can also be

transformed to a further coarse-grained representation, such as using sec-

ondary structural elements (identified by STRIDE (45) or similar methods)

instead of residues as the matrix elements. Such coarse-graining is moti-

vated by strong internal correlation within structural components in a pro-

tein. This allows us to combine many redundant motions into a more readily

analyzable set of center-of-mass motions. If a structure is reduced to sec-

ondary structural elements, Cij are averaged for each set of residues being

merged to generate the reduced correlation matrix Cred, and the smallest

distance matrix element Dij between residues is selected for each pair of

secondary structural elements to generate the reduced distance matrix

Dred. All the subsequent steps in the method are identical whether or not

reduced representations are used, and from hereon we will refer to the

matrices only as C and D.

The first step in the process is the generation of an adjacency matrix A

(Eq. 1) that represents the network of correlated motions in the protein,

where

Aij ¼ 1� ��Cij

�� : (1)

Our definition of the adjacency matrix A is identical to the definition

developed by Dokholyan (7,46). This initial adjacency matrix includes all

covariant motions in the protein, regardless of distance or strength, and

needs to be pruned to remove interactions that do not involve strong

coupling between adjacent residues or structural elements. The pruning is

performed using the rule

Aij ¼ 0 if Cij <
�
mjC j þ sjC j

�
or Dij < Rcut; (2)

where mjCj and sjCj are the mean and SD of the elements of C, respectively,

and Rcut is the contact distance cutoff. We set Rcut at 7.5�A based on minimal
FIGURE 2 Work flow of the protocol for charac-

terizing the mechanical couplings in protein. The

distance matrix (D) and the normalized covariance

(correlation) matrix (C) are used to build a me-

chanical coupling graph. Nodes of the graph repre-

sent individual residues, secondary structural

elements, or protein domain. The graph can then

be traversed to find the highest-coupling (geodesic

parameter minimization) route between each pair

of nodes (G matrix); the mechanical coupling

matrix (M) can then be calculated based on the

correlation matrix and path length matrix, as can

the one-site and two-site centrality parameters,

cX and cX,Y. To see this figure in color, go online.



FIGURE 3 (Top) All-residue covariance matrix (C-matrix) of inter-

atomic motions and (bottom) all-residue coupling matrix, M, for hL-PYK

derived from ANM model using crystal structure (PDB: 4IMA). The

resulting M-matrix is qualitatively identical with the secondary structure

representation (see Supporting Materials and Methods). Coupling can be

seen between the alanine and PEP sites, plus between the FBP and PEP

sites within each chain, as well as between the FBP sites on two pairs of

chains (A and B, C and D), between alanine sites on two pairs of chains

(A and C, B and D), and between the PEP sites on two pairs of chains

(A and C, B and D). Comparison of two matrices highlights how the

path-based weighting (at the heart of the definition of P) substantially

reduces noise to better highlight potential allosteric interactions. To see

this figure in color, go online.

FIGURE 4 Mechanical coupling graph in hL-PYK. Nodes represent sec-

ondary structural elements, and edges represent interactions with high local

covariance. The edges of the graph represent interactions with high local

covariance. The PEP site is noted by squares, the effector FBP site is noted

by triangles, and the inhibitor alanine (AlaE) site is noted by stars. To see

this figure in color, go online.

Mechanical Coupling in Proteins
distance before more than one disconnected node emerges in the graph in

any of the systems studied. This distance is consistent with the cutoff dis-

tance used by Dokholyan for a related method based on local covariance

of interatomic motion (7). Sensitivity analysis to selection of different cut-

off distances is reported in Fig. S1. In addition to the minimal correlation

and maximal distance cutoffs, our model also applies a maximal coupling

threshold in which any correlations jCijj > Cthresh are set to Cthresh. We

set Cthresh to 0.95, representing an approximate value of the correlation

within secondary structural elements. The threshold means that nonzero

(connected) elements of the adjacency matrix have a lower bound of

Athresh ¼ 1 � Cthresh, which prevents numerical instabilities when correla-

tions approach unity and enables the coupling matrix (described below)

