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Abstract

Background: Chromosomal rearrangements are the typical phenomena in cancer genomes causing gene
disruptions and fusions, corruption of regulatory elements, damage to chromosome integrity. Among the factors
contributing to genomic instability are non-B DNA structures with stem-loops and quadruplexes being the most
prevalent. We aimed at investigating the impact of specifically these two classes of non-B DNA structures on cancer
breakpoint hotspots using machine learning approach.

Methods: We developed procedure for machine learning model building and evaluation as the considered data
are extremely imbalanced and it was required to get a reliable estimate of the prediction power. We built logistic
regression models predicting cancer breakpoint hotspots based on the densities of stem-loops and quadruplexes,
jointly and separately. We also tested Random Forest models varying different resampling schemes (leave-one-out
cross validation, train-test split, 3-fold cross-validation) and class balancing techniques (oversampling, stratification,
synthetic minority oversampling).

Results: We performed analysis of 487,425 breakpoints from 2234 samples covering 10 cancer types available from
the International Cancer Genome Consortium. We showed that distribution of breakpoint hotspots in different
types of cancer are not correlated, confirming the heterogeneous nature of cancer. It appeared that stem-loop-
based model best explains the blood, brain, liver, and prostate cancer breakpoint hotspot profiles while quadruplex-
based model has higher performance for the bone, breast, ovary, pancreatic, and skin cancer. For the overall cancer
profile and uterus cancer the joint model shows the highest performance. For particular datasets the constructed
models reach high predictive power using just one predictor, and in the majority of the cases, the model built on
both predictors does not increase the model performance.

Conclusion: Despite the heterogeneity in breakpoint hotspots’ distribution across different cancer types, our results
demonstrate an association between cancer breakpoint hotspots and stem-loops and quadruplexes. Approximately
for half of the cancer types stem-loops are the most influential factors while for the others these are quadruplexes.
This fact reflects the differences in regulatory potential of stem-loops and quadruplexes at the tissue-specific level,
which yet to be discovered at the genome-wide scale. The performed analysis demonstrates that influence of stem-
loops and quadruplexes on breakpoint hotspots formation is tissue-specific.
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Background

The accumulated data on cancer genomes revealed that
along with the point mutations, cancer genomes undergo
numerous rearrangements including deletions, inversions,
tandem duplications and inter and intra-chromosomal
translocations [1-3]. The studies on cancer mutagenesis
revealed the association between cancer mutations and
epigenetic marks and non-B DNA structures [4—7]. Ana-
lysis of almost 700,000 somatic copy-number variant
breakpoints from around 2800 cancer genomes demon-
strated the enrichment of quadruplexes and DNA regions
in the hypomethylated state in the vicinity of cancer
breakpoints [8]. Epigenetic features, such as chromatin ac-
cessibility and histone modifications of a particular type of
cancer together with the replication timing explains up to
86% of the variance in single mutation densities for the se-
lected cancer type [9]. Analysis of association between
cancer somatic mutations and different non-B DNA struc-
tures, including G-quadruplexes (G4), H-DNA, Z-DNA
and direct, inverted, mirror and short tandem repeats, re-
vealed two-fold mutation enrichment of the mutation re-
gions by the non-B motifs and demonstrated that
machine-learning models built on the densities of the
non-B motifs and epigenetic factors either taken separ-
ately or jointly are able to predict the densities of somatic
mutations [10].

Cancer genome instabilities are associated with
double-strand breaks (DSBs) [1], which in turn were
shown to be associated with non-B DNA structures and
epigenetic features [4, 11]. Machine-learning models
using epigenomic and chromatin context reached good
accuracy at 1kB resolution in predicting DSBs with chro-
matin accessibility, activity, and long-range contacts be-
ing the best predictors [11].

For stem-loops (or cruciforms) and quadruplexes to
form, it is required that DNA were in a single-stranded
state that can happen when it is locally unwound. The re-
gions of locally unwound single-stranded DNA can origin-
ate during many processes of normal genome functioning
such as replication and transcription. The genome-wide
potential to form non-B DNA structures was demon-
strated by permanganate/S1 nuclease footprinting [12].
Thousands of non-B motifs were found in the regions of
unwound DNA pointing to their role in various processes
of genome functioning including transcription and regula-
tion of nucleosome positioning. At the same time the lo-
cally unwound regions with emerging non-B DNA
structures could cause genome instability.

Here we explored the data on all types of cancer gen-
ome rearrangements available from the International
Cancer Genome Consortium for the breakpoint associ-
ation with two most prevalent types of non-B DNA
structures — stem-loops and quadruplexes, and studied
how this association is varied depending on the type of
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cancer. We investigated breakpoint chromosome distri-
bution at 6 different resolutions from 10kB to 1 Mb and
selected breakpoint hotspots at 5 aggregation levels con-
sidering breakpoint hotspots to be the regions with fre-
quent and recurrent rearrangements. We confined our
study to two classes of the most prevalent non-B DNA
structures — stem-loops (or cruciforms) and quadru-
plexes since they have the highest coverage in the gen-
ome and the highest potential to form in regions of a
single-stranded DNA. Since mutational landscapes of
cancerous genomes are highly heterogeneous, we inves-
tigated each type of cancer separately and also built the
generalized cancer genome profile. Our study revealed
that for approximately half of the cancer types
stem-loops have the larger impact on breakpoint hot-
spots’ prediction while for the other half the most im-
portant contributors are quadruplexes. The different
impact of stem-loops and quadruplexes on breakpoint
formation in different types of cancer is most likely re-
lated to the different impact of these two types of non-B
DNA structures in tissue-specific regulation.

