Table 3.
Features | Adaboost | Random forest | Support vector machine | ||||||
---|---|---|---|---|---|---|---|---|---|
AUC | Sensitivity (%) | Specificity (%) | AUC | Sensitivity (%) | Specificity (%) | AUC | Sensitivity (%) | Specificity (%) | |
CR, ORF and CEMF | 0.85 ± 0.01 | 87.5 | 76.9 | 0.85 ± 0.01 | 87.5 | 76.9 | 0.85 ± 0.01 | 93.8 | 69.2 |
CR and CEMF | 0.82 ± 0.04 | 59.4 | 100 | 0.83 ± 0.02 | 71.9 | 92.3 | 0.80 ± 0.03 | 81.3 | 76.9 |
ORF and CEMF | 0.84 ± 0.02 | 92.9 | 71.4 | 0.85 ± 0.03 | 92.9 | 71.4 | 0.82 ± 0.04 | 100 | 71.4 |
CR and ORF | 0.78 ± 0.03 | 59.4 | 100 | 0.78 ± 0.03 | 56.3 | 92.3 | 0.79 ± 0.04 | 81.3 | 84.6 |
CR | 0.68 ± 0.06 | 43.8 | 100 | 0.72 ± 0.05 | 50.0 | 92.3 | 0.71 ± 0.05 | 90.6 | 46.2 |
ORF | 0.77 ± 0.02 | 81.3 | 69.2 | 0.73 ± 0.04 | 62.5 | 84.6 | 0.74 ± 0.04 | 87.5 | 69.2 |
CEMF | 0.75 ± 0.03 | 78.1 | 69.2 | 0.77 ± 0.04 | 84.4 | 76.9 | 0.74 ± 0.06 | 90.6 | 53.9 |
Note: Performance metrics are validation results from hold-out samples (based on ten-fold cross-validation). Data of AUCs in the table are mean ± standard deviation
CR conventional radiomics, ORF original radiofrequency, CEMF contrast-enhanced micro-flow, AUC area under the receiver-operating characteristic curve