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Cancer arises through the accumulation of somatic mutations over
time. Understanding the sequence of mutation occurrence during
cancer progression can assist early and accurate diagnosis and
improve clinical decision-making. Here we employ long short-term
memory (LSTM) networks, a class of recurrent neural network, to
learn the evolution of a tumor through an ordered sequence of
mutations. We demonstrate the capacity of LSTMs to learn
complex dynamics of the mutational time series governing tumor
progression, allowing accurate prediction of the mutational
burden and the occurrence of mutations in the sequence. Using
the probabilities learned by the LSTM, we simulate mutational
data and show that the simulation results are statistically in-
distinguishable from the empirical data. We identify passenger
mutations that are significantly associated with established cancer
drivers in the sequence and demonstrate that the genes carrying
these mutations are substantially enriched in interactions with the
corresponding driver genes. Breaking the network into modules
consisting of driver genes and their interactors, we show that
these interactions are associated with poor patient prognosis, thus
likely conferring growth advantage for tumor progression. Thus,
application of LSTM provides for prediction of numerous addi-
tional conditional drivers and reveals hitherto unknown aspects of
cancer evolution.

cancer progression | driver mutations | passenger mutations | machine
learning | neural networks

Tumorigenesis is a multistep process characterized by accu-
mulation of somatic mutations, which contribute to tumor

growth, clinical progression, immune escape, and the develop-
ment of drug resistance (1, 2). The somatic mutations found in a
tumor cell are accumulated over the lifetime of the cancer pa-
tient, so that some mutations are acquired in early steps of tu-
morigenesis and even in premalignant cells (3). Relatively small
subsets of these mutations are established tumor drivers, whereas
the remainder are thought to be passengers that do not confer
growth advantage or may even negatively affect tumor fitness (4–
7). Although molecular and cell biology studies have revealed
many mechanistic details of tumorigenesis (4, 8–10), our un-
derstanding of the tumor evolution dynamics remains limited,
presumably due to the complexity of the process and the
abundance of passenger events that could be randomly dis-
tributed but might exert various effects on tumor fitness and
properties (11, 12).
In colorectal cancer, tumor development has been explained

by a multistep model of carcinogenesis that describes the pro-
gression of a benign adenoma to a malignant carcinoma through
a series of well-defined histological stages that are linked to a
mutational time series, i.e., the temporal sequence of occurrence
of driver mutations (13–16). Similar stepwise models have been
developed for other types of adenocarcinomas (17, 18), although
the temporal succession of molecular changes characterizing the
progression of these tumors has not been elucidated at the level
of confidence it has for colon cancer (19). Given that the somatic
alterations in some tumors can be represented as a multistep
sequence of events, we conjectured that time series learning al-
gorithms could be applied to the sequence of somatic mutations,

potentially revealing the complex dynamics of the tumor evolu-
tion and enabling a variety of context-specific predictions.
To this end, we employed long short-term memory (LSTM)

networks (20), a type of recurrent neural network (RNN) (21)
capable of learning long-term dependencies in a time series se-
quence. These networks have achieved major success in time
series prediction tasks and for learning evolution of recurrent
systems (20, 22–24). We demonstrate here the utility of applying
LSTM to time-ordered mutational data in colon and lung ade-
nocarcinomas. We define a pseudotemporal gene ranking, rep-
resenting each tumor sample as a binary text, which can be used
for training LSTM in a similar manner to that applied in natural
language texts classification (25–27). Applied to a discrete ver-
sion of the mutational data, ordered into an approximate tem-
poral sequence, these networks can be used to predict the
mutational load from a limited number of mutations and for
stepwise prediction of the occurrence of following mutations in
the series. Using the sequence dynamics learned by the models,
we reconstruct sequences of mutations that are statistically in-
distinguishable from the original observations. We find that the
occurrence of distinct subsets of mutations could be predicted
from the timeline of the major cancer drivers. Investigation of
the driver genes contributing to the prediction of each of these
mutations uncovers numerous driver–interactor gene pairs that
are highly and specifically enriched with different types of in-
dependently identified interactions. We further derive modules
of driver genes and find that their predicted interactions are
associated with poor survival rate, suggesting that the driver and
associated passengers jointly promote tumor growth.
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derstanding of the mechanisms of tumor progression and have
implications for therapeutic strategies.

Author contributions: N.A., Y.I.W., and E.V.K. designed research; N.A. performed re-
search; N.A., Y.I.W., and E.V.K. analyzed data; and N.A. and E.V.K. wrote the paper.

Reviewers: N.L.K., University of California, Irvine; and A.Z., Institut Curie.

