Skip to main content
. 2018 Sep 3;29(3):1496–1506. doi: 10.1007/s00330-018-5680-z

Table 3.

Performance metrics from machine learning-based classification of ultrasomic features

Features Adaboost Random forest Support vector machine
AUC Sensitivity (%) Specificity (%) AUC Sensitivity (%) Specificity (%) AUC Sensitivity (%) Specificity (%)
CR, ORF and CEMF 0.85 ± 0.01 87.5 76.9 0.85 ± 0.01 87.5 76.9 0.85 ± 0.01 93.8 69.2
CR and CEMF 0.82 ± 0.04 59.4 100 0.83 ± 0.02 71.9 92.3 0.80 ± 0.03 81.3 76.9
ORF and CEMF 0.84 ± 0.02 92.9 71.4 0.85 ± 0.03 92.9 71.4 0.82 ± 0.04 100 71.4
CR and ORF 0.78 ± 0.03 59.4 100 0.78 ± 0.03 56.3 92.3 0.79 ± 0.04 81.3 84.6
CR 0.68 ± 0.06 43.8 100 0.72 ± 0.05 50.0 92.3 0.71 ± 0.05 90.6 46.2
ORF 0.77 ± 0.02 81.3 69.2 0.73 ± 0.04 62.5 84.6 0.74 ± 0.04 87.5 69.2
CEMF 0.75 ± 0.03 78.1 69.2 0.77 ± 0.04 84.4 76.9 0.74 ± 0.06 90.6 53.9

Note: Performance metrics are validation results from hold-out samples (based on ten-fold cross-validation). Data of AUCs in the table are mean ± standard deviation

CR conventional radiomics, ORF original radiofrequency, CEMF contrast-enhanced micro-flow, AUC area under the receiver-operating characteristic curve