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Abstract
Objectives To predict cavernous sinus (CS) invasion by pituitary adenomas (PAs) pre-operatively using a radiomics method
based on contrast-enhanced T1 (CE-T1) and T2-weighted magnetic resonance (MR) imaging.
Methods A total of 194 patients with Knosp grade two and three PAs (training set: n = 97; test set: n = 97) were enrolled in this
retrospective study. FromCE-T1 and T2MR images, 2553 quantitative imaging features were extracted. To select themost informative
features, least absolute shrinkage and selection operator (LASSO) was performed. Subsequently, a linear support vector machine
(SVM) was used to fit the predictive model. Furthermore, a nomogram was constructed by incorporating clinico-radiological risk
factors and radiomics signature, and the clinical usefulness of the nomogram was validated using decision curve analysis (DCA).
Results Three imaging features were selected in the training set, based onwhich the radiomics model yielded area under the curve
(AUC) values of 0.852 and 0.826 for the training and test sets. The nomogram based on the radiomics signature and the clinico-
radiological risk factors yielded an AUC of 0.899 in the training set and 0.871 in the test set.
Conclusions The nomogram developed in this study might aid neurosurgeons in the pre-operative prediction of CS invasion by
Knosp grade two and three PAs, which might contribute to creating surgical strategies.
Key Points
• Pre-operative diagnosis of CS invasion by PAs might affect creating surgical strategies
• MRI might help for diagnosis of CS invasion by PAs before surgery
• Radiomics might improve the CS invasion detection by MR images.
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ICA Internal carotid artery
LASSO Least absolute shrinkage and selection operator
PAs Pituitary adenomas
ROC Receiver operation characteristic
SVM Support vector machine

Introduction

Pituitary adenomas (PAs) are common intracranial tumours
[1]. Although considered benign, 25–55% of PAs are invasive
since they invade adjacent tissues, such as the diaphragma
sellae, sphenoid sinus, and cavernous sinus (CS), which cor-
responds to a more aggressive biological behaviour [1–3].

Surgical removal is the first-line treatment for most pitui-
tary macro-adenomas [4, 5]. However, when planning for sur-
gical removal, CS invasion has been a serious concern [6]. For
PAs with CS invasion, combining incomplete removal and
neo-adjuvant radiotherapy is recommended, because com-
plete removal is very difficult and can easily injure the trunk
and branches of the internal carotid artery (ICA) [7–9]. For
PAs without CS invasion, complete removal is recommended,
because incomplete removal may lead to a low rate of endo-
crinological remission and a high rate of recurrence [10–12].
Thus, the preoperative prediction of CS invasion by PAs
might aid the surgical strategy making and allow a more fo-
cused and cost-effective follow-up and long-term manage-
ment. The gold standard relies on intraoperative findings—
the perforation of the CS medial wall or CS dural involvement
by PAs, through which neurosurgeons can distinguish com-
pression from invasion of CS [10, 13]. Currently, Knosp grade
is used to evaluate the extent of parasellar extension by PAs
before surgery [14]. It was confirmed that CS invasion oc-
curred in all PAs with Knosp grade four and no PAs with
Knosp grade zero and one; however, the preoperative diagno-
sis of CS invasion remained uncertain in Knosp grade two and
three PAs [15]. Thus, this study focused on Knosp grade two
and three PAs. As CS invasion reflects the morphological
relationship between PAs and the CS andMR images can well
distinguish tissue structure in the sellar region [10, 13], we
hypothesised that quantitative MR imaging features can im-
prove the evaluation of CS invasion by Knosp grade two and
three PAs, and attempted to predict the CS invasion by these
PAs before surgery.

To this aim, radiomics, which has emerged in the field of
medical imaging analysis in recent years, is a reasonable ap-
proach. It transforms a medical image into a large number of
quantitative imaging features and then analyses these features
using a series of machine learning algorithms [16–18].
Radiomics has been used in the diagnosis or prognosis of
colorectal cancer, non-small-cell lung cancer, and gliomas
[19–24]. All these studies suggest that radiomics is useful in
the analysis of medical images. Through this non-invasive

radiomics approach, we aimed to predict CS invasion by
Knosp grade two and three PAs before surgery.

