Skip to main content
. 2019 May 10;6:52. doi: 10.1038/s41597-019-0055-0

Table 3.

Evaluation results on UMNSRS datasets.

Method Corpus UMNSRS-Sim UMNSRS-Rel
# Pearson Spearman # Pearson Spearman
Mikolov et al.1 Google news 336 0.421 0.409 329 0.359 0.347
Pyysalo et al.21 PubMed + PMC 493 0.549 0.524 496 0.495 0.488
Chiu et al.8 PubMed 462 0.662 0.652 467 0.600 0.601
BioWordVec (win20) PubMed 521 0.665 0.654 532 0.608 0.607
BioWordVec (win20) PubMed + MeSH 521 0.667 0.657 532 0.619 0.617

“#” denotes the number of the term pairs that can be mapped by the different word embeddings. “Pearson” and “Spearman” denote the Pearson’s correlation coefficient score and Spearman’s correlation coefficient score, respectively. “win20” denotes the BioWordVec was trained by setting the context window size as 20. The highest value is shown in bold.