The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence should be addressed. Email: koonin@ncbi.nlm.nih.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1901695116/-/DCSupplemental.

Published online April 23, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1901695116 PNAS | May 7, 2019 | vol. 116 | no. 19 | 9501–9510

G
EN

ET
IC
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1901695116&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:koonin@ncbi.nlm.nih.gov
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901695116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901695116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1901695116


Results
Throughout this work, we use a discretized version of the mu-
tational data from two tumor types, namely, colon cancer, where
the stepwise evolutionary model has been established (13–16),
and lung cancer, where such a model has been suggested but not
widely accepted as it is in the case of colon cancer (17, 19). The
snapshot mutational datasets are ordered into an approximate
temporal sequence that is estimated via the training sets for each
tumor type. For each classification task, we trained LSTM net-
works using The Cancer Genome Atlas (TCGA) (28) time-
ordered mutational data for these tumor types and tested the
network performance using independent datasets (Table 1).

Predicting Tumor Mutational Load from the Mutational Time Series.
We aim to represent tumor mutations as a discrete timeline of
mutational events such that the appearance of a mutation in the
timeline would correspond to their estimated place in the tumor
evolution. We thus calculate a score for every mutation as the
ratio of its occurrences in the presence and in the absence of
other mutations (see Materials and Methods for details). This
form of the score is motivated by the assumption that mutations
that appear late in the tumor evolution are more likely to be
fixed when other mutations are present, supported by a pre-
viously established notion that cooccurring events more often
take place at late stages in tumor evolution (29–32). Sorting the
mutations by the scores evaluated on our training datasets, we
find that this estimated order of mutation appearance is in
agreement with the established succession of the key drivers in
colon adenocarcinoma (SI Appendix, Fig. S1A). In particular, the
APC mutation is an early driver event, followed by CTNBB1,
KRAS, and SMAD4, whereas PIK3CA and TP53 mutations
occur later in tumor development (13, 33). Moreover, we find
that the scores significantly correlate with the ratio between the
frequency of a mutation in colon adenomas and its frequency in
colon carcinomas [from COSMIC database (34, 35); SI Appen-
dix, Fig. S1B], further supporting the relevance of this score for
the inference of the order of mutations.
We then used the time-ordered mutational data to predict the

overall mutational load in the respective tumors and evaluate the
number of mutations required for an accurate prediction. To this
end, we trained LSTM networks aiming to predict high vs. low
mutational load (Materials and Methods) from a time series of
mutations. Given a discrete time series of mutation occurrences,
the LSTM network is trained using the series up to a time t and is
applied to the left-out test to produce scores that reflect the
probability of each sample in the test to have a high mutational
load. Starting from the final time point (the last mutation in the
series, likely occurring late in the tumor evolution), we find that
prediction of the mutational load saturates with high perfor-
mance (AUC > 0.95) with fewer than 100 mutations for both
colon and lung adenocarcinomas (Fig. 1A). The sets of genes
that contribute to the mutational load prediction significantly
overlap between colon and lung cancers (P value ≈ 0 for the last
100 genes). Notably, this overlap includes genes that encode
some of the longest human proteins that perform various orga-
nizing roles in either intracellular or intercellular interactions,
such as titin (TTN), mucin-16 (MUC16), and nesprin-1
(SYNE1). TTN is one of the most commonly mutated early
drivers in colon cancer (36). MUC16 is implicated in the pro-

gression of several cancers, apparently, via interactions with the
immune system, and is emerging as an important target for
cancer therapy (37). SYNE1, a cytoskeleton organizer, although
less thoroughly characterized, appears to contribute to DNA
damage response and, thus, to genome instability and tumori-
genesis (38). Thus, the genes that contribute to mutation load
prediction in both types of cancer seem to reveal common bi-
ological themes. Moreover, the scores assigned by the LSTM
using only the 20 latest mutations (i.e., the 20 mutations with the
highest order scores) as a sequence are highly correlated with the
observed mutational load in all test sets (Fig. 1 B–D). Using the
time series from the earliest time point, however, results in al-
most random prediction performance with similar number of
mutations (SI Appendix, Fig. S2), suggesting that the ultimate
mutational burden of a tumor depends primarily on mutations
that occur late in tumor evolution. Training linear classifiers to
predict the mutational load from the same sequences of muta-
tions or randomly selected mutations (Materials and Methods)
resulted in significantly inferior performance compared with the
LSTM (Fig. 1 E–G), suggesting that the LSTM networks learn
complex dynamics within the mutational data that could not be
captured by conventional classification approaches.
The scores assigned to predict the mutational load are also

associated with clinical phenotypes. For the colon cancer test
sets, the scores assigned by LSTM trained with the 20 latest
mutations in the sequence are significantly higher in samples of
primary tumors assigned with poor grade vs. moderate grade, in
high vs. low microsatellite instability, and in high vs. low CpG
island methylation phenotypes (Fig. 1 H–K). In the lung cancer
test set, higher scores are associated with lower progression-free
survival (PFS; Fig. 1L).