Patients and methods

Patients

Ethical approval was obtained for this retrospective analysis
from the Institutional Review Board of Beijing Tiantan
Hospital Affiliated to Capital Medical University, and the
need for informed consent was waived. All patients with
pituitary tumour who underwent surgical resection at our
institute from July 2013 to July 2016 were enrolled. A radi-
ologist (Reader 1) reviewed the operating records, and an-
other radiologist (Reader 2) reviewed the MR images and
assessed the clinico-radiological risk factors (such as Knosp
grade, haemorrhage, suprasellar invasion, periarterial en-
hancement, and inferolateral venous compartment) with
no prior knowledge of the operating records. A total of
194 patients (96 men and 98 women; age, 47.02 ± 12.41
years) were identified based on inclusion and exclusion
criteria (Supplementary S1). All 194 patients were divided
into the training set (n = 97, July 2013–July 2014) and the
test set (n = 97, August 2014–July 2016) according to the
MR images’ acquisition time. The training set was used for
radiomics signature building, while the test set was set aside
for radiomics signature validation. For all cases, tumour
resection was performed with the aid of a microscope, and
CS invasion status was determined according to the operat-
ing records, where the performing neurosurgeons docu-
mented their impressions. The Flowchart of this study was
shown in Fig. 1.

Data acquisition

The imaging protocol included unenhanced T1-weighted and
T2-weighted images, followed by CE-T1 images. In this
study, CE-T1 and T2 MR images were used for analysis.
The coronal and sagittal planes of CE-T1 MR images were
acquired with repetition time/echo time of 1200/11, acquisi-
tion matrix of 256 × 256, and slice thickness of 3 mm; The
axial planes of CE-T1 MR images were acquired with repeti-
tion time/echo time of 2000/9.8, acquisition matrix of
220 × 185, and slice thickness of 5 mm; T2 MR images were
acquired with repetition time/echo time of 4500/84, acquisi-
tion matrix of 259 × 384, and slice thickness of 5 mm. Both
CE-T1 and T2MR images are of high resolution on each slice
image and make the boundaries of tissues clear; particularly,
CE-T1 MR images allow radiologists to distinguish PAs from
normal pituitary and surrounding tissues [25]. Furthermore,
CE-T1 MR images improve the depiction of CS and ICA
due to strong enhancement of the venous compartment after
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gadolinium-based contrast administration [13]. In addition,
CE-T1 and T2 MR images are included in the conventional
MR imaging protocol for pituitary macro-adenomas [26]. The
acquisition parameters and other details are presented in
Supplementary S2.

Tumour segmentation

Tumour segmentation was conducted on sagittal, coronal, and
axial CE-T1 and T2 MR images, and ICA segmentation was
conducted on coronal CE-T1 MR images for each patient using
the ITK-SNAP program (University of Pennsylvania, www.
itksnap.org). The segmentation process was delineated
manually by a radiologist (Reader 2) without prior knowledge
of the operating records. During tumour segmentation, the slices
on which the tumour region was too small (< 10 pixels) were
excluded. As the tumour region is usually not as strongly
enhanced as surrounding tissues after gadolinium-based contrast
administration, pituitary macro-adenomas can be distinguished
from surrounding tissues in CE-T1 MR images [25], facilitating
tumour segmentation on such images. For T2-weighted MR im-
ages, the tumour region was delineated referred to CE-T1 MR
images. some representative cases are shown in Fig. S3.

Feature extraction

A total of 1911 quantitative features describing intra-tumour
heterogeneity were extracted automatically from the tumour
region on sagittal, coronal, and axial planes of CE-T1 MR
images; 641 features were extracted from the tumour region
on T2 MR images. These features can be mainly divided into
four groups: (I) tumour intensity [27], (II) tumour shape and
size, (III) tumour texture features [28–32], and (IV) tumour
wavelet features. Aside from these four-group features, anoth-
er feature describing the degree of PA invasion toward the
ICA (ICA wrapped degree) was also calculated based on the
ICA region on the coronal planes of CE-T1 MR images. The
calculation of all features was implemented in MATLAB
2012a (MathWorks, Natick, MA, USA), and the details of
these features are shown in Supplementary S3.

