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Purpose—Isocitrate dehydrogenase (IDH) and 1p19q codeletion status are importantin providing 

prognostic information as well as prediction of treatment response in gliomas. Accurate 

determination of the IDH mutation status and 1p19q co-deletion prior to surgery may complement 

invasive tissue sampling and guide treatment decisions.

Methods—Preoperative MRIs of 538 glioma patients from three institutions were used as a 

training cohort. Histogram, shape, and texture features were extracted from preoperative MRIs of 

T1 contrast enhanced and T2-FLAIR sequences. The extracted features were then integrated with 

age using a random forest algorithm to generate a model predictive of IDH mutation status and 

1p19q codeletion. The model was then validated using MRIs from glioma patients in the Cancer 

Imaging Archive.

Results—Our model predictive of IDH achieved an area under the receiver operating 

characteristic curve (AUC) of 0.921 in the training cohort and 0.919 in the validation cohort. Age 

offered the highest predictive value, followed by shape features. Based on the top 15 features, the 

AUC was 0.917 and 0.916 for the training and validation cohort, respectively. The overall accuracy 

for 3 group prediction (IDH-wild type, IDH-mutant and 1p19q co-deletion, IDH-mutant and 

1p19q non-codeletion) was 78.2% (155 correctly predicted out of 198).

Conclusion—Using machine-learning algorithms, high accuracy was achieved in the prediction 

of IDH genotype in gliomas and moderate accuracy in a three-group prediction including IDH 

genotype and 1p19q codeletion.
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Introduction

Gliomas account for 81% of primary malignant brain tumors and confer significant mortality 

and morbidity [1]. Patients with glioblastoma, the most common glioma histology, have a 

median survival of 15–16 months, despite surgery, chemotherapy, and radiation therapy [2]. 

Although the natural history of low-grade gliomas (LGGs) varies greatly with survival 

averaging approximately 7 years, LGGs in adults eventually progress to high-grade glioma 

and premature mortality [3].

IDH1 mutations, specifically involving the amino acid arginine at position 132, were first 

described in 12% of glioblastomas [4], followed by observation that they are present in 50–

80% of LGG patients [5]. Importantly, IDH mutations confers diagnostic and prognostic 

implications. Gliomas with the IDH1 mutation (or its homolog IDH2) is associated with a 

significantly more favorable survival outcomes than the IDH1/2 wild-type tumors, 

independent of histological grade [6, 7]. Due to the prognostic significance of the IDH 
mutation, the World Health Organization (WHO) updated its classification criteria in 2016 to 

integrate IDH1/2 status as a molecular parameter for classifying gliomas [8]. IDH mutants 

are driven by specific epigenetic alterations, which may make them susceptible to 

therapeutic interventions (such as temozolomide) that are less effective against IDH wild 

type tumor [9, 10]. This is supported by in vitro experiments, which demonstrated increased 
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radio- and chemo-sensitivity in IDH-mutated cancer cells [11, 12]. Targeted therapy against 

IDH mutation has been shown to be associated with a favorable safety profile and prolonged 

stable disease in Phase I study of cholangiocarcinoma [13] and glioma [14]. Codeletion of 

1p19q has also been proven to be a prognostic molecular marker for positive tumor response 

to radiation and chemotherapy and associated with better survival [15–17]. The Cancer 

Genome Atlas Research Network classified LGGs into three molecular categories: gliomas 

with IDH mutation and 1p19q codeletion (IDHmut-codel), gliomas with IDH mutation and 

no 1pI19q codeletion (IDHmut-non-codel) and gliomas with wild-type IDH (IDHwt). 

IDHwt LGGs are associated with poor outcome. LGGs with an IDH mut-codel are more 

sensitive to radiation and chemotherapy and associated with longer survival than other types 

of diffuse gliomas [18].

Although biopsies can be performed at relatively low-risk, an approach using MRI imaging 

to predict IDH and 1p19q genotype preoperatively is a less expensive and noninvasive 

alternative. The early identification of IDH and 1p19q status may benefit the prediction of 

patient’s prognosis and predictive of responsiveness to chemotherapy and radiation.