Predicting Occurrence of Mutations in the Sequence and Simulated
Data Analysis. We then explored the possibility of predicting the
occurrence of mutations in the course of tumor evolution from
other mutations in the time series. To this end, the LSTM net-
works were trained to predict the occurrence of each mutation
Mt in the time series, using the time series of mutations from the
latest mutation up to the Mt+1 mutation (thus predicting earlier
mutations from later ones). The occurrence of most mutations in
the sequence could be predicted with good accuracy, with the
median AUC = 0.88, 0.73, and 0.69 for the first and second colon
test sets and for the lung test set, respectively (Fig. 2A). Muta-
tions for which occurrence could not be predicted (AUC < 0.5;
2 and 17% of the mutations in colon and lung cancers, re-
spectively) were significantly less common than those that were
readily predictable (rank-sum P value = 0.001 for colon and 2.4e-
106 for lung; Dataset S1), implying that the occurrence of these
low-frequency mutations is not linked to tumor progression.
More unexpected than the poor prediction for low-frequency

mutations, the prediction accuracy for mutations in known can-
cer driver genes was significantly lower than that for mutations in
all other genes, in both tumor types (Fig. 2 B and C). This ob-
servation is maintained when including only genes that are fre-
quently mutated (SI Appendix, Fig. S3). These findings indicate
that the driver mutations that determine the course of tumori-
genesis could not be readily predicted from the rest of the mu-
tational landscape of a given tumor type. In contrast, many
passenger mutations tend to be linked to specific drivers (39) and

Table 1. Datasets used for training and testing, for colon and lung adenocarcinomas

Dataset Colon Lung

Training COAD (n = 253) LUAD (n = 506)
Test Colorectal adenocarcinoma [DFCI (69), n = 612] Lung adenocarcinoma [Broad (71), n = 183]

Colorectal adenocarcinoma [Genentech (70), n = 72]
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thus could be predicted with confidence. Notably, however, the
subset of driver mutations for which good prediction accuracy
was achieved included DNA repair genes, such as MLH1, MSH2,
MSH6, PMS2, and MUTYH for colon cancer and DDX5 and
CHD1L for lung cancer, conceivably due to their effect on other
mutations in the sequence (Dataset S1).
Recently, it has been shown that LSTM RNNs can be used to

generate complex sequences by simply predicting one data point
at a time (24). We hence reasoned that similar technique could
be utilized to generate the mutational time sequence and thus
could be employed for mutational data reconstruction. We used
the LSTM scores to predict the occurrence of each mutation in
the time series (from the latest to the earliest), to determine the
occurrence of one mutation at a step in a simulated time series
(see Materials and Methods for details). In this manner, we
reconstructed 100 mutational samples for colon cancer and
100 samples for lung cancer (Datasets S2–S3). The K-means

clustering analysis did not separate the simulated data from
the real data (SI Appendix, Fig. S4 A and B), and principal
component analysis (PCA) showed notable similarity between
the simulated datasets and the real ones (Fig. 2 D and E), which
is maintained when considering only frequently mutated genes
(SI Appendix, Fig. S5). This similarity was observed also when
using the tSNE dimensionality reduction method (40) (SI Ap-
pendix, Fig. S4 C and D). Considering the patterns of occurrence
of the frequently mutated cancer drivers (those with the fre-
quency of mutation in the top 10%) in the simulated data, we
identified clear similarities to the observed patterns in the orig-
inal data, such as the mutual exclusion of APC, KRAS, and
TP53 in colon cancer and of KRAS and MGA in lung cancer
(Fig. 2 F and G and SI Appendix, Fig. S6).
To evaluate the effect of the actual order of the mutations in