to be normalized. Self-loops (diagonal elements in the adjacency matrix)

are also removed.
The adjacency matrix is a two-dimensional representation of an undi-

rected graph of the mechanical coupling within the protein (47). Once

the graph is defined (Fig. 4), a standard shortest-path (geodesic) method

(for example, the ‘‘distances’’ function in MATLAB; The Mathworks, Na-

tick, MA) can be used to find the paths of maximal local covariance of inter-

atomic motion between each pair of elements in the graph to generate the

geodesic matrix G (Fig. S3, lower left), where Gij is the sum of all edge

lengths along the path from element i to element j in the graph. With this

information at hand, we can identify structural elements pairs that have

correlated and connected motions through the mechanical coupling matrix

M (Fig. 3, bottom), whose elements are defined as

Mij ¼ Athresh

��Cij

��
Gij

; (3)

with the diagonal elementsMii set to zero to remove trivial coupling of res-

idues with themselves. A maximalMij value of unity indicates two adjacent

and perfectly correlated residues, whereas a minimal value of zero indicates

no significant coupling between residues. The major difference between the

M-matrix and simple covariance analysis of the motion is that if two resi-

dues have correlated motions but do not have an efficient path for mechan-

ical coupling between them (e.g., a large Gij), a small (poorly coupled) Mij

will be produced. In this way, geodesic weighting suppresses motions that

are merely coincidental. Our process for generating the M-matrix and

other descriptors can be applied to any protein for which three-dimensional

structural information is available. In addition to generating the M-matrix,

the graph can also be used to calculate standard graph theory metrics such

as rank, centrality, path trees (shortest path from a node i to all nodes js i),

etc. These metrics can be used in conjunction with theM-matrix to analyze

the coupling within a protein, including the cost-weighted betweenness

centrality metrics cX and cX,Y discussed in the next section. The combina-

tion of covariance of interatomic motions and contact information from

MD trajectories (the information abstracted into the G matrix) have

previously been applied to determining mechanical coupling pathways by

Vishveshwara et al. (48) Our alternative approach is based on condensing

the graph representation of the protein into subgraphs that contain only

strongly coupled pathways in or out of a site.
Biophysical Journal 116, 1598–1608, May 7, 2019 1601
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RESULTS AND DISCUSSION

Identification of mechanically coupled sites in
proteins

We start our discussion by analyzing the mechanical
coupling between distant parts of pyruvate kinase as identi-
fied by the M-matrix (lower panel of Fig. 3). Within each
chain, the structural elements involved in both allosteric
sites are strongly coupled to the active site. In addition,
the AlaE site, which is located between the PEP and FBP
sites, couples with both. Comparing the C-matrix and the
M-matrix (both shown in Fig. 3), it is evident that the
M-matrix filters out coincidental correlations in interatomic
motion that are prevalent in the C-matrix. The underlying
structure of the coupling can be seen by examining the
mechanical coupling graph, shown in Fig. 4 and reduced
to secondary structural elements for clarity. In this figure,
structural elements comprising the active site (PEP site)
on each chain are indicated using squares; the FBP site
(40) is indicated with triangles and the AlaE site (42) with
stars. Proximity on the graph indicates strength of interac-
tion between nodes, with clustered nodes having a greater
number of strongly coupled paths between them. The corre-
sponding M-matrix for the reduced system of secondary
structure elements is shown in Fig. S3, along with the asso-
ciated C- and G-matrices, and is qualitatively identical to
the all-residue matrix shown in Fig. 3. We studied the en-
ergy transfer pathways in hL-PYK at two levels of abstrac-
tion: 1) treating the a carbon of each residue as a node and
2) coarse-graining the system by treating the center of mass
of each secondary structural element as a node. The all-res-
idue and secondary structural analyses were qualitatively
equivalent, as can be seen by comparing Figs. 3 and S3.
All-residue results are used for comparing with systematic
mutation results, whereas the secondary structure represen-
tation is adopted for clarity of visualization of the coupling
graph.
Communication networks and chokepoints