Several advanced imaging techniques have been shown to predict IDH and/or 1p19q status 

in gliomas. Most of the previous approaches utilized a single imaging feature or parameter, 

such as relative cerebral blood volume, sodium, spectroscopy, blood oxygen level-

dependence, perfusion and 11C-methionine PET [19–25]. However, inclusion of these 

advanced imaging sequences such as DWI, PWI, MRI spectroscopy and [18F] 

fluoroethyltyrosine-PET(FET-PET) images may not be useful or reliable for determining 

genotype of the gliomas compared with conventional MR images [26, 27]. Besides, many of 

these imaging acquisitions are not routinely obtained in clinical care. In this study, we 

strived to develop a method solely employing imaging sequences that would be acquired 

during standard of care in clinical evaluations.

To the best of our knowledge, there are limited studies that predict IDH and 1p19q status 

utilizing standardized imaging methodology and through large sample size from multiple 

institutions. We hypothesized that a model integrating features from conventional MRI using 

a machine-learning approach could diagnose IDH mutation and 1p19q codeletion status and 

identify specific features relevant to the genotype.

Methods

Patient cohort

The training cohort consisted of patients with histologically confirmed diffuse gliomas 

treated at Hospital of the University of Pennsylvania (HUP), Brigham and Women’s 

Hospital (BWH), and Massachusetts General Hospital (MGH). Institutional Review Board 

(IRB) approval was obtained for the training cohort with waiver of consent. The validation 

cohort consisted of patients with gliomas who have overlapping clinical and molecular data 

from The Cancer Genome Atlas (TCGA) and presurgical MR imaging data from The Cancer 

Imaging Archive (TCIA), an imaging sharing resource that houses images corresponding to 

TCGA patients [28, 29]. Analysis of the TCGAITCIA cohort is exempt from IRB approval 

under the TCGAITCIA data use agreements (http:IIcancergenome.nih.gov/
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abouttcgaIpoliciesIinformedconsent). All patients identified met the following criteria: (i) 

histo-pathologically confirmed primary grade II-IV glioma according to current WHO 

criteria, (ii) known IDH genotype, and (iii) available preoperative MR imaging consisting of 

post-contrast axial T1-weighted (T1 post-contrast) and T2-weighted fluid attenuation 

inversion recovery (FLAIR) images. Patients whose IDH genotype were not confirmed per 

criteria (see “Tissue Diagnosis and Genotyping” section below) were excluded (N = 93). 

Our final patient cohort included 227 patients from HUP, 156 patients from BWH, 155 

patients from MGH and 206 patients from TCIA.

Tissue diagnosis and genotyping

For the HUP cohort, IDH1R132H mutant status was determined using either 

immunohistochemistry (IHC) or next-generation sequencing, performed by the Center for 

Personalized Diagnostics at HUP. For the BWH cohort, IDH1/2 mutations were determined 

using IHC, mass spectrometry-based mutation genotyping (OncoMap), or capture-based 

sequencing (OncoPanel), depending on the available genotyping technology at the time of 

diagnosis. OncoMap was performed by Center for Advanced Molecular Diagnostics of the 

BWH and OncoPanel was performed by Center for Cancer Genome Discovery of the Dana-

Farber Cancer Institute. For the MGH cohort, IDH1/2 status were confirmed either by 

immunochemistry or next generation sequencing. For this retrospective study, only gliomas 

with absence of IDH1/2 mutations as determined by full sequencing assay were included in 

our analyses as IDH-WT gliomas. IDH-mutated gliomas were defined by the presence of 

mutation as indicated by IHC or sequencing on samples provided to the pathology 

department at each institution at the time of surgery. IDH1- and IDH2-mutated gliomas were 

collapsed into one category. For patients in the TCIA cohort, IDH½ mutation data were 

downloaded from TCGA and IvyGap data portal.

The 1p/19q co-deletion genotype was determined via fluorescence in situ hybridization 

(FISH) or polymerase chain reaction (PCR) depending on the availability of the hospital. For 

patients in the TCIA cohort, 1p19q codeletion data were downloaded from TCGA and 

IvyGap data portal.