the sequence function on the prediction of the preceding mu-
tations, we repeated this analysis for the 300 last mutations, in
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Fig. 1. Prediction of tumor mutational load from the mutational time series. (A) The test AUCs (y axis) obtained for training LSTMs on different lengths of
mutation sequences (x axis) when starting from the latest ordered mutation, for colon and lung test sets. (B–D) Correlation between the score assigned by
LSTMs with the 20 latest mutations in the time series (x axis), and the true mutational load (y axis, log transformed). (E–G) Spearman correlation between the
scores assigned by different learning models and the observed mutational load (y axis) when using different number of mutations from these that are or-
dered latest in the sequence (up to 50 mutations, x axis). The dashed lines show the results for classifiers trained on randomly selected mutations (rather than
the ordered sequence of mutations that is shown by solid lines). (H–K) Scores assigned by LSTM using the last 20 mutations for colon cancer patients with
different clinical characteristics. (L) PFS of lung cancer patients in the test set, of samples assigned with high vs. low (using the median) scores with the last
20 mutations. COAD, colon adenocarcinoma; LUAD, lung adenocarcinoma.
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both colon and lung cancers, after randomly permuting the order of
mutations in the sequence up to each predicted mutation (10 ran-
dom permutations for each prediction task). The comparison of the
results with those obtained with the original, ordered sequence of
mutations shows a dramatic drop in the prediction accuracy (paired
rank-sum P value < 0.06, 0.02, and 9e-6 for colon test set1, colon
test set 2, and lung test set, respectively; SI Appendix, Fig. S7). This
is a strong indication that the actual order of mutations is important
for predicting the mutational sequence.

Predicting Associations Between Major Cancer Drivers and Other
Genes. Given that most mutations are predicted with high accu-
racy from the time sequence, we investigated the possibility that

some mutations (currently classified as passenger) might also be
predicted from the ordered time sequence of mutations in cancer
driver genes which play key roles in tumor development. Mutations
that might be predicted through their association with major cancer
drivers are of obvious interest because they could potentially con-
tribute to different aspects of tumorigenesis. To explore such po-
tential associations, we selected well-characterized, major cancer
drivers in each tumor type studied (n = 42 for colon and n = 26 for
lung;Materials and Methods) and utilized the discrete time series of
their occurrences to predict the occurrence of other mutations. This
analysis yielded 354 genes for colon cancer and 273 genes for lung
cancer in which mutations could be predicted robustly with high
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Fig. 2. Prediction and generation of the sequence of mutations. (A) Histogram of mutations count (y axis) for each performance level (AUC; x axis) for
mutation prediction in a sequence for colon cancer test sets (pink and purple bars for test sets 1 and 2, respectively) and for lung cancer test set (green bars).
(B) Mean AUC of mutation prediction in the sequence for the two colon test sets: comparison of drivers with all other genes. (C) AUC of mutation prediction
in the sequence for the lung test set: comparison of drivers with all other genes. (D and E) Scatter plots of PC1–PC3 obtained by PCA applied to the combined
mutational data from all datasets used and the simulated samples, for colon and lung cancers, respectively. The percentage of variance explained by each PC
is indicated in parentheses. (F and G) Presence–absence patterns for the high-frequency cancer drivers in the reconstructed mutational samples (red) and the
TCGA mutational data (blue) for colon and lung cancers, respectively. The samples are ordered by the hierarchical clustering results, with the Euclidean
distance metric and average linkage.
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AUC from multiple points in the time series of the major drivers
(Materials and Methods and Dataset S4).
Given that these mutations are accurately predicted using a

short mutational sequence that includes only the major drivers,
we hypothesized that the respective genes interact with these
drivers. To further characterize the potential functional con-
nections between the major drivers and the identified associated
genes, we first determined which driver contributed to the pre-
diction of each of the identified driver-associated mutations
(Materials and Methods) to generate a list of driver–interactor
pairs for colon and lung cancers (Fig. 3A and Dataset S5). A
STRING interactions enrichment analysis (41, 42) (Materials and
Methods) showed that for 68 and 39 predicted driver–interactor
pairs in colon and lung cancers, respectively, the interaction is
validated under the multiple criteria implemented in STRING
(hypergeometric P value ≈ 0 and 5.2675e-04 for colon and lung,
respectively). When the major cancer drivers were analyzed in-
dividually, we found significant (P value < 0.05) STRING en-
richment between about 22% of both colon and lung cancer
major drivers and their predicted interactors, a result that is
unlikely to be obtained by chance (Fig. 3A; permutation P
value < 0.001 for both colon and lung).
The node degrees of the major cancer drivers in the network

of STRING-validated interactions vary substantially within the
networks inferred for each tumor type and differ between the
colon and lung networks for shared drivers, with the mean de-
gree of 3.5 for colon and 3 for lung (Fig. 3 C and D). In both
networks, SMAD4, a gene encoding a protein involved in the
TGF-beta signaling pathway (43), is highly connected. Most of
the genes connected with SMAD4 in these networks are also
involved in TGF-beta signaling, but the specific subsets of these
genes differ between the colon and lung networks. Several of
these interactions have been reported previously. In particular,
MAP2K4 has been identified as a conditional tumor suppressor
in lung adenocarcinomas but not in colon cancer (44), whereas
mutations in HIF1A are associated with poor prognosis in colon
cancer (45); furthermore, HIF1A protein physically interacts
with SMAD4 under hypoxic conditions in colon cancer cell lines
(46). The degree of TP53 is considerably higher in the lung