The M-matrix introduced in the Methods and analyzed in
the previous section identifies residues, sites, or secondary
structure elements that are mechanically coupled, i.e., parts
of a protein or protein complex that have correlated motions
and are coupled by efficient (energy transfer) pathways be-
tween those endpoints. However, the M-matrix does not
directly provide any insight on the identity of the sites (res-
idues or secondary structural elements) that contribute to the
mechanical coupling between two distant parts because
these quantities are abstracted into the G matrix. It is
possible to obtain this crucial information by calculating
the shortest-path tree t(k) (see Fig. S4 for an example)
from each residue in the given site X (e.g., the active site
X ¼ FBP) to all other residues in the protein and merging
the resulting Ntrees trees to form a graph of strong coupling
1602 Biophysical Journal 116, 1598–1608, May 7, 2019
routes to or from the site X by summing the inverse of the
adjacency matrix elements t

ðkÞ
ij of the trees and inverting to

form the combined adjacency matrix T,

Tij ¼
 XNtrees

k¼ 1

1

t
ðkÞ
ij

!�1

: (4)

The contribution of each residue to conveying a perturba-
tion to or from the site X is then quantified by calculating the
betweenness centrality (49,50) (the ratio of number of short-
est paths between nodes i, j s k that pass through node k
over the total number of shortest paths between nodes
i, j s k) of all residues on the graph, weighted by inverse
cost to pass through them given by the elements of the ma-
trix G. We will refer to the resulting quantity as one-site
cost-weighted betweenness centrality (c). Betweenness cen-
trality is a measure of a node’s influence on communication
between other nodes (51). It has previously been used as a
metric for predicting key proteins in metabolic and protein
networks (52). In our work, shortest-path trees and central-
ities were calculated using the Graph toolbox in MATLAB
r2018a; codes for calculating these parameters are included
as Data S1, S2, S3, and S4. The one-site cost-weighted
betweenness centrality parameter cFBP is shown in the
upper panels of Fig. 5, mapped onto the underlying graph
(left) and the structure of the protein (right). A large cX

k

value indicates that a large number of pathways pass
through node k. Therefore, perturbing that node dramati-
cally influences how the mechanical energy from global
motions of the protein is transferred to or from the site X.
Similarly, we can define the two-site cost-weighted
betweenness centrality c

X;Y
k between two sites X and Y. A

large c
X;Y
k value indicates that a large number of pathways

between those sites pass through node k. Therefore, perturb-
ing that node is expected to dramatically influences how
mechanical energy is transferred between the two sites.
The two-site cost-weighted betweenness centrality param-
eter (cFBP,PEP) is shown in the middle panels of Fig. 5,
mapped onto the underlying graph (left) and the structure
of the protein (right). In the rest of the work, we will
show how the one-site, cX, and two-site, cX,Y, cost-weighted
betweenness centralities are able to provide a nearly
quantitative understanding of the alanine-scanning data for
hL-PYK (21).

The lower panel of Fig. 5 shows cPEP for the PEP site
mapped onto chain A, with the most influential residues
noted in red, moderately influential in blue, and noncontri-
buting in white. Coupled residues are observed between
the PEP site and both allosteric sites. In addition to the
within-chain coupling, the FBP site on each chain is coupled
with the neighboring FBP site (chain A to chain B or chain C
to chain D). Additionally, the AlaE site on each chain is
coupled with the neighboring AlaE site (A to C or B to
D); couplings are shown in the M-matrix in Fig. 3, and



FIGURE 5 Comparison of cost-weighted betweenness centrality param-

eters cFBP (top row) and cFBP,PEP (middle row) for FBP interacting with hL-

PYK with the allosteric strength jQj as derived from an alanine scan (21)

mapped onto the secondary structure of the protein. The left column shows

the data mapped onto the graph representation of the secondary structure

generated using the above methods, and the right column shows the same

data mapped onto the protein structure. Because the c parameters provide

no information that would indicate the sign of a potential allosteric effect,

the jQaxj parameters represent the factor by which the allosteric effect was

observed to change. Substantial overlap is observed between cFBP,PEP and

jQj, though several structures in the interior of the protein identified as

crucial for allostery by the alanine scan are instead highlighted by cFBP.