Expert tumor segmentation

For the HUP and TCIA cohorts, MR imaging for each patient was loaded into Matrix User 

(v2.2), and 3D FLAIR tumor regions were manually drawn slice-by-slice in the axial plane 

for the FLAIR image by a user (H.Z.) followed by editing by a radiologist (H.X.B). For the 

BWH cohort, FLAIR tumor regions were drawn with the 3D Slicer Editor and Segmentation 

Wizard module(https://www.slicer.org/wiki/Documentation/Nightly/Extensions/

SegmentationWizard) on the FLAIR image (K.C.) and edited by an neuroradiologist 

(R.Y.H.) [30, 31]. For the MGH cohort, FLAIR tumor regions were drawn by a user (V.K.K., 

J.T.S.) and edited by a neurosurgery resident (A.B.) on the FLAIR image with 3D Slicer. We 

derived expert manual tumor segmentations for half of the patients. The entire abnormality 

was segmented (Fig. 1) on FLAIR image of each patient. We used FLAIR to draw the mask 

for the predictive model, then this FLAIR mask was applied to both contrast enhanced T1 

and FLAIR sequences.
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Preprocessing

Brain extraction was performed using Robust Learning-Based Brain Extraction [32]. We 

then normalized the intensity values of each image to have zero mean and unit variance. To 

account for differences in image resolution, we resampled the images to isotropic 1 mm with 

linear interpolation. Similarly, the manual tumor segmentations were resampled using 

nearest neighbor interpolation.

MRI feature extraction

For each glioma case, we extracted 3 categories of features (histogram, shape and texture) 

from brain and tumor masks to maximize the characterization of the tumor. Eighteen types 

of histogram features were calculated: variance, skewness, kurtosis, standard deviation, 

maximum, mean, mean absolute deviation, minimum, range, root mean squared, uniformity, 

max probability, entropy, and intensity percentiles (10, 25, 50, 75, 90). Ten types of shape 

features were calculated: volume, number of centroids, surface area, compactness 

(calculated 2 different ways), solidity, maximum diameter, spherical disproportion, 

sphericity, and surface area to volume ratio. The ratios of different shape features were then 

calculated and also inputted as additional shape features. Types of texture features 

implemented included 8 texture features from the Gray-Level Co-occurrence Matrix 

(GLCM), 13 texture features from the Gray-Level Run-Length Matrix (GLRLM), 13 texture 

features from the Gray-Level Size Zone Matrix (GLSZM), and 5 texture features from the 

Neighborhood Gray-Tone Difference Matrix (NGTDM). Before automated features were 

calculated, the intensity of MR images was normalized to adjust for any differences in 

acquisition parameters. The intensity was normalized first by identifying the normal brain 

for each patient (non-skull and non-tumor regions, including both white matter and gray 

matter), followed by dividing the image intensity of the tumor region by the interquartile 

range of intensity values within the normal brain region. The magnetic field strength, 

resolution, and slice thickness, echo time and repetition time of pre-operative MR images 

from 4 institutions are attached in Supplementary Figs. 1, 2 and 3.

Random forest classification

The machine-learning procedure was performed using the Statistics and Machine Learning 

Toolbox (MATLAB 2015a Natick, MA). A random forest algorithm was used to classify 

patients as either IDH wild type or mutant. Random forest is one of several machine-

learning algorithms that have been applied in clinical classification problems. It is especially 

advantageous when the number of predictor variables greatly exceeds sample size because it 

is resistant to overfitting [33]. Furthermore, it provides an estimation of generalizability 

though calculation of out-of-bag error, defined as the mean prediction error in each patient 

within the training cohort, using only the trees that did not have that patient in the bagged 

sample [34]. In this study, the training cohort (HUP/BWH/MGH) was used to develop the 

learning model, while cases in the validation cohort (TCGA) were used to independently 

evaluate the performance of the final model. The predictive value of each MRI feature for 

determining IDH genotype and 1p19q codeletion was calculated individually by area under 

the receiver operating characteristic curve (AUROC) analysis. All the MRI extracted 

features were used in our training algorithm. The heatmap of Pearson correlations among all 
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these features was attached as Supplementary Fig. 4. The tree depth was set to 64, and the 

algorithm was set to grow to a total of 4096 trees, a number empirically determined to be a 

reasonable upper bound in our learning models and before which the training set 

classification error commonly begins to converge [35]. Finally, the model was tested on the 

validation cohort using the same model score threshold selected based on AUROC analysis 

of the training cohort. Figure 2 provides an overview of our MRI processing pipeline.