cancer network than in the colon cancer network, possibly due to
different TP53 mutants that are observed in these tumors (47)
that have different interacting partners (48). Notably, in both the
colon and the lung networks, TP53, SMAD4, ATM, and
NF1 belong to the same strongly connected network module,
whereas major tumor-specific cancer drivers such as APC (co-
lon) and EGFR (lung) are disconnected.
Next, we systematically assessed whether the predicted inter-

actors of the major cancer drivers are involved in the same or
similar processes with the corresponding drivers. Using GO
(Gene Ontology) enrichment (49, 50), we find that for both
colon and lung cancers, all major drivers share a significant (with
hypergeometric P value < 0.05) overlap of the sets of GO pro-
cesses with their predicted interactors (Fig. 4 A and B). This level
of enrichment in shared processes is unlikely to be reached by
chance (permutation P < 0.001 for both colon and lung).
For the 13 major drivers that are shared between colon and

lung cancers, we identified 1,119 GO significantly enriched
processes (enrichment P value < 0.01; Dataset S6). For the
predicted interactors of these major drivers, 240 GO processes
are highly enriched in the case of colon cancer, and 229 pro-
cesses are highly enriched for lung cancer. Of these, 133 GO
processes are shared between the interactors from colon and
lung cancers (hypergeometric P value ≈ 0), and among them, 34
GO processes are shared with the set of processes enriched
among drivers (hypergeometric P value = 0.02; Fig. 4C and
Dataset S6). Among the GO processes that are shared between
these major cancer drivers and their interactors are cell motility
pathways, regulation of cell development, differentiation and
growth factor stimulation, and mesenchyme development pro-
cesses. It appears plausible that the predicted interactions of
diverse genes with the major drivers promote tumor growth and
aggressiveness through the modulation of those processes.

Driver–Interactor Modules Are Associated with Patients’ Survival.We
next investigated the bipartite network of major drivers and their
predicted interactors. In an attempt to infer the contributions
of these interactions to tumor fitness through patients’ survival,
we first sought to identify modules of major drivers that share
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interactors. To this end, we performed a heuristic search for
driver modules, aiming to cover the maximum number of drivers
in each tumor type. Specifically, we searched for the maximum
partition of each tumor graph into disjoint subgraphs, such that
each subgraph is complete (more precisely, the relation between
the modules of drivers and interactors is complete; see Materials
and Methods for details). In colon cancer, we identified 3 mutu-
ally exclusive modules of drivers (with mutually exclusive pair-
wise interactions), which together cover 22 of the 23 major colon
cancer drivers with predicted interactions (all but the DCC
gene), and 47 interactors (Fig. 5 A–C). For each module, we then
identified the TCGA colon samples in which the given module is
highly mutated (see Materials and Methods for details). We
performed Kaplan–Meier survival analysis comparing the sur-
vival curves between samples with high vs. low number of mu-
tations of the predicted interactors within each module,
conditional on the drivers in the respective module being highly
mutated. Strikingly, we found that the high mutation rate of
interactors of each of the three modules is associated with poor
survival when the driver component of the module is mutated
(Fig. 5 D–F). For some of these shared interactors, we also find
that individual mutations are significantly associated with lower
survival rate in the context where their driver module is highly
mutated (Fig. 5 G–I). Among these, SIX4 expression has been

shown to correlate with lymph node metastasis and late stage
and unfavorable prognosis of colorectal cancer (51), and PBX3
mutations have been identified in colorectal tumor cells un-
dergoing epithelial–mesenchymal transition and have been
shown to be associated with poor prognosis (52).
For the lung adenocarcinoma mutational data, we detected

two mutually exclusive modules of drivers (with mutually exclu-
sive pairwise interactions) that together cover 10 of the 18 major
lung cancer drivers with predicted interactions, with 47 inter-
actors of these drivers (Fig. 6 A and B). Similarly to the obser-
vations on colon cancer, a high number of mutations in the
interactors of each driver module is associated with poor survival
in samples where the corresponding drivers are mutated (Fig. 6
C and E) and with lower PFS (Fig. 6 D and F). For four of the
predicted interactors of module 1 (but none for module 2), we
also find that some of the individual interacting mutations are
significantly associated with lower survival rate when drivers
from this module are mutated (Fig. 6G). One of such interactors
is EPN1, an Epsin family member shown to regulate tumor
progression (53).