Three chokepoint regions highlighted by multiple parameters are also

shown, including residues at the A-B and A-C interfaces as well as the
370Cys-373LEU b-sheet in the PEP site. To see this figure in color, go online.

Mechanical Coupling in Proteins
the raw cost-weighted betweenness centrality (without spec-
ifying any sites as sources or sinks) is shown in the upper
panel of Fig. 5. These interchain couplings involve just a
small number of ‘‘chokepoints’’ (purple or red in Fig. 5)
that have few or no significant alternative routes. We can
speculate that communication across these chokepoints be-
tween chains could provide a mechanism for binding coop-
erativity (53) between the allosteric sites on different chains.
An example of modulation across a chokepoint would be
a binding event displacing residues, such as motion of the
helix that contains Asp499, Arg501, and Trp494 in response
to an FBP binding that would change the extent of the inter-
action of this helix with the Trp527 loop on the adjacent sub-
unit, as proposed by Fenton and co-workers (40). This
between-chain interaction between FBP sites is shown in
the M-matrix in Fig. 3.
Modified allosteric regulation resulting from a
whole-protein alanine-scanning study

In an alanine scan, mutants of the protein are produced in
which each nonalanine and nonglycine residue is individu-
ally mutated to AlaM and the allosteric coupling of the pro-
tein is compared to the wild type. The allosteric coupling is
defined as

Qa=x ¼ Ka

Ka=x

; (5)

where Ka is the apparent affinity of the protein for the sub-
strate (e.g., PEP) in the absence of the effector (e.g., FBP or
AlaE) and Ka/x is the apparent affinity of the protein for the
substrate at an effector concentration that results in satura-
tion of the allosteric site. The effect of a mutation on one
type of allosteric coupling is assessed by the ratio Qi/Q0,
where Qi is Qa/x for a protein with an AlaM substitution at
residue i and Q0 is Qa/x for the wild-type protein. For FBP,
which allosterically promotes the affinity of hL-PYK for
PEP, Qi/Q0 < 1 indicates that allosteric promotion by FBP
is decreased, and Qi/Q0 > 1 indicates that allosteric promo-
tion by FBP is increased by mutation of that residue to AlaM.
Conversely, for AlaE as a ligand, which allosterically in-
hibits the affinity of hL-PYK for PEP, Qi/Q0 < 1 indicates
that allosteric inhibition by AlaE is increased, and Qi/Q0 >
1 indicates that allosteric inhibition by AlaE is decreased
by mutation of that residue to AlaM.

Because the Qi/Q0 quantifies the influence of a single res-
idue mutation on the allosteric regulation between two bind-
ing events, this single parameter can easily be correlatedwith
computational metrics based on residue mobility or interac-
tions (i.e., the mechanical coupling metrics discussed in the
prior sections). However, whereas the ratio Qi/Q0 indicates
whether amutation of a site induces an increase or a decrease
of the allosteric effect, the cost-weighted betweenness cen-
trality only informs us that a site is important for the mechan-
ical coupling between distant parts of the protein, and it does
not provide any direct information regarding biochemical ac-
tivity (i.e., increase or decrease). As such, we focus our com-
parison on the magnitude of the change in allosteric activity
jQj, which is shown for FBP in the lower panels of Fig. 5,
mapped onto both the graph representation of the protein
(left) and the structure (right), highlighting the regions of
the protein that are key to allostery and their correspondence
with pathways by which sites can be mechanically coupled.
A corresponding representation for AlaE is shown in
Biophysical Journal 116, 1598–1608, May 7, 2019 1603
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Fig. S5; the underlying numerical values are also available as
Table S1.

