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While many studies have highlighted human adaptations to diverse
environments worldwide, genomic studies of natural selection in
Indigenous populations in the Americas have been absent from this
literature until very recently. Since humans first entered the Americas
some 20,000 years ago, they have settled in many new environments
across the continent. This diversity of environments has placed
variable selective pressures on the populations living in each region,
but the effects of these pressures have not been extensively studied
to date. To help fill this gap, we collected genome-wide data from
three Indigenous North American populations from different geo-
graphic regions of the continent (Alaska, southeastern United States,
and central Mexico). We identified signals of natural selection in each
population and compared signals across populations to explore the
differences in selective pressures among the three regions sampled.
We find evidence of adaptation to cold and high-latitude environ-
ments in Alaska, while in the southeastern United States and central
Mexico, pathogenic environments seem to have created important
selective pressures. This study lays the foundation for additional
functional and phenotypic work on possible adaptations to varied
environments during the history of population diversification in
the Americas.
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Since first leaving their ancestral environments in Africa more
than 100,000 y ago, humans have spread to nearly every re-

gion of the planet. In doing so, different populations have been
exposed to many new environments and selective pressures, and
they have developed a diversity of adaptations as a result (1).
The declining cost of array and sequencing technologies and the
improvement of methods for detecting signals of natural selection
have allowed researchers to answer questions about selective pres-
sures across a growing number of populations worldwide (2–4).
However, very little is known about the recent evolutionary

history of Indigenous populations in North America and the
selective pressures that they have experienced. The Indigenous
peoples of North America are underrepresented in the pop-
ulation genetics literature as a whole (5) and in studies of se-
lection in particular. Only a handful of genomic studies of
natural selection have been conducted in the Americas, and the
majority of these have focused on populations in South America
(6–9). To our knowledge, only two genomic studies of selection
in North American populations have been published. Lindo et al.
(10) found evidence of a complex history of selective pressures
on the immune gene HLA-DQ1 using exome data from ancient
and modern populations in the Canadian Pacific Northwest. An-
other study with the Greenlandic Inuit found evidence of selection
in the FADS genes, which code for fatty acid desaturases that are

associated with polyunsaturated fatty acid levels in the blood (11),
as well as in the genomic region encompassing TBX15, which plays
a role in the differentiation of brown and white adipocytes. The
authors suggested that these signals of selection are likely related
to adaptation to cold environments.
Here, we present genome-wide scans for natural selection

across three populations from different regions of North America.
We find evidence of adaptation to cold and high latitudes in an
Alaskan Native population from the Arctic and evidence of se-
lection at several genes related to inflammation and immune
function in Indigenous populations from the southeastern United
States and central Mexico. We find little overlap between puta-
tively selected genes in these three populations, suggesting that
local selective pressures in each geographic region have shaped
these Indigenous North American populations differently since
they settled in distinct regions of the continent.

Results
Data Collection and Genetic Ancestry Estimates. We collected DNA
samples from 150 individuals from three Indigenous populations
in North America (Fig. 1 and SI Appendix, Figs. S1 and S2),
including 35 Alaskan Iñupiat from the North Slope of Alaska, 47
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individuals from the town of Xaltocan in central Mexico, and 68
individuals from several closely related communities in the
southeastern United States (populations referred to hereafter as
Alaska, central Mexico, and southeastern United States, respec-
tively). In some cases, exact sampling locations and community
names are not reported to protect the privacy and anonymity of

both the individuals and communities participating in this research.
These protections were developed in collaboration with community
members and are part of the IRB protocol and informed consent
documentation used in this study. We then used the Affymetrix
Axiom Human Origins Array to genotype 629,443 genome-wide
SNPs for each of these individuals. A total of 563,162 SNPs were
included in our analyses after quality control filtering and merging
with the 1000 Genomes dataset (12) for comparative analyses.
Because many previously genotyped Indigenous populations in

the Americas trace a large percentage of genetic ancestry to
recent European and African ancestors, which can influence results
of genome-wide scans for selection, we first conducted a non-
hierarchical clustering analysis of the SNP data implemented in the
program ADMIXTURE (13). Fig. 2A shows that many of the
Alaska and southeastern US individuals have more European an-
cestors than the individuals sampled in central Mexico. Local an-
cestry assignment was then done using RFMIX (14) to assign each
chromosomal segment to its most likely ancestral source for each
individual in the dataset. To minimize the effects of recent admix-
ture on our selection scans, we masked SNPs from the data for an
individual if they were in a section of chromosome inferred to have
been inherited from a non-Indigenous ancestor (Fig. 2 B and C).