Statistical analysis

Statistical analysis was performed using MATLAB 2012a.
Student’s t-test was used in the analysis of continuous variables,
and Pearson’s χ2 test was used for categorical variables. When a
small count existed in the contingency tables, Fisher’s exact test
was used instead of Pearson’s χ2 test. P-values were corrected for

Fig. 1 Flowchart illustrating the
process of radiomics. I) Image
segmentation was conducted on
the axial, sagittal and coronal
planes of contrast-enhanced T1-
weighted MR images and T2-
weighted MR images. Note that
internal carotid artery on the cor-
onal planes was also contoured.
II) Features were extracted from
the tumour region. III) Analysis of
the radiomics features and clinical
data
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multiple testing by controlling the false discovery rate of 5%, and
two-sided p-values < 0.05 were considered statistically
significant.

Feature selection High-dimensional data may contain a high
degree of redundant and irrelevant information, which can result
in overfitting and greatly degrade the performance of the learn-
ing algorithm; thus, feature selection is necessary [33]. In this
study, feature selection was performed in two stages based on
the training set for CE-T1 and T2MR imaging features, respec-
tively. To explore the advantage of combining CE-T1 and T2
MR imaging features, such features were concatenated, and then
the same two-stage feature selection was performed. First, re-
dundant imaging features were removed when the linear corre-
lation coefficient was > 0.75. The least absolute shrinkage and
selection operator (LASSO) algorithm [34] was then applied to
select the most representative features. A five-fold cross-valida-
tion was performed to select the best λ—a parameter in LASSO
to be determined—using 1-SE criteria; thus, representative fea-
tures were chosen. The details of LASSO were shown in
Supplementary S4. The feature selection procedure was imple-
mented in MATLAB 2012a using a function called lasso. ICA
wrapped degree was thought to be a representative feature and
was not included in the two-stage feature selection.

Radiomics model development and validation Having ob-
tained the representative features, support vector machine
(SVM) was used in the training set to build the models for
CE-T1, T2, and CE-T1 and T2 MR images. SVMs have
been used in glioma grading [35] and survival prediction
[36] and turned out to be useful. In this study, the SVMs
were trained using LIBSVM [37] with a linear kernel. The
parameter C was optimised based on a four-fold cross-val-
idated grid search. Finally, the model was developed in the
training set with the parameter C chosen. The linear SVM

Table 1 Characteristics of
patients and tumours (n = 194) Characteristic Training Set

(n = 97)

Test Set

(n = 97)

Whole Set (n = 194) p-value

Age (yr, mean ± std) 47.82 ± 12.46 46.22 ± 12.37 47.02 ± 12.41 0.559

Gender (No.) 0.727

Male 46 (47.42%) 50 (51.55%) 96 (49.48%)

Female 51 (52.58%) 47 (48.45%) 98 (50.52%)

Tumour Volume (cm3, mean ± std) 14.03 ± 16.87 11.59 ± 8.76 12.81 ± 13.46 0.378

Knosp Grade (No.) 0.213

Grade 2 37 (38.14%) 52 (53.61%) 89 (45.88%)

Grade 3 60 (61.86%) 45 (46.39%) 105 (54.12%)

Haemorrhage (No.) 0.830

Yes 12 (12.37%) 13 (13.40%) 25 (12.89%)

No 85 (87.63%) 84 (86.60%) 169 (87.11 %)

Tumour Diameter (cm, mean ± std) 3.27 ± 0.97 3.01 ± 0.83 3.14 ± 0.91 0.213

Suprasellar Invasion (No.) 0.378

Yes 64 (65.98%) 55 (56.70%) 119 (61.34%)

No 33 (34.02%) 42 (43.30%) 75 (38.66%)

Periarterial Enhancement (No.) 0.830

Yes 43 (44.33%) 45 (46.39%) 88 (45.36%)