For alanine as an effector (Fig. 6, bottom left), substitu-
tions in the AlaE binding site (asterisks) reduce the allosteric
inhibition, substitutions adjacent to the phosphate binding
loop (residues 444–449) in the FBP site enhance the AlaE

allosteric effect, and substitutions adjacent to the allosteric
loop (residues 527–533) in the FBP site reduce the AlaE

allosteric effect (inhibition), as do substitutions of some po-
lar residues in the PEP site regions (e.g., at His286, Thr340,
and His391). Far broader regions of substitution affect FBP
(Fig. 6, bottom right) binding, with substantial shifts occur-
ring because of substitutions within the FBP, PEP, and AlaE

sites along with other residues between them.
Correlation between mechanical coupling and
allostery

A strong AlaM substitution effect for a residue correlates
well with the one-site cX and the two-site cX,PEP cost-
weighted betweenness centralities of that residue with
X ¼ AlaE or FBP (Fig. 6, middle and top panels). As can
1604 Biophysical Journal 116, 1598–1608, May 7, 2019
be seen from Fig. 6, the cX,PEP centralities are able to cap-
ture nearly the totality of the major features in the Qi/Q0

trends for both X ¼ AlaE and FBP (highlighted as green
areas in Fig. 6). Nevertheless, some features in Qi/Q0 trends
are absent in cX,PEP (highlighted as yellow areas in Fig. 6).
These features are instead present in cX. This finding im-
plies that the majority of the Ala substitutions with strong
effects on Qi/Q0 are located along pathways of mechanical
communication between the effector sites and the PEP
site. Interestingly, some AlaM substitutions that alter the
Qi/Q0 ratios are located along pathways that convey energy
between two AlaE sites or between two FBP site but are not
along paths to the PEP site. These positions are only re-
flected in cAla or in cFBP. This set of AlaM substitutions
are consistent with the hypothesis that an AlaM substitution
can alter the cooperativity of effector binding. It has previ-
ously been shown that change in the cooperative binding of
either effector or substrate can indirectly influence Qa/x (54)
and therefore the Qi/Q0 ratios used in this study. This same
type of three-ligand interaction can be observed when the
binding of a ligand induces cooperativity in a binding
response for a second ligand (55). The possibility of a
FIGURE 6 Comparison of one-site, cX, and

two-site, cX,PEP, cost-weighted betweenness cen-

trality (likelihood of a node being on a path leading

to X ¼ AlaE and FBP or connecting X to the PEP

site, weighted by the degree of coupling along the

path) elements for the PEP site on hL-PYK (light

red line) with the Qi/Q0 values from the alanine

scan (bottom panels) (21). In the bottom panels,

blue bars for Qi/Q0 indicate that the mutant has a

reduced response to AlaE (left) or increased

response to FBP (right), whereas red bars are in-

verse values and indicate that the mutant has an

increased response to AlaE (left) or reduced

response to FBP (right). The color convention is

from Tang and Fenton and reflects AlaE as an allo-

steric inhibitor and FBP as an allosteric activator

(21). The green and yellow areas indicate common

features between Qi/Q0 and cX,PEP or cX, respec-

tively. Asterisks (*) mark residues within either

the AlaE or FBP allosteric site. cX and cX,PEP

values are scaled by a factor of 1/1000. To see

this figure in color, go online.



FIGURE 7 Coupling matrices derived from ANM models of human

B2AR (PDB: 2RH1) (top), and bovine rhodopsin (PDB: 1U19) (bottom).