Genome-Wide Scans for Signals of Natural Selection. We computed
two statistics to identify potential signatures of natural selection
in the three study populations. We calculated the population
branch statistic for each autosomal SNP in each population using
individuals from the 1000 Genomes Peruvian population (PEL)
without recent European or African ancestry as an ingroup and
the 1000 Genomes Han Chinese population (CHB) as an out-
group. The population branch statistic computes the amount of
genetic differentiation at a given locus along a branch leading
to a population of interest by comparing transformed pairwise
FST values between each pair of three populations (4). A pop-
ulation’s population branch statistic value at a given locus cor-
responds to the magnitude of allele frequency change relative to
its divergence from the other two populations. This approach has

Fig. 1. Map of sampling areas. Specific sampling locations, where publicly
available, are provided in SI Appendix, Figs. S1 and S2. Blue, Alaska; green,
central Mexico; red, southeastern United States.

Fig. 2. Global ancestry analysis of study populations. (A) ADMIXTURE plot at K = 3, (B) Principal components analysis (PCA) of unmasked genotypes showing
principal components 1 (PC1) and 2 (PC2), and (C) PCA of genotypes after study populations were masked.
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proven to be powerful at detecting recent signals of selection
(4, 10). We also calculated the integrated haplotype score (iHS),
a widely used haplotype-based method of detecting signals of
selection, for each autosomal SNP in each of the three study
populations. The iHS is a measure of extended homozygosity in
the haplotype surrounding a given SNP. Extended stretches of
homozygosity relative to the background are a signal of a se-
lective sweep that has not yet reached fixation. P values were
calculated for both population branch statistics and iHS using
a distribution of each statistic simulated under a demographic
model specific to each study population. We then identified the
top 1% P values for population branch statistics and iHS from each
population (Fig. 3 and SI Appendix, Fig. S6) and cross-referenced
them to find SNPs that were significant outliers in both statistics.
This approach, which has been used previously (15), should reduce
our chances of reporting false positives, as the iHS has been shown
to be robust to demographic history that is often a confounding
factor in FST-based approaches, such as population branch
statistics (16).
We found 153 putatively selected SNPs for the Alaska pop-

ulation, 104 such SNPs for the southeastern US population, and
190 such SNPs for the central Mexico population. Genes with the
strongest signals of selection (i.e., those with the largest number

of SNPs putatively under selection) for each population are lis-
ted in Table 1 along with the average population branch statistics
and iHSs for the significant SNPs. A complete list of the puta-
tively selected SNPs for each population is available in
Dataset S1.

Functions of the Putatively Selected Genes. We used GeneCards
(17) to gain insight into the functions of the putatively selected
genes. The strongest signals of selection in the Alaska population
occur within three genes related to heparan sulfate biosynthesis
(HS3ST4), adipose tissue production (KCNH1), and melanin pro-
duction (OCA2). One gene related to immune response (IL1R1)
shows a strong signal of selection in the southeastern United States.
One gene related to immune response (MUC19) also shows a
strong signal of selection in the central Mexico population.
We also conducted a pathway enrichment analysis using the

WebGestalt platform (18) to better understand the metabolic
pathways involving putatively selected genes and to determine if
these genes were overrepresented in any particular pathways.
However, after correcting for the false discovery rate, we found
no significant enrichment of the putatively selected genes in any
metabolic pathways (Dataset S1).