Features with most significant contributions to the final model were determined by the 

increase in prediction error if the values of that feature were permuted across the out- of-bag 

observations (a method of measuring the prediction error of random forests models utilizing 

bootstrap aggregating (bagging) to sub-sample data samples used for training). This measure 

was computed for every tree and then averaged over the entire ensemble and divided by the 

standard deviation over the entire ensemble [36].

Results

Patient characteristics

The median age of the HUP, BWH, MGH, and TCIA cohorts were 53, 48, 52, and 53 years 

respectively. The percentage of males was 53%, 56%, 60%, and 56%, respectively. The HUP 

cohort was 22% grade II, 34% grade III, and 42% grade IV. The BWH cohort was 20% 

grade II, 29% grade III, and 51% grade IV. The MGH cohort was 13% grade II, 36% grade 

III, and 51% grade IV. The TCIA cohort was 22% grade II, 28% grade III, and 50% grade 

IV. Collectively, the HUP, BWH, MGH, and TCIA cohorts were 37%, 55%, 48%, and 41% 

IDH-mutant, respectively. IDH mut-codel gliomas accounted for 10%, 25%, 13% and 12% 

of HUP, BWH, MGH, and TCIA cohorts (see Table 1).

MRI and clinical features

From each patient’s imaging, a total of 126 features (histogram, shape and texture) were 

extracted. Together with one clinical feature (age), they were all used in the training 

algorithm.

IDH genotype prediction

The model (Model 1) using age and imaging features achieved an area under the receiver 

operating characteristic curve (AUC) of 0.921 (95% CI 0.894–0.941) in the training cohort 

and 0.919 (95% CI 0.871–0.949) in the validation cohort. Age offered the highest predictive 

value, followed by shape features. The 15 features that contributed most to our model are 

shown in Table 2. Based on the top 15 features, a model was generated and achieved the 

AUC of 0.917 (95% CI 0.889–0.938) in the training cohort and 0.916 (95% CI 0.867–0.947) 

in the validation cohort, respectively. To assess the impact of imaging features alone, we also 

built a model excluding age; this model achieved an AUC of 0.870 (95% CI 0.836–0.897) in 

the training cohort and 0.886 (95% CI 0.827–0.926) in the validation cohort.

1P19q genotype prediction

For IDH mutant subset, we trained a model (Model 2) integrating age to predict 1p/19q 

status using patients from MGH, BWH, HUP (total N = 197) and tested the model by 
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samples from TCIA (total N = 84). The model achieved a training AUC of 0.685 (95% CI 

0.606–0.754) and testing AUC of 0.716 (95% CI 0.577–0.823). Age offered the highest 

predictive value, followed by histogram features. The 15 features that contributed most to 

our model are shown in Table 3. Based on the top 15 features, a model was generated and 

achieved the AUC of 0.670 (95% CI 0.589–0.743) in the training cohort and 0.692 (95% CI 

0.543–0.801) in the validation cohort, respectively. To assess the impact of imaging features 

alone, we also built a model excluding age; this model achieved an AUC of 0.681 (95% CI 

0.603–0.751) in the training cohort and 0.690 (95% CI 0.549–0.803) in the validation 

cohort.

Three-group prediction

Two separate models (Model 1 and Model 2 as stated above) were applied sequentially to 

the TCIA testing data set (N = 198, those with both IDH and 1p/19q status available): Model 

1 for prediction of IDH status followed by model 2 for prediction of 1p/19q status using IDH 

mutants (N = 71) predicted by the first model output. This generates 3 predictions: IDHwt, 

IDHmut-codel, IDHmut-non-codel. The overall accuracy for the 3 group prediction was 

78.2% (155 correctly predicted out of 198).

Discussion

Several studies have reported an association between radiographic appearance and genotypes 

of gliomas [37–40]. Metellus et al. showed that IDH wild type in grade II gliomas were 

associated with an infiltrative pattern on MRI [41]. Qi et al. demonstrated that IDH mutants 

have a characteristic appearance on imaging, including sharp tumor margins and 

homogenous signal intensity [42]. Through MR imaging features of 175 LGGs reviewed by 

using Visually AcceSAble Rembrandt Images(VASARI), Park et al. built a model predictive 

of IDH1 mutation with AUC of 0.859 and 0.788 in the discovery and validation sets [43]. 