Results are consistent with Beratan and co-workers’ method (8), with the

exception that the M-matrix method shows less sensitivity to fluctuations

of the high-mobility regions near the C- and N- termini of the proteins. Or-

ange triangles indicate regions identified by both methods; red X symbols

indicate regions indicated as coupled in (8) that are not found coupled by

the M-matrix method. To see this figure in color, go online.
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three-ligand coupling (i.e., Qa/x dependence on concentra-
tion of a third ligand) was also acknowledged in the original
whole-protein AlaM-scanning mutagenesis study (21). Thus,
a secondary benefit of the mechanical coupling versus
AlaM-scanning data may be a mechanism to predict these in-
direct influences on allosteric mechanisms. We also note
that the proposed two-site cost-weighted betweenness cen-
tralities are able to predict the larger magnitude of the
AlaM substitution effect for FBP than for AlaE.

Another key observation from the alanine-scanning data
that is further backed by cost-weighted betweenness central-
ity data is a strong degree of complementarity between res-
idues involved in pathways to each allosteric site (e.g.,
substitutions that reduce the AlaE allosteric effect often
boost the FBP effect and vice versa). This complementarity
is further shown in Fig. S6. This observation supports the
hypothesis of key ‘‘chokepoint’’ residues influencing allo-
stery by altering mechanical coupling through the protein.

Our results demonstrate that, using readily available
structural data, a graph-based method can provide predic-
tions on the importance of residues in allosteric coupling
that correlate well with rigorous data from mutation-based
studies, both for effects on the active site and between the
allosteric sites. However, these correlations come with
several caveats, that we discuss below. As previously stated,
contributions of mechanical coupling to an allosteric mech-
anism would best be evaluated by comparing changes in
observed mechanical coupling pathways between the four
enzyme complexes that define the allosteric energy cycle
(i.e., free enzyme, enzyme-substrate complex, enzyme-
effector complex, and the ternary substrate-enzyme-effector
complex). Those four structures are not currently available
for hL-PYK. As an alternative, we evaluated the mechanical
couplings in one available crystal structure and compared
the identified mechanical couplings to the full-protein
alanine-scanning mutagenesis data. Relying on a single
crystal structure presents the potential to introduce several
biases into the mechanical coupling evaluation. Allosteric
coupling (Qa/x) in the wild-type hL-PYK protein is pH
dependent (43), with an increase in regulation as pH in-
creases from 6.0 to 8.0 but negligible allosteric regulation
below pH 6.0. The available structures of hL-PYK have
been determined at pH below 6.0 (56). The calculations of
the mechanical coupling are dependent on the topology
included in the structure. Therefore, if the topology of the
protein is maintained over the pH range (i.e., the pH depen-
dence of allostery is due to an altered ionization state) and
if ligand binding events do not substantially modify that
topology, then the mechanical couplings should be main-
tained. However, ligand-induced changes in topology (and
therefore changes in mechanical coupling) could them-
selves contribute to allosteric mechanisms. Given these
considerations, the strength of this study is the correlation
of the calculated mechanical couplings with experimental
results.
Validation of generality

Although our study primarily focused on hL-PYK, we also
performed further validation of the model by comparing
prediction of allosteric sites in two G-protein coupled recep-
tors, human b-2-adrenoreceptor (B2AR) and bovine
rhodopsin, with predictions from Balabin’s method (8).
Like Balabin’s method, this M-matrix approach provides a
two-dimensional representation of potential interactions be-
tween portions of a protein. M-matrices for B2AR and
bovine rhodopsin are shown in Fig. 7. Regions in which
both analyses indicated interactions are indicated by orange
triangles. Only two regions flagged by the Balabin analysis
were not detected by the M-matrix analysis (indicated by
red X); however, the M-matrix analysis identified coupling
involving residues adjacent to these regions. One significant
difference between the methods is that the M-matrix
showed far fewer potential interactions in the terminal re-
gions. Because both proteins were modeled in the absence
of a membrane environment using both analyses, it is
Biophysical Journal 116, 1598–1608, May 7, 2019 1605
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difficult to assign significance to this difference. However,
the difference is likely due to the large amplitude of terminal
residue motions in the ANM model, which receives much
higher weight in a normal-mode-based model as opposed
to a local-coupling-based model like the M-matrix.