Shared Signals of Selection Between Populations. We next looked
for shared signals of selection among the three study populations
by comparing statistically significant results from each analysis.
We found no shared signals of selection among all three pop-
ulations but did identify some putatively selected genes shared
between pairs of populations. We found one shared signal of
selection at a single SNP within the gene SLIT2 in the Alaska
and southeastern US populations. We also found that the
southeastern US and central Mexico populations share signals of
selection at two SNPs each in the genes MUC19 and CNTN1
(Table 2). We found no shared signals of selection between the
Alaska and central Mexico populations. The greater percentage
of putatively selected genes shared between the southeastern
United States and central Mexico may be due to either similar
selective pressures on both populations or the more recent di-
vergence of the southeastern US and central Mexico populations
if the selective pressures primarily occurred before they diverged.

Discussion
Our results suggest that different selective pressures have been
acting on the three study populations sampled from different re-
gions of North America. In the Alaska population, we see evidence
for adaptation to both cold and high-latitude environments. The
Alaskan Arctic has a tundra climate (Et on the Köppen climate
classification) characterized by at least 1 mo with an average
temperature >0 °C but no months with an average temperature
above 10 °C (19). Being above the Arctic Circle, this region is also
subject to low levels of direct sunlight and intermittent periods of
complete daylight or darkness. Alaskan Native groups and other
Indigenous peoples in the Arctic have developed a number of
cultural adaptations in response to this extreme environment. The
traditional diet of Alaskan Native peoples in this region relies
heavily on both terrestrial (caribou) and marine (seal, whale)
mammal resources, as the Arctic environment has low levels of
surface vegetation and soil development (20). Traditional Alaskan
Native clothing and dwellings are also designed to provide shelter
from the extremely cold environment. Our results suggest that
genetic adaptations have also arisen in this population.
The three genes that have the strongest evidence of selection in

the Alaskan Arctic population could all have adaptive effects in
cold, high-latitude environments. The gene HS3ST4 is involved
in the production of heparan sulfate, a molecule that affects blood
thickness. Previous work has shown that extended exposure to cold
temperatures increases blood thickness, which can lead to a number
of deleterious effects (21). The gene KCNH1 is involved in the
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1R1LI1R1LI

HS3ST4HS3ST4

Fig. 3. Top selected gene from each population plotted against the simu-
lated distribution of population branch statistics (PBS) and iHS: (A) MUC19
from the central Mexico population, (B) IL1R1 from the southeastern US
population, and (C) HS3ST4 from the Alaskan Arctic population.
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regulation of cell proliferation and differentiation, in particular
adipogenic and osteogenic differentiation in bone marrow-derived
stem cells (22). Selection on these genes involved in regulating
blood thickness and fat storage, respectively, suggests that a cold-
resistant phenotype may be under selection in this Alaskan Arctic
population. Previous studies of other Arctic populations have
similarly found evidence of adaptation to the cold climate, with
signals of selection found in genes related to metabolic pathways
(11, 23), albeit in different genes than those identified in this study.
OCA2, also under selection in the Alaskan Arctic population, is

associated with skin/eye/hair pigmentation in humans, suggesting
the possibility of adaptation to high latitudes in this group. Vitamin
D is an essential nutrient that is important for skeletal development
and the innate immune response among other processes. In hu-
mans, the majority of vitamin D synthesis takes place in the skin as a
result of the interaction between cholesterol and UVB radiation
from sunlight. High-latitude regions, such as Alaska, are exposed to
much lower levels of UVB radiation than other parts of the globe,
making it difficult for people living in these areas to maintain
healthy levels of vitamin D (24). Previous work has shown that
variation in the OCA2 gene is correlated with the amount of winter
solar radiation (25).
In the southeastern United States, we see the strongest signal

