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Humans use a family of more than 400 olfactory receptors (ORs)
to detect odors, but there is currently no model that can predict
olfactory perception from receptor activity patterns. Genetic varia-
tion in human ORs is abundant and alters receptor function, allowing
us to examine the relationship between receptor function and
perception. We sequenced the OR repertoire in 332 individuals and
examined how genetic variation affected 276 olfactory phenotypes,
including the perceived intensity and pleasantness of 68 odorants at
two concentrations, detection thresholds of three odorants, and
general olfactory acuity. Genetic variation in a single OR was fre-
quently associated with changes in odorant perception, and we
validated 10 cases in which in vitro OR function correlated with
in vivo odorant perception using a functional assay. In 8 of these 10
cases, reduced receptor function was associated with reduced inten-
sity perception. In addition, we used participant genotypes to quan-
tify genetic ancestry and found that, in combination with single OR
genotype, age, and gender, we can explain between 10% and 20%
of the perceptual variation in 15 olfactory phenotypes, highlighting
the importance of single OR genotype, ancestry, and demographic
factors in the variation of olfactory perception.
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Understanding how the olfactory system detects odorants and
translates their features into perceptual information is one

of the fundamental questions in olfaction. Although early color
vision researchers were unable to directly observe receptor re-
sponses, perceptual deficits caused by genetic variation (i.e., color
blindness) helped show that color vision is mediated by three re-
ceptors responding to different wavelengths of light (1, 2). Guillot
(3), and then Amoore (4), extended this idea to olfaction and
proposed that cataloging specific anosmias (the inability to per-
ceive a particular odorant) may provide similar clues linking genes
and perception. Early applications of this idea failed, presumably
because olfaction relies on hundreds of receptors, and without
direct observation of their responses, psychophysical tests could
not untangle the fundamental rules of odor coding. However, with
the advent of next-generation genome sequencing to profile ol-
factory receptor (OR) genes and cell-based assays to identify li-
gands for ORs, receptor variation can now be matched to
individuals and receptor responses can be directly observed.
Humans have approximately 400 OR genes that are intact in

at least part of the population, but individuals have different
repertoires of pseudogenes, copy number variations, and single
nucleotide polymorphisms (SNPs) that can alter receptor re-
sponses (5–7). While nonfunctional genes are rare in the genome
(on average approximately 100 heterozygous and 20 homozygous
pseudogenes in an individual), they are significantly enriched in
OR genes (8). This provides a useful set of “natural knockouts”
to examine the role of a single OR in olfactory perception and
distinguish between different hypotheses of how odor in-
formation is encoded. For example, the number of ORs activated

by an odorant has been proposed to encode both intensity and
pleasantness (9, 10). Alternatively, the large set of ORs may
redundantly encode odorant representations, such that loss of
function of a single OR only rarely has perceptual consequences.
Recent work suggests that functional changes in a single receptor
can have significant perceptual consequences, but data linking
perceptual and genetic variation exist for only five ORs (11–15).
We extended these studies to the entire OR repertoire, under the

premise that studies of natural perceptual variation will improve our
understanding of the normal translation of OR activity to odor per-
ception. Here we identified associations between genetic variation in
418 OR genes and 276 olfactory phenotypes, used cell-based func-
tional assays to investigate the mechanisms underlying the associa-
tions, and examined the contributions of single OR genotype, genetic
ancestry, age, and gender to variations in olfactory perception.

Results
We carried out high-throughput sequencing of the entire OR sub-
genome in a cohort of 332 participants who had been previously
phenotyped for their sense of smell. These data include ratings of the
perceived intensity and pleasantness of 68 odorants at two concen-
trations (SI Appendix, Table S1), detection thresholds of three
odorants, and overall olfactory acuity (16). Participants rated each
stimulus twice, and the median within-subject test-retest correlation
was 0.63 for intensity ratings and 0.57 for pleasantness ratings.