Theutility of ourmethod is further illustratedbycalculating
cX,Y between the active site of each receptor (AS) and
the G-protein binding site on each receptor. The latter
contains a conserved E(D)RY sequence (residues 102–104
(a130–a132) for B2AR and 134–136 for rhodopsin, setting
the first residue in the crystal structure as 1) (8). Calculated
cAS,E(D)RY values are shown mapped onto both an all-residue
graph and the protein backbone structure in Fig. 8. Clear
couplingpathways are observed inboth cases,with a sequence
of high-centrality residues propagating up ana-helix from the
E(D)RY moiety and bifurcating into multiple routes into
the active site (retinal site in rhodopsin, epinephrine site in
B2AR). The localization of these pathways is once again sug-
gestive of potential chokepoints whose alteration could
disrupt communication between the sites.
1606 Biophysical Journal 116, 1598–1608, May 7, 2019
CONCLUSIONS

Graph-based methods (7) have recently gained popularity as
a powerful tool for analyzing biological macromolecules,
complementary to conventional metrics such as covariance
of interatomic motions and PCA of these correlations. We
have developed a novel, to our knowledge, graph-based
method that, like several existing methods, is derived from
covariance of interatomic motions and, like others, can iden-
tify communication pathways within a protein. However,
this method combines three crucial advantages into a single
approach: 1) it can be performed with arbitrary structural
data (e.g., from a crystal structure, NMR, MD, or other
simulation techniques); 2) it incorporates the influence of
multiple possible paths between sites and produces a simple
two-dimensional representation (the M-matrix) of mechan-
ically coupled interactions between residues or secondary
structural elements in a protein that can identify sites that
may interact with each other; and 3) it can produce simple
one-dimensional representations (cX and cX,Y) of the
importance of residues or secondary structural elements
FIGURE 8 Comparison of cost-weighted between-

ness centrality parameters cAS,E(D)RY between the

active site and the E(D)RY motif on the G-protein

binding site for two G-protein-coupled receptors, hu-

man B2AR (PDB: 2RH1, top) and bovine rhodopsin

(PDB: 1U19, bottom). The ligand in the active site

(the b-blocker carazolol for 2RH1 and retinol for

1U19) is shown in green, and the E(D)RY motif is

shown in orange. cAS,E(D)RY is mapped to an all-resi-

due graph representation on the left and to the protein

backbone on the right. Discrete pathways of high-c

residues can be observed for both proteins. To see

this figure in color, go online.



Mechanical Coupling in Proteins
for the mechanical coupling with a site. These parameters
are calculated from cost-weighted betweenness centralities
for pathways involving one or two sites. They provide us
with semiquantitative information on the importance of spe-
cific structural elements (single residues, secondary struc-
ture elements, or full protein domains) to funnel energy
between distant parts of a protein or protein complex. The
three outputs of our method provide complementary infor-
mation for determining connected sites and the influence
of residues on the strength of those connections.

In summary, our analysis clearly shows that the mechan-
ical communication between remote protein sites is the
result of an ensemble of internal motions of a protein, which
originate a multitude of energy transfer pathways between
sites. However, these pathways share a few common nodes
that represent effective ‘‘chokepoints’’ (31). The proposed
computational methodology was correlated with outcomes
from a full-protein alanine-scanning mutagenesis study for
the allosteric regulation of hL-PYK (21). It was further vali-
dated against prior computational predictions of allosteric
coupling on two G-protein coupled receptors (8). Because
of the high correlation between the key residues identified
using our method and the mutagenesis study, we propose
that the chokepoint nodes identified in this study can be tar-
geted to modulate the protein’s allosteric behavior. Overall,
our results are suggestive that the M-matrix and cost-
weighted betweenness centralities (x) are useful tools for
rapidly predicting sites that can be affected by perturbing
a macromolecule motion at a site of interest and for eluci-
dating the key residues involved in the energy transduction
between those sites.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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