of selection on SNPs in and around the gene IL1R1, which codes
for a cytokine receptor that plays a key role in the adaptive immune
response. Selection on IL1R1 in the southeastern United States
makes sense given the colonial history of this region. The colonial
period saw the introduction of a variety of diseases into the Amer-
icas, including smallpox, measles, influenza, pertussis, cholera,
plague, typhus, yellow fever, diphtheria, malaria, and influenza
(26). One recent spatial model of the colonial spread of epidemic
diseases in North America (27) suggests that such diseases were
first introduced during European colonization of coastal areas of
the Southeast in the early 16th century, spread slowly toward the
Appalachian mountains over the next 140 y, and then, moved
very quickly across the interior Southeast. This model is consis-
tent with the history of the region: after the initial Spanish col-
onization of the coastal Southeast in 1513, five documented
expeditions (entradas) were undertaken to map the Southeast
before 1545. Interaction between these entradas and Indigenous
groups along with the establishment of the Spanish mission system
throughout the Southeast likely contributed to the introduction
and spread of multiple infectious diseases in this region. Several
accounts of disease epidemics in the coastal Southeast are also
described in historic records beginning in 1520 and continuing

through the early 18th century (28). Groups in the interior Southeast
likely avoided the very first epidemics but were affected later (29).
While the causal pathogens of many early epidemics remain
unknown, accounts of some later epidemics allow the underlying
cause to be identified, such as several accounts of a smallpox epi-
demic in the late 1690s that report its spread from Virginia down
into the Carolinas and across the Southeast into Mississippi (30).
Altogether, historical documents, ethnohistoric records, Indigenous
histories, and archaeological evidence demonstrate that these epi-
demics in conjunction with other events and practices during the
colonial era contributed to a significant population decline and
major sociopolitical changes in the region. By the 18th century,
for example, many of the Indigenous groups interacting with the
Spanish, including those forced into the mission system, had
merged, and the ethnogenesis of many of the modern Indigenous
southeastern groups was beginning (31). Our results suggest that
the repeated epidemics may have also created significant selective
pressures, influencing patterns of genetic variation at loci associated
with the human immune response in these populations.
Pathogenic environments seem to have been a major selective

force in central Mexico as well, as many of the putatively selected
genes in this population are also related to immune system pathways.
In Mexico, the spread of European-introduced diseases began
shortly after Spanish conquistador Hernán Cortés landed near the
present-day city of Veracruz in 1519 and began his military cam-
paign against the Aztec empire (32). In central Mexico, the first
documented epidemic was smallpox in 1519–1520 as Cortés
marched toward the Aztec capital city of Tenochtitlan, located in
present-day Mexico City in central Mexico. This initial epidemic
was followed by several subsequent smallpox outbreaks, particularly
in the late 16th and early 17th centuries (32). After Tenochtitlan
was conquered in 1521, it became known as Mexico City, capital of
the Viceroyalty of New Spain, and received a large influx of people
from both Europe and Africa (33), no doubt bringing additional
pathogens along with them.
This history likely contributed to genomic signatures of se-

lection seen in the central Mexico population in this study. We
see the strongest signal of selection on the mucin geneMUC19 in
the central Mexico population. Mucin genes are primarily in-
volved in the immune response to parasitic infection (34). Past
work has shown that parasite load is strongly correlated with
latitude, with populations closer to the tropics having higher
levels of parasitic infection (35). Interestingly, the GenomeRNAi
database (36) shows that MUC19 is associated with decreased
vaccinia virus (VACV) infection. VACV is a close relative of the
variola virus, the causal agent of smallpox, and recombinant
versions of the VACV were used as a vaccine against smallpox
until it was eradicated in the late 1970s (37). However, while
these results are suggestive, we cannot be certain that smallpox
was the selective agent for this sweep, because there were many
more infectious diseases spreading through Mexico at this time
(32). Recent work using novel methods to search for ancient
pathogen DNA in human ancestral remains has successfully identified
some of these unknown pathogens, such as the bacterium Salmonella
enterica as a possible causal agent of the 16th century “cocoliztli”
epidemic in southern Mexico (38). Future work may help us identify

Table 1. Genes with strongest signals of selection

Region Gene SNPs
Population branch

statistic P value jiHSj P value

Central Mexico MUC19 8 0.2166 1.30E-04 3.1143 1.70E-03
Alaskan Arctic HS3ST4 9 0.4892 2.00E-05 2.9371 4.30E-03
Alaskan Arctic KCNH1 5 0.5400 2.00E-05 3.2764 2.00E-03
Alaskan Arctic OCA2 5 0.4572 2.00E-05 3.1052 3.20E-03
Southeastern United States IL1R1 5 0.2669 3.60E-05 3.660 1.10E-03