No 54 (55.67%) 52 (53.61%) 106 (54.64%)

ICVobliteration (No.) 0.378

Yes 30 (30.93%) 21 (21.65%) 51 (26.29%)

No 67 (69.07%) 76 (78.35%) 143 (73.71%)

P-values were corrected for multiple testing by controlling the false discovery rate of 5%

yr year, std standard deviation, ICV inferolateral venous compartment

Table 2 The list of representative features selected

MR Image Selected features

CE-T1 MRI Sphericity; Minimum_HL; ICAWrapped Degree

T2 MRI Sphericity

CE-T1&T2 MRI Sphericity (CE-T1); Minimum_HL (CE-T1); ICA
Wrapped Degree (CE-T1); Low Grey Level Run
Emphasis_HH_135° (T2)

ICAWrapped Degree represented the degree of ICAwrapped by tumours

CE-T1MRI contrast-enhanced T1 weighted MR image, T2 MRI T2
weighted MR image, ICA internal carotid artery
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prediction score, which was calculated by the transforma-
tion of the representative features, was regarded as the
radiomics signature. The performance of the CE-T1, T2,
and CE-T1 and T2 models was first assessed in the training

set and then validated in the test set using the area under the
curve (AUC), accuracy, sensitivity, and specificity.
Moreover, the receiver operation characteristic (ROC) [38]
curve was plotted to illustrate the predictive performance.

Table 3 Performance of clinico-radiological, CE-T1, T2, and CE-T1+T2 models, and nomogram

Model Performance AUC (95% CI) ACC SEN SPE p value Cut-
off

Clinico-radiological Training set 0.846 (0.831–0.861) 0.763 0.765 0.761 1.25E-9 0.472

Test set 0.828 (0.812–0.844) 0.773 0.823 0.686 1.63E-8 0.472

CE-T1 Training set 0.852 (0.837–0.868) 0.753 0.851 0.660 2.33E-9 0.266

Test set 0.826 (0.804–0.844) 0.804 0.800 0.807 1.07E-7 0.266

T2 Training set 0.768 (0.748–0.787) 0.711 0.809 0.620 5.71E-6 -0.091

Test set 0.733 (0.712–0.754) 0.680 0.629 0.710 1.46E-4 -0.091

CE-T1+T2 Training set 0.869 (0.855–0.884) 0.753 0.851 0.660 3.80E-10 0.134

Test set 0.803 (0.784–0.821) 0.791 0.771 0.790 8.16E-7 0.134

Nomogram Training set
Test set

0.899 (0.887–0.911)
0.871 (0.857–0.885)

0.814
0.794

0.936
0.857

0.700
0.758

1.31E-11
1.51E-9

-0.732
-0.732

The best performance in the test cohort is indicated in bold font. The cutoff values were calculated using the xtile function in R

AUC area under the curve, ACC accuracy, SEN sensitivity, SPE specificity, CE-T1 contrast-enhanced T1 weighted MR image, T2 T2 weighted MR image

Fig. 2 Performance of radiomics models based on CE-T1, T2, and CE-T1 and T2 images. The ROC curves (a) and boxplots (c) of the three models on
the training set. The ROC curves (b) and boxplots (d) of the three models on the test set
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Clinico-radiological model development and validation The
clinico-radiological risk factors comprised of gender, age,
tumour volume, Knosp grade (2 or 3), tumour diameter,
haemorrhage (yes or no), suprasellar invasion (yes or no),
periarterial enhancement (yes or no), and inferolateral ve-
nous compartment obliteration (yes or no). Univariate
analysis was performed to show the relationship between
CS invasion and each clinico-radiological risk factor.
Multivariate logistic regression analysis was applied to
develop a clinico-radiological model for predicting CS
invasion by PAs in the training set. Forward stepwise
selection was conducted using the likelihood ratio test
with Akaike’s information criterion (AIC) [39] as the
stopping rule. Subsequently, the test set was used to val-
idate the performance of clinico-radiological model.