However, one major limitation in these studies is that they requires manual rating thus rater 

variability is inevitable. Using clinical and imaging features in a random forest model to 

predict IDH genotype in 120 high-grade gliomas, Zhang et al. reported accuracies of 86% in 

the training cohort and 89% in the validation cohort derived from a single-institution data set 

[44]. Yu et al. built a radiomic model to predict IDH mutation in grade II gliomas using only 

T2-weighted imaging and reported an accuracy of 80% in the primary cohort and 83% on 

the validation cohort [45]. In a recent study, Hao et al. used routine preoperative MRIs of 

165 patients from the TCGA/TCIA to generate texture features predicting IDH mutation and 

1p19q status with an accuracy of 0.86 and 0.96 within the same data set [46]. Akkus et al. 

presented machine intelligence to predict 1p19q status of 159 LGGs from post-contrast T1- 

and T2-weighted MR images using convolutional neural networks (CNN) and achieved 

accuracy of 87.7% [47]. However, none of these studies has attempted to predict genotype of 

gliomas in a combined cohort of diffuse gliomas from multi-institutional data and all of 

them lack external independent validation.

In the current study, using data from multiple institutions, a random forest model integrating 

preoperative multimodal automated imaging features and age was constructed to predict 

IDH and 1p19q genotype in grade II-IV gliomas. This model relied only on standard-of-care 
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preoperative MRI including contrast enhanced T1-weighted sequence and T2 FLAIR 

sequence. The model predictive of IDH achieved high area under the receiver operating 

characteristic curve (AUC) of 0.921 in the training cohort and 0.919 in the validation cohort. 

For model predicting 3 group prediction (IDHwt, IDHmut-codel, IDHmut-non-codel), 

however, the overall accuracy was moderate (78.2%). For model predictive of 1p19q, the 

AUC was 0.685 in training set and 0.716 in validation set. We believe that this is likely due 

to sample size and should improve with larger data set available in the future.

While WHO grade information was available, we did not include this data in our model in 

order to understand the predictive accuracy based on pre-operative data alone. The only non-

imaging feature included in the final model is patient age which is available to the 

radiologists preoperative and remains a strong feature correlating with IDH mutation and 

1p19q status.

The predictive potential of individual imaging features was assessed in univariate and 

multivariate analysis, which was outperformed by the model constructed using machine 

learning methods. This demonstrates the ability of machine learning techniques to 

synergistically integrate features to discover distinct imaging phenotypes. In addition, the 

predictive model based on clinical and automated features derived from multi-institutional 

data was successfully validated on an independent multicenter patient cohort from the 

TCGA/TCIA, demonstrating the generalizability of our model.

The random forest method was chosen over other machine learning methods because of its 

high stability, generalizability, and predictive performance compared with other popular 

machine-learning classification methods. In a radiomic study by Chintan et al., 12 popular 

machine-learning classification methods arising from 12 classifier families (Bagging(BAG), 

Bayesian (BY), Boosting (BST), Decision trees (DT), Discriminant analysis (DA), 

Generalized linear models (GLM), Multiple adaptive regression splines (MARS), Nearest 

neighbors (NN), Neural networks (Nnet), Partial least square and principle component 

regression (PLSR), Random forests (RF), and Support vector machines (SVM)) were 

evaluated and compared in terms of their predictive performance and stability against data 

perturbation. Random forests (RSD = 3.52%, AUC = 0.66 ± 0.03) was proven to have the 

highest prognostic performance with high stability against data perturbation. The current 

study has the largest sample size and independent validation of results among all studies 

investigating different machine-learning modeling methods for radiomics based clinical 

predictions [48]. Moreover, RF has displayed high predictive performance in several other 

biomedical and other domain applications as well [49].

The features that contributed the most to our automated model predictive of IDH were 

predominantly age and shape features. Among the 15 features that contributed the most to 

the model, 9 were derived from the shape features. The high predictive values of shape 

features reflected the differences in growth pattern between IDH mutants and wild type. 