Table 2. SNPs with shared signals of selection between two
study populations

Chromosome Position rsid Gene

12 41180074 rs1596529 CNTN1
12 41180235 rs935228 CNTN1
12 40806911 rs74565412 MUC19
12 40958216 rs7303283 MUC19
4 20469565 rs12499199 SLIT2
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the major pathogens afflicting the people of central Mexico during
colonial times.
These results suggest that selective pressures have varied

widely across the Americas. The value of investigating selective
pressures at a regional level in human populations is becoming
increasingly recognized as an important topic of study. In South
America, for example, recent work has examined the genetic
components of the well-studied adaptation of Andean pop-
ulations to high altitude (7). In addition, two recent studies have
shown evidence of adaptation to an arsenic-rich environment in
Andean populations from northwest Argentina (8, 39). Both
studies found signals of selection on the gene AS3MT, which is
involved in the metabolism of arsenic. Variants identified in
these Andean groups allow them to metabolize less of the toxic
element. Another recent study of Andean populations farther
north in Peru used genomic data collected from both ancient and
modern populations to study evolutionary pressures through
time (40). The gene showing the strongest signal of selection in
this study was MGAM, which is associated with starch digestion.
This suggests that the transition to agriculture in this region may
have also been a major selective pressure in the past. The only
study to our knowledge to look at the history of selective pres-
sures in North America was done with the Tsimshian of British
Columbia (10). This study found evidence of selection positive
selection at the gene HLA-DQA1 in the Tsimshian population
before European colonization and possible evidence of negative
selection in that region afterward. These studies conducted with
populations thousands of miles apart from each other and in a
variety of different ecological environments demonstrate the
complex history of human adaptation to the varied environments
of the Americas.
Altogether, our analysis of genome-wide signals of selection in

three Indigenous populations in North America found evidence
for selection on genes related to cold and high-latitude envi-
ronments in Alaska but selection on genes related to immune
function in the southeastern United States and central Mexico.
Additional studies may find evidence of other adaptations in
different environments on these continents.

Materials and Methods
Ethics and Community Engagement. This project was made possible through
active and ongoing collaborations with members of the participating com-
munities. Community authorities and representative bodies were consulted
where appropriate, and all individual participants provided written informed
consent for the types of analyses conducted in this study. The collection and
analyses of samples from all communities were approved by the IRB of the
University of Texas at Austin (protocol #2012–05-0105), with additional ap-
proval for sample collection and population genetic analyses from the
Alaskan Iñupiat provided by the IRB at Northwestern University (protocol
#2683–001). In some cases, exact sampling locations and/or community
names are not reported to protect the privacy and anonymity of the com-
munities and individuals participating in this research.

DNA Extraction and Genotyping.We extracted DNA from the saliva samples of
150 individuals from three Indigenous populations in the Americas (Iñupiat
from the North Slope of Alaska, n = 35; Xaltocan in central Mexico, n = 47;
southeastern United States, n = 68) using the prepIT L2P kit (DNA Genotek)
following the manufacturer’s guidelines. Extracts were genotyped using the
Affymetrix Human Origins Array. Data are available to researchers who sign
a data access agreement with D.A.B. at the University of Connecticut and
M.G.H. at Northwestern University.

Data Quality Control and Global Ancestry Analysis. SNPs not genotyped in the
majority of study samples (–geno 0.1) were removed using PLINK v1.9 (41).
For ADMIXTURE analysis, we further pruned the SNPs in high linkage dis-
equilibrium (–indep-pairwise 200 25 0.4). A global ancestry analysis was
conducted with ADMIXTURE 1.3.0 (13) using the three study populations
along with populations from the 1000 Genomes dataset (12) [Yoruba in
Ibadan, Nigeria (YRI), Utah residents with northern and western European
ancestry (CEU), and unadmixed individuals from Peruvians from Lima, Peru

(PEL)] to represent the likely sources of recent admixture in the study pop-
ulations. All comparative individuals used in this analysis are listed in Dataset
S1. Principal component analysis was performed on these samples using the
smartpca program in EIGENSOFT (42).