Development and validation of an individualised nomogram
To provide an individual tool for the clinician and patients to
predict CS invasion by PAs, a nomogram [40] incorporating
the radiomics signature and clinico-radiological risk factors
was constructed in the training set and validated in the test
set. The calibration curves were plotted for the training and
test sets, and the Hosmer-Lemeshow test was conducted to
assess the agreement between the predicted risks and observed
outcomes of CS invasion. To assess the clinical usefulness of
the nomogram, decision curve analysis (DCA) [41] was

performed to quantify the net benefits at different threshold
probabilities.

Results

Clinical characteristics

A total of 194 patients (age, 47.02 ± 12.41 years) were en-
rolled in this study, among which 82 patients (42.27%) with
PA were found with CS invasion. The characteristics of pa-
tients and tumours were shown in Table 1. No significant
differences for all clinic-radiological factors (p = 0.213–
0.830) were found between the training set and test set, which
justified their use as training set and test set.

Feature selection

For CE-T1 MR images, 65 imaging features remained after re-
moving the redundant features (correlation coefficient > 0.75);
for T2MR images, 24 imaging features remained, and for CE-T1
and T2 MR images, 89 imaging features remained. Two repre-
sentative features (Sphericity and Minimum_HL) were selected
for CE-T1 images, one (Sphericity) for T2 images, and three
(Sphericity [CE-T1], Minimum_HL [CE-T1], and Low Grey
Level Run Emphasis_HH_135° [T2]) for CE-T1 and T2 images

Fig. 3 Radiomics predictive model. This model was plotted to facilitate
the comprehension. The model was built based on CE-T1 MR images
using linear SVMs. The x, y and z axes represent the features of
Sphericity, Minimum_HL_45°, and ICA wrapped degree, respectively.
These three features were normalised to the range of -1 to 1. The grey
plane represents the classifier surface. The points (pink squares and sky-
blue asterisks) above the classifier surface were predicted as PAs with CS
invasion, while the points (sky-blue solid points and pink asterisks) below

the classifier surface were predicted as PAs without CS invasion. The
pink squares represent the PAs with CS invasion that were predicted
correctly; the sky-blue solid points represent the PAs without CS invasion
that were predicted correctly. The PAs with CS invasion, which was
predicted incorrectly are shown as pink asterisks; the PAs without CS
invasion, which were predicted incorrectly are shown as sky-blue aster-
isks. The black circles represent the support vectors calculated in the
SVM model
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using LASSO (Fig. S2, Supplementary S4). Apart from these
selected features, ICA wrapped degree calculated based on the
coronal planes of CE-T1 MR images, was also selected. These
representative features are listed in Table 2.

Radiomics model development and validation

Based on the representative features above, linear SVMs were
fitted according to the training set for CE-T1, T2, and combi-
nation of CE-T1 and T2 MR images. The performances of
these three models were first assessed in the training set and
then validated in the completely independent test set. The CE-
T1 model yielded an AUC of 0.852 in the training set and
0.826 in the test set; the T2 predictive model yielded an
AUC of 0.768 in the training set and 0.733 in the test set,
while the CE-T1 and T2 predictive model yielded an AUC
of 0.869 in the training set and 0.803 in the test set. The
accuracy, AUC, sensitivity, and specificity of these three
models are shown in Table 3. The ROC curves and boxplots
for CE-T1, T2, and CE-T1 and T2 MR images are plotted in
Fig. 2. According to the Bayesian information criterion (BIC),

the CE-T1 signature was chosen as the final radiomics signa-
ture. The formulas of these three models are shown in
Supplementary S5. The CE-T1 predictive model was plotted
in three-dimensional space (Fig. 3). Stratified analysis showed
that our model yielded an accuracy of 76.7% in the training set
and 75.6% in the test set in terms of Knosp grade 3 PAs.

Clinico-radiological model development
and validation

Univariate analysis was conducted in the training and test sets
(Table 4). Knosp grade, periarterial enhancement, and
inferolateral venous compartment obliteration were
significantly different between patients with CS invasion and
those without CS invasion (training set: p < 0.001, p < 0.001,
p < 0.001; test set: p < 0.001, p = 0.006, p = 0.012,
respectively). Knosp grade, periarterial enhancement, and
inferolateral venous compartment obliteration were selected
for clinico-radiological model building, which yielded AUC
values of 0.846 and 0.828 in the training and test sets
(Table 3).