Unlike in our model, texture features were the top-performing features in the prediction of 

IDH of high grade gliomas in the study by Zhang et al. [24]. This may be caused by the 

difference of tumor grade ratio enrolled between two studies (70.8% of tumors are WHO 

grade IV gliomas in their study while 47.4% in our study population). Although the precise 
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relationship between automated imaging features and the biology of IDH mutations remains 

unclear, our results provided quantitative insight into intratumor heterogeneity and behavior 

of tumor margins.

Even though our study constructed a model using conventional MRI imaging that are 

routinely obtained pre-operatively to predict IDH status with a high accuracy, we 

acknowledge several limitations to our study. Due to the retrospective study design where 

only known gliomas were selected, our model cannot readily be applied to situations where 

other tumor types as well as non-tumor mimickers are also common in the study population. 

The current model is most applicable for patients who have high likelihood of primary 

glioma based on standard radiographic evaluation. A more general model using data set 

from other lesion types will be needed to further improve generalizability. Our study also did 

not utilize advanced MR modalities such as perfusion MRI and MR-spectroscopy, which 

have been demonstrated to have potential in the prediction of IDH genotype [19, 21, 23]. 

Future studies combining conventional and advanced imaging may further improve the 

accuracy of noninvasive IDH status prediction. Furthermore, our work to continue to enlarge 

our sample size is ongoing. We believe that the accuracy of 1p19q prediction should improve 

when larger data set is available. Finally, although our combined model achieved successful 

prediction of IDH status, the biological significance of the individual features remains 

unknown and require further evaluation.

In conclusion, using machine-learning algorithms, high accuracy was achieved in the 

prediction of IDH genotype in gliomas and moderate accuracy in a three-group prediction 

including IDH genotype and 1p19q codeletion. Our model may have the potential to serve as 

a noninvasive tool that complements invasive tissue sampling and guiding patient 

management at an earlier stage of disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
FLAIR tumor segmentation of a a grade II, b grade III, c grade IV. Segmentations shown are 

overlaid on axial, non-contrasted FLAIR image
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Fig. 2. 
MRI feature extraction and machine-learning pipeline
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Table 2

Top 15 features contributing to the predicting model of IDH

Single var
AUC testing
cohort

Measure of
importance

Age 0.8475 2.9742

Shape_Volume 0.8475 1.0796

Shape_N umberCentroids 0.8568 0.5361

Shape_MaxAxialDiameter 0.8085 0.4336

Shape_Solidity 0.7536 0.3998

FLAIR_Histogram_Skewness 0.7697 0.3994

Shape_SurfaceArea 0.7833 0.3892

FLAIR_Histogram_Kurtosis 0.6237 0.3281

Shape_Compactness 0.7681 0.3185

FLAIR_Histogram_Range 0.5816 0.3175

FLAIR_Histogram_Entropy 0.6676 0.3107

Shape_SphericalDisproportion 0.699 0.279

FLAIR_Histogram_MaximumProbability 0.5301 0.2642

FLAIR_GLSZM_HGZE 0.5463 0.2371

Shape_Sphericity 0.6785 0.2355
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Table 3

Top 15 features contributing to the predicting model of 1p19q

Single var
AUC testing
cohort

Measure of
importance

Age 0.5986 0.0994

T1C_Histogram_Percentile50 0.5444 0.0945

T1C_Histogram_Percentile75 0.6034 0.0926

T1C_Histogram_Percentile25 0.6719 0.0879

T1C_Histogram_Uniformity 0.5569 0.0859

T1C_GLRLM_SRHGE 0.5505 0.0854

T1C_GLRLM_HGRE 0.5051 0.0835

T1C_GLRLM_LRLGE 0.5763 0.075

T1C_Histogram_MeanAbsoluteDeviation 0.6769 0.0716

FLAIR_Histogram_Percentile90 0.5614 0.0655

FLAIR_GLCM_AutoCorrelation 0.638 0.0654

Shape_Max3DDiameter 0.5559 0.0621

FLAIR_GLSZM_SZLGE 0.5946 0.0534

T1C_GLSZM_HGZE 0.5614 0.0532

T1C_Histogram_Minimum 0.5925 0.0512
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