Haplotype Phasing and Genotype Masking. Sample genotypes were phased
using SHAPEIT2 with default parameters and the 1000 Genomes Phase 3
dataset as a reference panel (12, 43). We next used RFMIX (14) to assign each
chromosomal segment to its most likely ancestral source for each Indigenous
individual in the dataset using 50 YRI individuals, 50 CEU individuals, and 33
unadmixed PEL individuals from the 1000 Genomes Phase 3 dataset to
represent the possible ancestral populations for this local ancestry assign-
ment. After ancestry assignment, SNPs in chromosomal segments inferred to
have been inherited from an African or European ancestor were masked
from the data along with SNPs with low-confidence (<90%) ancestry as-
signment. SNPs with more than 10% missing data were then removed from
the dataset. Using these criteria, the final dataset contained 546,089 SNPs
and sample sizes of n = 27 for the Alaskan Arctic (Iñupiat) population, n = 43
for the central Mexico (Xaltocan) population, and n = 47 for the south-
eastern US population.

Selection Analyses. The phased masked data were annotated with ancestral
allele information using aa_annotate.py (44). iHS values were calculated for
each population using hapbin (45). FST values were calculated using the
masked dataset for each of the three sampled populations with an ingroup
(33 Peruvian individuals without any evidence of recent European or Af-
rican genetic ancestry selected from the 1000 Genomes Project dataset)
(12) and with an outgroup (50 Han Chinese individuals from the 1000
Genomes Project) using vcftools (46). The population branch statistic (4)
was then calculated for the three sampled Indigenous populations in
North America.

P values were calculated for each population branch statistic and iHS
using a distribution of each statistic simulated under a demographic model
specific to each study population. The top 1% of P values for population
branch statistics and iHSs were identified for each population and then
cross-referenced so that additional analysis was done only for SNPs in the top
1% in both tests for selection. This cross-referencing, used previously (15),
should reduce our chances of reporting selection results that are actually false
positives, since each statistic has different underlying assumptions.

Demographic Models. Demographic models were constructed for each of the
three study populations using fastsimcoal2 (47) to calculate expected dis-
tributions of the selection statistics under neutral demographic processes.
An overview of the models is shown in SI Appendix, Fig. S11. Briefly, we
constructed a model of human demographic history using previously pub-
lished estimates for the timing of the Out-of-Africa bottleneck and peopling
of the Americas (10) using the joint site frequency spectrum of the CHB,
unadmixed PEL, and each of our study populations. Arlequin was used to
calculate the site frequency spectrum for each population (48). We included
the divergence time between the PEL and each study population as an open
parameter, as it is likely that our study populations diverged from PEL at
different times in the past. We also included the timing and severity of a
recent bottleneck as open parameters in the model, as there is archaeo-
logical, historical, ethnographic, and genetic evidence for bottlenecks in
many, but not all, Indigenous populations in the Americas. Parameters for
each of the three population models were estimated by running the model
100 times with 1,000,000 iterations per run. The best likelihood run was then
chosen for each population and used to simulate 500,000 sites across 22
chromosomes for a number of individuals equal to that of those used in
calculating the joint site frequency spectrum (50 CHB, 33 PEL, 27–47 study
populations). This was done 100 times for each of the three models, and
population branch statistics and iHSs were then calculated for each of the
simulated datasets; 50,000 population branch statistics and iHSs were then
randomly selected from the simulated results to form a distribution for
comparison with the observed empirical values.

Gene Annotation and Pathway Enrichment Analysis. We used the Ensembl
Variant Effect Predictor (49) to assign gene names to SNPs in the top 1% of
population branch statistic and iHS P values. To identify any metabolic
pathways that are overrepresented in the putatively selected genes in each
of the three study populations, we performed a path enrichment analysis
using the WebGestalt platform (18), with the parameters hsapiens > over-
representation enrichment Analysis > geneontology > Biological process
and hsapiens > overrepresentation enrichment Analysis > Pathway > KEGG.
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