Table 4 Univariate analysis of clinical characteristics of patients and tumours in the training set and test set

Characteristic Training Set
(n = 97)

p-value Test Set
(n = 97)

p-value

Invasion Non-Invasion Invasion Non-Invasion

Age (yr, mean ± std) 48.09 ± 13.57 47.58 ± 11.45 0.960 44.17 ± 13.03 47.37 ± 11.93 0.293

Gender (No.) 0.1146 0.986
Male 18 (38.3%) 28 (56.0%) 18 (51.4%) 32 (51.6%)

Female 29 (61.7%) 22 (44.0%) 17 (48.6%) 30 (48.4%)

Knosp Grade(No.) < 0.001 < 0.001

Grade 2 7 (14.9%) 30 (60.0%) 6 (17.1%) 46 (74.2%)

Grade 3 40 (85.1%) 20 (40.0%) 29 (82.9%) 16 (25.8%)

Tumour Volume
(cm3, mean ± std)

13.79 ± 10.58 14.26 ± 21.26 0.960 14.10 ± 9.66 10.17 ± 7.94 0.053

Haemorrhage (No.) 0.064 0.051

Yes 2 (4.3%) 10 (20.0%) 1 (2.9%) 12 (19.4%)

No 45 (95.7%) 40 (80.0%) 34 (97.1%) 50 (80.6%)

Tumour Diameter
(cm, mean ± std)

3.27 ± 0.85 3.261.07 0.960 3.38 ± 0.92 2.81 ± 0.71 0.005

Suprasellar Invasion (No.) 0.700

Yes 32 (68.1%) 32 (64.0%) 21 (60.0%) 34 (54.8%)

No 15 (31.9%) 18 (36.0%) 0.960 14 (40.0%) 28(45.2%)

Periarterial Enhancement (No.) < 0.001 0.006

Yes 10 (21.3%) 33 (66.0%) 9 (25.7%) 36 (58.1%)

No 37 (78.8%) 17 (34.0%) 26 (74.3%) 26 (41.9%)

ICVobliteration (No.) < 0.001 0.012

Yes 23 (48.9%) 7 (14.0%) 13 (37.1%) 8 (12.9%)

No 24 (51.1%) 43 (86.0%) 22 (62.9%) 54 (87.1%)

P-values were corrected for multiple testing by controlling the false discovery rate of 5%

yr year, std standard deviation, ICV inferolateral venous compartment
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Nomogram construction and validation

Incorporating the radiomics signature from the CE-T1 MR
images, Knosp grade, periarterial enhancement, and
inferolateral venous compartment obliteration, the radiomics
nomogram yielded an AUC of 0.899 (95% confidence interval
[CI], 0.887–0.911) in the training set and 0.871 (95% CI,
0.857-0.881) in the test set (Fig. 4 a). The radiomics nomogram
significantly performed better than the clinico-radiological
model (p = 0.021 and = 0.035 in the training and test sets,
respectively; DeLong test). Furthermore, the radiomics nomo-
gram showed a good calibration in the training and test sets (p
= 0.664 and 0.771, respectively) (Fig. 4 b, c). The DCA for the
radiomics nomogram and clinic-radiological model is shown
in Fig. 5. The decision curve showed that if the threshold
probability was higher than 20%, then using the radiomics
nomogram to predict CS invasion by PAs added more benefit
than either using the clinic-radiological model, treating all pa-
tients, or treating no patients.