Significance

A persistent mystery in olfaction is how the combinatorial acti-
vation of a family of 400 olfactory receptors (ORs) encodes odor
perception. We take advantage of the high frequency of natural
OR knockouts in the human genome to tackle a major bottle-
neck in the field—namely, how an odor is transduced into per-
ceptual characteristics. We demonstrate that loss of function of
an individual OR correlates with changes in perceived intensity
and pleasantness. This study demonstrates how natural varia-
tion can provide important clues to the normal translation of OR
activation to odor information and places a constraint on the
amount of redundancy in the olfactory code.
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High-Throughput Sequencing of the OR Gene Family. We used Illu-
mina short-read DNA sequencing to analyze target regions
consisting of 418 ORs and 256 olfactory-related genes (∼800 kb),
obtaining a minimum of 15× coverage for 96% of the targeted
bases and identifying 19,535 variants. We validated a subset of
these by comparing them with variants identified from Sanger
sequencing data for 10 ORs. Eight ORs had >95% concordance
between the two sequencing methods, while concordance
was <85% for OR10G4 and OR10G9. These ORs share >95%
sequence similarity (17), making it difficult to assign genetic
variants to the correct genomic location. Therefore, alternate
sequencing methods may prove necessary for ORs with high
sequence similarity. However, high-throughput sequencing can
be expected to accurately identify sequence variants for ORs in
which sequencing reads map with high confidence (90% of ORs
have a median mapping confidence >99.9%).

Genetic Variation in Single ORs Frequently Associates with Odorant
Perception. We first examined the association between the ge-
notype of each OR and 276 different phenotypes (Fig. 1, SI
Appendix, Fig. S1, and Dataset S1). Eight odorant perception
phenotypes (including mixtures; 12% of the tested odors) were
significantly correlated with variation in a single OR locus [linear
model, P < 0.05 following false discovery rate (FDR) correction].
These results indicate that although a given odorant typically
activates multiple ORs, variation in a single OR was frequently
associated with perceptual features. For these top associations,
OR variation tended to associate with perceived intensity (88%
of eight significant associations) rather than with perceived
pleasantness (P = 0.07 via a binomial test).

In Vitro Assays Confirm Genetic Associations. We next used a func-
tional assay to search for a mechanistic explanation for the as-
sociations between OR genetic variation and perception. ORs
tend to cluster in the genome, and this spatial proximity makes it

difficult to discriminate between the causal mutation and nearby
SNPs in linkage disequilibrium with the causal mutation (18, 19).
To illustrate this point, three different ORs in close proximity on
chromosome 6 were significantly associated with the perceived
intensity of 2-ethylfenchol: OR11A1, OR12D2, and OR10C1
(Fig. 2A). The most highly associated SNP (Dataset S2), found in
OR10C1, is in high linkage disequilibrium with SNPs in OR11A1
and OR12D2, with >60% correlation in the 1000 Genomes
Project EUR superpopulation data (20, 21).
To investigate these associations, we cloned all major haplo-

types in this locus and found that only OR11A1 haplotypes
responded in the heterologous assay (Fig. 2B). OR haplotypes
with lower maximum responses in cell culture were associated
with lower perceived intensity ratings (Fig. 2C). These results in-
dicate that of the three ORs found to significantly associate with
the perceived intensity of 2-ethylfenchol in our analysis, OR11A1
was the best candidate for a causal receptor at this locus.

Hyporesponsive OR Haplotypes Are Associated with Changes in
Perceived Intensity or Pleasantness. We performed a similar anal-
ysis for our top 50 associated OR/odorant phenotype pairs (Fig.
1), relating the response of associated and linked ORs to odorant
perception in our participants. After examining linkage dis-
equilibrium at each locus (SI Appendix, Fig. S2) and removing
cases in which multiple ORs from a single locus were associated
with the same odorant, we identified a total of 36 unique OR
loci-odorant associations. Based on the FDR for these top as-
sociations, we expected 66% of them to be false positives (22).
To discriminate false positives from true positives, we cloned all
major haplotypes for associated ORs, along with at least one
haplotype for any OR linked to the associated receptor (SNP
correlation >0.6, corresponding to a total of 200 clones; Dataset
S3), and tested their response to the associated odorant in our
heterologous assay. We tested clones that accounted for on av-
erage 73% of the haplotypes found in our participant population.
Eleven of these loci (31%) had at least one OR that responded

to the associated odorant in cell culture, for a total of 14 re-
sponsive ORs (Figs. 2A and 3). Three OR-odorant pairs (OR7D4-
androstenone, OR7D4-androstadienone, and OR10G4-guaiacol)
were previously identified using this dataset with Sanger sequenc-
ing (12, 15) and were confirmed here via Illumina sequencing. In 5
of these 14 cases, subjects with less responsive OR haplotypes rated
the perceived intensity of the receptor ligands as less intense com-
pared with subjects with more responsive OR haplotypes (Figs. 2 B
and C and 3 C, H, and I), as was also demonstrated by a previously
reported correlation between OR7D4 function and the perceived
intensity of androstenone (12). In other cases, less responsive OR
haplotypes were correlated with greater perceived intensity (Fig.
3D), changes in perceived pleasantness (Fig. 3 E and F), or both
(Fig. 3A), as shown by previously reported correlations between
OR7D4 and OR10G4 function and the perception of androstadie-
none (12) and guaiacol (15), respectively. For three ORs, haplotype
function did not clearly associate with perception; similar in vitro
function was associated with changes in perception (Fig. 3 B and J),
or differences in function were associated with little change in
perception (Fig. 3G). Overall, in vitro functional variation in a single
OR predicted intensity perception, pleasantness perception, or both
for 10 different OR-odorant pairs in this dataset, three of which
have been reported previously (12, 15).
Finally, in four cases, although phenotypes were significantly