Discussion
Most epithelial cancers are preceded by premalignant lesions,
which frequently display mutations in cancer driver genes (54–57).
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Nevertheless, early and late events are not universally characterized
in most epithelial tumors, with the exception of colorectal cancer,
where tumor progression has been thoroughly dissected in terms of
stepwise accumulation of somatic mutations. This phenomenon
starts from transformation of normal epithelium to an adenoma,
proceeding to in situ carcinoma and ultimately to invasive and
metastatic tumor, where specific mutations mark each step in this
tumorigenic transformation (17, 19). It is hence reasonable to
surmise that time series prediction approaches could be valuable
when applied to the sequence of these genetic events in tumors.
RNNs, and particularly gated RNN architectures such as

LSTMs, have recently shown promising results in learning long-
term dependencies of sequences for multiple tasks of classifica-
tion (58, 59) and for data labeling and synthesis (24, 60). Here we
show that the mutational time series could be utilized via LSTM
networks to achieve good performance in otherwise difficult
prediction tasks. Using the estimated order of mutations ap-
pearance in tumor evolution, we demonstrate that end point
conditions, such as the mutational burden and clinical pheno-
types, could be predicted from a limited number of mutations.
The nonlinear relations learned by the networks, together with
the discrete representation of the data, enable performance that
is significantly superior to the previous models built for this task
(61, 62). The model can learn intricate dynamics of the muta-
tional sequence in tumor evolution that can subsequently be used
for the reconstruction of mutation sequences. When more data
become available and the relevant neural network models are
further refined, similar approaches could be applied to re-
construct data on actual DNA sequences and could thus exten-
sively contribute to our understanding of tumor evolution. It is
worth pointing out that applications of LSTMs generally take
advantage of much larger data for training because in these, the
input alphabet as well as possible labels are from a much larger

range, thus substantially increasing the size of the dataset re-
quired for training. In our analysis, discretizing the mutational
data and maintaining discrete labels (i.e., both input size and
labels are always of size 2) generates a simple enough problem
that can be approached even with limited amounts of data (Table
1). We also found that LSTMs perform much better than linear
classifiers, such as support vector machine (SVM), for the pre-
diction of the mutational load. This is likely to be the case be-
cause LSTMs learn nonlinear relationships between mutations in
the given sequence, rather than defining a linear separating hy-
perplane, with the underlining assumption that the mutational
load can be predicted using a linear function of mutations.
A potentially important contribution of this approach is the

identification of interactors of the major cancer drivers. Here we
predict many such interactors and show that they are significantly
enriched with STRING interactions and show nonrandom overlap
of GO processes with the corresponding major drivers. Anecdotally,
at least some of the better characterized interactors were found to
be involved in the same pathway with the corresponding driver. In
contrast, we find that the predicted interactors of each drivers are
not located on similar chromosomal arms (SI Appendix, Fig. S8),
suggesting that these are mostly functional, rather than physical
interactions. Furthermore, and most strikingly, we found that mu-
tations in these predicted interactors, in the presence of the corre-
sponding driver mutations, are associated with poor survival and,
thus, are likely to confer growth advantage at the respective steps of
tumor progression. We identified unique modules of major drivers
and their interactors for both colon and lung cancer. The strong
correlation with patients’ survival suggests that these interactions are
clinically relevant and, if further tested, could potentially be used for
patients’ stratification and clinical decision-making. The identified
interactors can be regarded as secondary drivers whose oncogenic
activity is conditional to and associated with the occurrence of
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mutations in major drivers for the respective cancer types. Hence,
these conditional drivers could be readily predicted notwith-
standing the low accuracy of prediction for most of the major
drivers themselves.
To summarize, in this work, we present the application of LSTM

for learning the stepwise sequence of mutations in tumors. This
approach is shown to efficiently tackle several tasks that are not
amenable to standard techniques, such as prediction of the occur-
rence of mutations and reconstruction of mutational data. Our
findings reveal a unidirectional relation between driver and pas-
senger mutations: drivers determine the course of tumorigenesis,
and their occurrence is difficult to predict from the rest of the
mutational landscape, whereas passengers are often linked to spe-
cific drivers and so can be predicted with confidence. Thus, drivers
are indeed in the driver’s seat and bring with them a host of as-
sociated passengers, some of which could be secondary, conditional
drivers. The present results support the notion that long-term de-
pendencies between genes involved in tumorigenesis and cancer
progression are widespread in tumor evolution and can be learned
from the mutational sequence using LSTM networks and similar
approaches. We show that this notion holds for colon cancer, where
the stepwise process of mutation acquisition is established, but also
for lung cancer for which such a stepwise model has been suggested
but remains controversial. Similar strategies could be readily
employed for other tumor types and different types of biological

data to advance our understanding of tumor initiation and pro-
gression through the dissection of the sequence of evolutionary
events.