Fig. 4 a A radiomics nomogram
incorporating the radiomics
signature, Knosp grade,
periarterial enhancement, and
inferolateral venous compartment
obliteration on the training set. b
Calibration curve of the radiomics
nomogram on the training set. c
Calibration curve of the radiomics
nomogram on the test set.
Calibration curve presents the
agreement between the predicted
invasion probability and observed
outcomes of invasion. The
diagonal blue line represents an
ideal evaluation, while the black
and red lines represent the
performance of the nomogram.
Closer fit to the diagonal blue line
indicates a better evaluation

Fig. 5 Decision curve analysis for the clinico-radiological and radiomics
nomogram. The decision curve showed that if the threshold probability
was higher than 20%, then using the radiomics nomogram to predict CS
invasion addedmore benefit than either using the clinic-radiological mod-
el, treat all patients, or treat no patients
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Discussion

In this study, we identified a radiomics nomogram based on
CE-T1 and T2MR images for the individualised evaluation of
CS invasion in patients with PAs (Knosp grades two or three).
Incorporating the radiomics signature and clinico-radiological
risk factors, the nomogram outperformed the clinico-
radiological and radiomics signatures in the whole sets. In
the past decades, the Knosp grading has played a significant
role in the evaluation of CS invasion by PAs. In their work,
Knosp et al considered that invasion occurred in most Knosp
grade two and all Knosp grade three PAs; however, we found
that a negative CS invasion existed in both Knosp grade two
and three PAs. As shown in Table 4, 85.4% of Knosp grade
two PAs and 34.3% of Knosp grade three PAs were found
without CS invasion. This difference in findings might be
induced by the improvement of the microsurgical technology
and upgrade of the microscopic and endoscopic equipment.

In this study, the CE-T1 radiomics signature was finally cho-
sen due to its lowest BIC. This signature was fitted by three
representative imaging features using linear SVM. These three
features contained ICAwrapped degree, tumour sphericity, and
minimum_HL_45°. ICAwrapped degree was significantly asso-
ciated with CS invasion (p < 0.001): the higher value, the more
likely the invasion could occur, which might be explained by the
process of CS invasion. Most of PAs initially compress the CS
and stretch its medial wall instead of invading it, which corre-
sponds to a low value of ICAwrapped degree. With the growth
of PAs, perforation of medial wall and CS invasion may occur,
resulting in a high percentage of encasement of the ICA by PAs,
which corresponds to a high value of ICAwrapped degree [10].
The tumour sphericity feature corresponds to the growth pattern
of PAs: the lower the value of tumour sphericity, the more irreg-
ular the tumour is. Furthermore, irregular tumours can easily
invade surrounding tissues [42]. We also found that the value
of the feature minimum_HL_45°, which represented the grey
intensity of tumour region on CE-T1 MR images, was signifi-
cantly higher for PAs with CS invasion. This may be explained
by the fact that invasive PAs are with abundant blood supply that
could be related to the high grey intensity on CE-T1 images.

The developed nomogram incorporating the radiomics sig-
nature and clinico-radiological risk factors performed better
than clinic-radiological model and radiomics models based
on CE-T1, T2, and CE-T1 and T2 images. This individualised
nomogram was convenient for use in pre-operative prediction
of the CS invasion by Knosp grade two and three PAs for both
clinicians and patients. To justify the clinical usefulness of the
nomogram, DCAwas conducted and showed that if patient or
doctor threshold probability was > 20%, then using the nomo-
gram to predict CS invasion added more benefit than the
clinico-radiological model.

This study has several limitations. This is a single-centre
study, thus requiring a multicentre validation. Additionally, in

this study, tumour segmentation conducted by a senior neuro-
radiologist costed plenty of time without any automatic seg-
mentation algorithm available for PAs; thus, efficient segmen-
tation algorithms for PAs needed to be studied. Finally,
radiomics only focuses on the medical imaging of the entire
tumour, where the diagnosis and prognosis of the tumour is
performed using quantitative imaging features. Radiomics can
be complementary to other omics such as proteomics and
genomics. Therefore, it is worth looking forward that a com-
bination of several omics would be the best choice for disease
treatment.

In conclusion, this study focused on the preoperative pre-
diction of CS invasion by Knosp grade two and three PAs and
developed and validated a nomogram based on CE-T1 and T2
MR imaging. The nomogram performed better than the
clinico-radiological model and might aid the surgical strategy
making and allow a more focused and cost-effective follow-
up and long-term management.
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