associated with genetic variation in a single OR locus (P < 0.05
following multiple comparisons correction), we were unable to
identify an OR that responded to the associated odorant in cell
culture (Fig. 4). Not all ORs have been functionally expressed in
in vitro assay systems (23). To determine whether our inability to
identify a causal OR was due to technical limitations, we modi-
fied the ORs in Fig. 4 using conserved residues in rodent and
primate orthologs as a guide and tested their responses to the
associated odorant. We produced a consensus version of OR6Y1
by changing nine different amino acids to match the most com-
mon amino acid at that position in 10 orthologous rodent and
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primate receptors (SI Appendix, Fig. S3A). The consensus
OR6Y1 responded to diacetyl but not to 2-butanone, providing
support for OR6Y1 as the causal receptor for the association
with diacetyl (SI Appendix, Fig. S3B).

Genetic and Demographic Influences on Human Odorant Perception.
We then determined how much phenotypic variance in odorant
perception could be explained by four genetic and demographic
factors: the genotype of the single OR that explained the greatest
variance for each phenotype, genetic ancestry, gender, and age
(Dataset S4). All four factors were significant contributors to
different olfactory phenotypes, most significantly single OR ge-
notype and genetic ancestry.
Genetic ancestry was quantified by plotting participants according

to the first two principal components (PCs) calculated from genotype
data (SI Appendix, Fig. S4 A and B). To search for an explanation for
the associations with genetic ancestry, we examined the correlation
between each PC and odor perception (Dataset S5). Examining
participants’ self-reported ancestry demonstrated that PC1 separated
Caucasians and Asians from African Americans. PC1 explained >4%
of the variance in six different phenotypes (P < 0.01 following FDR
correction) (SI Appendix, Fig. S4C), most significantly the perceived
pleasantness of vanillin (r = 0.28, P < 0.0001 following FDR cor-
rection), which self-reported Caucasians and Asians rated as more
pleasant than African Americans did (SI Appendix, Fig. S4D). PC2
separated Caucasians and African Americans from Asians (self-
reported), had less effect on olfactory phenotypes (P > 0.05; SI Ap-
pendix, Fig. S4E), and explained at most 4% of the variance in
spearmint perception (r = −0.20, P = 0.054 following FDR correc-
tion), which self-reported Asians tended to rate as more pleasant than
African Americans and Caucasians did (SI Appendix, Fig. S4F).
The median percentage of total phenotypic variance that we

could explain using single OR genotype, genetic ancestry, gender,
and age was 4.77%. Fig. 5 illustrates the relative contribution of all
four factors to the 25 phenotypes for which we could explain the
most variance (P < 0.0001). The test-retest correlation for a
phenotype provided an upper bound for the amount of perceptual

variance that we could explain (shown in gray in Fig. 5) (24). For
some perceptual phenotypes, our model accounted for >80% of the
explainable variance, such as the perceived intensity of diacetyl, for
which single OR genotype is the main contributor, and the per-
ceived intensity of nonyl aldehyde, for which age is the main ex-
planatory variable. For other phenotypes, such as the perceived
intensity of 2-ethylfenchol and linalool, OR genotype, genetic an-
cestry, age, and gender accounted for <50% of the explainable
variance. These results indicate that while genetic variation in a
single OR is an important contributor to perceptual variance,
methods that consider multiple ORs may allow us to account for
more of the explainable variance in a particular phenotype.

Discussion
In this large-scale study of the relationships among OR genetic
variation, OR activation, and odorant perception, we examined 36
different OR loci-odorant pairs in cell culture, demonstrated that at
least one OR from 11 of these loci responded to the associated
odorant, and found that OR response in vitro matched the perceived
intensity or pleasantness of the associated odorant for 10 different
OR-odorant pairs. Three of these pairs have been reported pre-
viously (12, 15), and here we describe seven pairs in which genetic
variation in a single OR predicts intensity or pleasantness perception.
Our results have important implications for olfactory coding.