Materials and Methods
Mutation Data. Mutational data of colon and lung adenocarcinoma from
TCGA were used for training throughout this work and were obtained from
Xena browser (63). Datasets used for testing were obtained from cBioPortal
(64, 65). The datasets are summarized in Table 1, spanning 1,626 samples
overall, each derived from a distinct tumor.

Driver Mutation Lists for Lung and Colon Cancers. The union of driver genes
obtained from (66) and (67) was used for lung and colon cancers (Dataset S7).

Preprocessing and Sorting Mutational Data. To generate the binary sequence
of mutations, we first discretize the mutational data assigning 1 for each
nonsynonymous mutation. For each cancer type, we then consider all genes
that are mutated at least once in all datasets used (totals of 12,322 and
12,327 mutated genes for colon and lung cancer, respectively).

To sort the mutations of colon and lung adenocarcinoma by their esti-
mated temporal order, we evaluate the following function for each TCGA
training dataset:

Order ScoreðgiÞ=
X

all   genes  gj

P
all   samples  ssgi = 1& sgj = 1

P
all   samples  ssgi = 1& sgj = 0

, [1]

where sgi = 1 if sample s has a mutation in gene gi. We calculate the order
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score for each considered gene using the TCGA datasets that are used for
training and use that score to sort the test datasets. Order scores calculated
using the test datasets were found to significantly correlate with that derived
from the training set for both colon and lung cancers (SI Appendix, Fig. S9).

LSTM Machines. Each LSTM network unit defines a time t in a sequence (the
subscript t denotes the mutation that is ordered t in the tumor evolution via
the order score defined above), and is composed of the following components:

ft = σgðWfxt +Ufht−1 +bf Þ, [2]

it = σgðWixt +Uiht−1 +biÞ, [3]

ot = σgðWoxt +Uoht−1 +boÞ, [4]

ct = ft ⊙ct−1 + it ⊙σcðWfxt +Ufht−1 +bf Þ, [5]

ht = ft ⊙σcðctÞ, [6]

where the initial values are c0 = 0 and h0 = 0. ⊙ denotes the Hadamard
product.

xt are the input vectors to the LSTM unit (an ordered sequence of mu-
tations). ft , it, and ot are the activation vectors for the forget gate, input
gate and output gate, respectively. ht is the output vector of the LSTM
unit, and ct is cell state vector. W and U are the weight matrices, and b re-
presents the bias matrices that are learned during training. σ represents
the nonlinear functions, where σg is the gate activation, sigmoid function

σgðxÞ= ð1+ e−xÞ−1, and σc is the state activation, tanh (hyperbolic tangent)

function,tanhðxÞ= e2x − 1
e2x + 1.

All LSTM networks used in this work are sequence-to-label LSTMs with five
hidden layers and were trained using Adam optimizer (68), where the maximum
number of epochs for training was set to 100 for the mutational load prediction
and to 10 for all other prediction tasks. The minibatch size used for each training
iteration was set to 27, with a standard gradient-clipping threshold set to 1.

Training LSTMs to Predict the Mutational Load. We train LSTMs for the se-
quence up to each time point when starting once from the mutation ordered
last, and second from the mutation ordered first in the sequence. The two-
categorical labels Ls ∈ f0,1g are defining low (0, <median) vs. high muta-
tional load (1, >median). For each time point t, an LSTMt is trained on the
training set using the sequence up to t and is then applied to the test set to
predict the mutational load using the time sequence of mutations up to t.
For each time point t, the resulting scores are used to evaluate the perfor-
mance via two measures: (i) the AUCt resulting from an ROC curve, pre-
dicting the low vs. high categories in the test, and (ii) the Spearman rank
correlation coefficient ρt between the LSTMt scores that are assigned to each
test sample and the actual mutational load of the sample.

Training KNN, SVM, and Logistic Regression Classifiers to Predict the
Mutational Load. KNN (with K = 5), SVM (using linear kernel), and logistic
regression classifiers were trained on the training sets using (i) sequences of
the latest ordered mutations that were used as input to the LSTMs and (ii)
sequences of 50 randomly selected mutations. These were trained to predict
low vs. high mutational load as described for the LSTMs and applied to the
test sets, and the resulting classification scores were correlated with the true
mutational load via Spearman rank correlation.

Training LSTMs to Predict the Occurrence of Succeeding Mutations in the Time
Sequence. To predict the occurrence of a mutation ordered t in the sequence,
we train LSTM for the sequence starting from the mutation ordered last up
to time point t + 1 using the training sets and test their performance for
predicting these occurrences in the test sets, where the two-categorial labels
Ls ∈ f0,1g are defining the occurrence of the mutation.

Training LSTM Networks to Simulate Mutational Data. To synthesize muta-
tional data, we use the full mutational data for each cancer type. We re-
construct 100 simulated mutational samples for each tumor type, one
mutation at a step, from the last-ordered mutation to the first.

For the last-ordered mutation we randomly assign 1 to reconstructed
samples corresponding to the frequency of the mutation in the genuine

datasets. To assign the occurrence of every othermutation t to the reconstructed
samples, we train LSTMt to predict the occurrence of t from the sequence
starting from the mutation ordered last up to time point t + 1 and apply LSTMt

to the simulated sequence (synthesized up to time point t + 1), to obtain a
vector of scores predicting the occurrence of mutation t in each reconstructed
sample. We then use freqt, the frequency of the t ordered mutation in the
genuine datasets, and assign 1 to the freqt mutations that were assigned with
highest scores by LSTMt when applied to the reconstructed sequences.

PCA was applied to the integration of all datasets (Fig. 2 D and E and SI
Appendix, Fig. S5 A–D) or, when inferring the PCA coefficient, without the
training sets (SI Appendix, Fig. S5 E and F).

Training LSTMs to Identify Mutations That Interact with the Major Cancer
Drivers and Assigning Major Drivers to Interacting Mutations. We select the
driver genes in which mutations are observed frequently in our training sets
(top 0.1 percentile). These genes are defined as major drivers and are used as
an ordered sequence of mutations (n = 42 for colon and n = 26 for lung;
Dataset S4). The sequence of occurrences of these major drivers is used to
predict the occurrence of other mutations, excluding those with very low
frequency (genes that are mutated in three samples or less) as the prediction
of those could be obtained easily by chance. We hence trained 42 LSTMs for
colon and 26 for lung (using the sequence of major drivers up to each time
point). The genes that could be predicted with AUC > 0.85 for the test set
repeatedly, from multiple locations in the sequence of drivers, are selected
as predicted interactors of the major drivers.

We then use the scores produced by the LSTMs where the driver-
interacting gene is well predicted and correlate them with the occurrence
of each of the major drivers. The major drivers whose occurrence is signifi-
cantly correlated (Spearman P value < 0.05) with the LSTM scores predicting
a given driver-interacting gene are combined with it into driver–interactor
pairs. A detailed graphical schema describing the steps of this analysis can be
found in SI Appendix, Fig. S10

Enrichment with STRING Interactions and GO Analysis. To investigate whether
the pairs of major drivers and their predicted interactors are enriched with
established interactions, we performed the following analyses: (i) STRING
enrichment, in which hypergeometric enrichment analysis was performed
for each major driver gene, to find if its LSTM-predicted interactors are
enriched with its interactors from the STRING database, and (ii) GO enrich-
ment, where for each major driver, we calculated the percentage of its as-
sociated interactors that share a significant number of GO processes with it
(hypergeometric P value < 0.05) and the mean percentage of overlapping
GO pathways with its interactors. We then calculate an empirical P value
from 1,000 repetitions, with drivers randomly assigned to the identified
interacting mutations (maintaining the same degree).

Modules of Major Drivers and Interacting Genes. To cover as many drivers as
possible, we createdmodules via a heuristic search using 10,000 repetitions of
the following genetic algorithm. Starting with a randomly selected major
driver, in each round, we randomly selected a major driver that had not yet
been added to the module and added it to the module if its addition did not
decrease the number of mutual module-interactors by more than 20%. The
round ended when 100 random selections were not added to the current
module or when the number of interactors of a module was less than 3.
Finally, we investigated the 10,000 modules and selected those that together
cover maximal number of major drivers such that the modules were mutually
exclusive with respect to both drivers and interactors.

Survival Analyses. All Kaplan–Meier analyses are performed by comparing
the survival of patients with high scores (module mutational count larger
than median) to those with low scores, using a one-sided log-rank test.

Code Availability. All code was implemented in MATLAB_R2018a using Deep
Learning Toolbox and is publicly available through GitHub: https://github.
com/noamaus/LSTM-Mutational-series.
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