First, although most odors activate multiple ORs, functional var-
iation in only a single OR altered perception for 13% of 68 odors.
This increases the number of known cases directly linking OR
activation to odorant perception from 6 to 13 (11–15) and places a
constraint on the amount of redundancy in the combinatorial
code. These cases provide valuable tools for exploring and ma-
nipulating the olfactory code using agonists or antagonists and for
examining the contributions of activation of individual ORs to the
coding of odorant information, much as characterization of OR
responses to ligands in the empty neuron system of Drosophila
melanogaster (25) has allowed researchers in the field to choose
rationally diverse odorant sets (26) and manipulate specific sub-
populations of ORs to dissect olfactory coding (27, 28).
Second, loss of function in an OR was correlated with a de-

crease in the perceived intensity of the ligand in 8 out of 10 cases
in this dataset, in accordance with previous studies (12, 14, 15).
The specificity of the effect is inconsistent with a proposed model
in which the bulk of ORs encode odorant identity and a subset of
broadly tuned receptors encode odorant intensity (29). The rep-
ertoire of activated ORs changes with odorant concentration, and
thus a genetic variation in an OR will be perceptually relevant
only at certain concentrations. We tested two concentrations of
each odorant and found that perceived intensity was more strongly
associated with genetic variation in a particular OR at one of the
concentrations. This finding is consistent with work showing that
different receptors in D. melanogaster are necessary for perception
in different concentration ranges (30).
Third, loss of function in an OR was correlated with both di-

minished and enhanced perception of pleasantness for different
odors. In most cases, OR variation was correlated with changes in
perception of both intensity and pleasantness, although the effect
on the latter was usually smaller (below the top 50 associations).
In only 1 case out of 10 was variation in OR function related to
changes in perceived pleasantness with no associated changes in
perceived intensity (isoeugenol in Fig. 3F). One possibility is that
the change in intensity is driving pleasantness; however, without
knowing how pleasantness changes across a full range of con-
centrations, we could not test this hypothesis here.
Fourth, we found that genetic variation in a single receptor

had a greater effect on intensity and pleasantness than on de-
tection threshold. Previous studies focused on the correla-
tions between OR genetic variation and differences in detection
threshold (11, 13, 31), but in our dataset, no single OR was as-
sociated with the detection threshold of vanillin, isovaleric acid,
or pentadecalactone at a significance level that warranted testing
in cell culture. Poor genotyping frequency prevented us from testing
a published association between OR11H7 and isovaleric acid
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detection thresholds (11) (SI Appendix, Fig. S1); however, the
OR56A4 genotype was significantly associated with isovaleric acid’s
perceived pleasantness, but not with its detection threshold. Simi-
larly, the OR7D4 genotype explains more of the variance in the
perceived intensity of androstenone than its detection threshold
(12). Differences in phenotype measurements also may have

accounted for our failure to find a previously identified association
between the OR2J3 genotype and cis-3-hexenol perception, as the
original study examined the detection threshold and here we
measured perceived intensity (13) (SI Appendix, Fig. S1).
Although we did not confirm our associations in a second

population, cell-based assays provide additional evidence of their
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validity. The high linkage disequilibrium that characterizes many
OR loci makes identifying causal ORs difficult using association
analyses (18). To overcome these limitations, we used a cell-based
assay to identify the response of the associated and linked ORs to
odorants. Because heterologous assays have identified ligands for
only 12% of the roughly 400 intact human ORs (32), we expected
to identify a causal OR for 12% of our associations. Given that the
FDR for our top 50 associations was 66%, among the 36 OR-
odorant pairs that we examined, we expected to find 12 true
positives and 24 false positives. In fact, we found 11 cases in which
the associated OR-odorant pair was active in vitro, which was
much higher than the expected 12% (approximately one case)
based on previous work in heterologous assays.
These results suggest that the receptors relevant to perception

are enriched in the set of receptors that respond in the in vitro
assay. ORs that are functional in vitro are also more likely to be
found in the set of receptors expressed in the human olfactory
epithelium (OE) (33). Furthermore, deorphanized (33) or per-
ceptually relevant ORs (11–15) are expressed at 1.5-fold higher
levels than other intact ORs (34) (P < 0.0001 for both via a bi-
nomial test) (Figs. 2 and 3). One possibility is that a large frac-
tion of intact human ORs are nonfunctional in vivo and not
expressed in the OE. In summary, our results indicate that cell-
based assays are a useful proxy for identifying behaviorally rel-
evant ORs that are expressed in the OE and whose activation
can be directly tied to perception.
Despite these successes, there are certainly cases in which

in vitro results do not predict perception. In vitro assays lack
critical components of the OE, including proteins in the mucous
layer that transport and modify odorant molecules (23). Our cell-
based assays were unable to identify a responsive OR for some
loci for which we have strong association data (Fig. 4). In one
instance, a modified version of OR6Y1 derived from rodent and
primate orthologs responded to diacetyl (SI Appendix, Fig. S3),
supporting the idea that although the human receptor did not
function properly in the in vitro assay, it is the causal receptor
that underlies this association. Examining cases in which the
in vitro assay does not match perceptual outcomes may provide
guidance on how to improve these assays in the future.
Several individual olfactory phenotypes were significantly influenced

by ancestry, a common confounding factor in association studies that
incorporate different subpopulations (35). Here we quantified ancestry
using genetic data, extending a previous examination of the effect of

self-reported ancestry on odor perception in this participant cohort
(16) by bypassing self-reporting and allowing us to incorporate subjects
who self-reported their ancestry as “other.” From these data alone, we
were unable to determine whether these differences in odorant per-
ception were due to unknown genetic, cultural, or social factors that
cosegregate with ancestry; nonetheless, this work demonstrates the
importance of considering ancestry when studying odorant perception
in diverse populations. Overall genetic similarity also failed to predict
overall perceptual similarity, as the correlations that we identified are
obscured by the fact that the vast majority of genetic differences have
little or no influence on perception. In a careful search for specific
associations, models incorporating OR genotype, ancestry, age, and
gender accounted for >70% of the explainable variance (test-retest
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correlation) for some olfactory phenotypes (guaiacol, diacetyl, and
nonyl aldehyde) and <50% of the explainable variance for others (2-
ethylfenchol, linalool, and androstadienone). These results indicate
that considering the contribution of multiple ORs may be useful in
explaining more of the variance for some olfactory phenotypes.
Although we know that the OR gene family is characterized by

a large amount of genetic and functional variation, the combi-
natorial nature of the olfactory code and our limited knowledge
of OR-odorant pairs makes it difficult to translate this variation
to differences in perception. Here we focused on the perceptual
consequences of loss of function of individual ORs, demon-
strating that intensity and pleasantness coding for some odors is
not redundant, and that loss of function in a receptor reduces the
perceived intensity of that receptor’s ligand. Similar studies on
colorblindness, a condition in which genetic variation alters color
perception, helped determine the tuning of the three photore-
ceptors to different wavelengths of light. Deciphering the quan-
titative representation of color by photoreceptors allowed us to
digitize color information so that it can be sent and stored
without degradation, as well as to develop representations of
color space that outline how wavelengths of light can be com-
bined to make novel colors. Understanding how the olfactory
receptors encode odors should lead to similar advances in ol-
faction—namely, digitizing odors and identifying agonists or
antagonists of receptors that can produce any desired olfactory
percept from a small set of primary odors, if such a set exists.

Materials and Methods
Detailed descriptions of psychophysical testing, sequencing sample prepa-
ration and genotyping, association analysis, OR cloning, and the luciferase
assay are provided in SI Appendix, Materials and Methods.

Psychophysical Testing. Collection of psychophysical data was previously
reported by Keller et al. (12, 16) and approved by The Rockefeller University’s

Institutional Review Board. A total of 391 subjects rated the intensity and
pleasantness of 66 odors at two concentrations and two solvents on a scale of
1–7. Odor ratings were ranked within each subject, such that the odorant with
the highest-rated intensity or pleasantness for a concentration was ranked as
68, and the odorant with the lowest-rated intensity was ranked as 1.

Sequencing Sample Preparation and Genotyping. Paired-end sequencing was
carried out in 332 participants using an Illumina GAIIx with a read length of
2 × 75 base pairs, and variants were identified using a custom-made pipeline
that followed the current best practices recommended for variant detection
by the Broad Institute (36, 37). A custom-written R script (38) was used to
translate the phased variant call file into 836 full-length haplotypes (418
ORs × a maternal haplotype and a paternal haplotype) for each subject.

Association Analysis. Genetic associations were analyzed using multiple linear
regression to regress OR haplotype count (0, 1, or 2) of individual ORs against
all 276 phenotype measurements and incorporating the first two PCs cal-
culated from all subject genetic data, age (in years), or gender as covariates. P
values were corrected for multiple comparisons using the FDR (22).

Luciferase Assay. The Promega Dual-Glo Luciferase Assay System was used to
measure in vitro OR activity as described previously (39, 40). Data were an-
alyzed with GraphPad Prism 6.
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