Results

Breakpoint hotspots

Data on cancer breakpoints were downloaded from the
International Cancer Genome Consortium (ICGC) Data
Portal (release 25) (see Methods). The available data
comprised 10 cancer types containing 2234 samples.
After filtering for inaccuracy in breakpoint positions (see
Methods) we ended up with 487,425 breakpoints. The
number of samples and corresponding number of break-
points by cancer type are given in Additional file 1:
Table S1. The distribution of samples among different
cancer types is not uniform. Breast cancer comprises the
major part of the dataset (644 samples) while the brain
and uterus cancers are represented by a relatively small
number of samples (72 and 16 accordingly). The distribu-
tion of the number of breakpoints by different types — dele-
tions, insertions, inversions, inter- and intrachromosomal
translocations, and others, is presented in Additional file 1:
Figure S1 with deletions being on the first place, inversions
on the second and intrachromosomal rearrangements with
non-inverted orientation on the third.

To analize breakpoint distributions across different
chromosomes, the number of breakpoints in each
chromosome was divided by the length of the chromo-
some. This normalization allows comparing the break-
point coverage between different chromosomes. It was
revealed (Fig. 1d) that the chromosome 17 has the high-
est normalized coverage with the chromosome Y being
on the last place. Considering a relatively small number
of breakpoints it was decided to exclude Y-chromosome
from the analysis.
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Breakpoint density was calculated for each cancer type
(see Methods) for six different windows of 10, 20, 50,
100, 500 Kb and 1 Mb (designated further as aggregation
levels). The general breakpoint density profile, or overall
cancer profile, accumulating information about all can-
cer types (see Methods) is presented in Fig. 1c for the
chromosome 17. Spearman correlation analysis of break-
point density profiles for all types of cancers and the
overall cancer profile revealed that while particular can-
cer profiles by definition correlate with the general, no
correlation is found in between various types of cancer
(Fig. 1b).

We defined breakpoint hotspots according to five dif-
ferent probability thresholds (designated further as label-
ing types; see Methods) and present results conducted
for all five labeling types. In general, the window is
marked as a breakpoint hotspot if breakpoints density in
the window is higher than the threshold. Thus, for each
cancer type and aggregation level we created five data-
sets with different types of labeling. The distributions of
the number of breakpoint hotspots per chromosome for
all cancer types and for different thresholds are given in
Fig. 1a and Additional file 1: Figure S2. At the 0.1% la-
beling type, or threshold, the breast cancer has the big-
gest number of breakpoint hotspots on the chromosome
17, the skin cancer has a relatively high number of

hotspots on the chromosomes 11 and 12, the brain cancer —
on the chromosome 15, and the bone cancer — on the
chromosome 22. The other cancer types have uniform can-
cer breakpoint hotspots distributions per chromosomes.

We compared breakpoint hotspots’ profiles between
different types of cancer using Jaccard similarity coeffi-
cient (Additional file 1: Figure S3). This metric shows
the ratio of two samples intersection size to their union
size and hence demonstrates relative overlap of two
samples. Similar to the breakpoint density profiles, hot-
spots of different cancer types do not intersect with each
other; even the general cancer profile does not show
high similarity to other cancer types with the largest
value of 0.323 for the blood cancer.

We also checked the distribution of breakpoints and
hotspots among different genomic regions, including
whole genes, promoters, downstream regions, and the
regions inside genes: 5" untranslated region (5" UTR), 3’
untranslated region (3" UTR), coding exons and introns.
Almost half of all breakpoints (48%) fall inside genes,
though almost all are located inside introns (46%); 1.5% of
breakpoints fall into coding regions, and less than 1 % fall
into promoters, downstream regions or 5'UTR; 1.7% of all
breakpoints fall into 3'UTR (Additional file 1: Figure S4).
We checked the intersection of hotspots with whole genes
and found that the percentage of breakpoint hotspots
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overlapping with genes varies from 10% in the uterus can-
cer to 40% in the blood and bone cancers (Fig. 2a). Overall
the highest percentages of hotspots’ overlap with whole
genes are observed for the blood, bone, brain, and breast
cancer (Fig. 2b). When looking at the distributions of all
hotspots from all cancers stratified by the chromosomes,
the chromosome 17 shows the maximum overlap (up to
30%) with the genes. The percentage of intersections of
breakpoint hotspots with promoters, genes and down-
stream regions in different types of cancers and in differ-
ent chromosomes is depicted in Fig. 3. For genomic
regions the highest percentage is observed for the breast,
brain, blood, and bone cancers, and for chromosomes the
highest percentage is observed for the chromosome 17
followed by the chromosomes 7 and 8.

Correlations with stem-loops and quadruplexes
Here we consider two types of DNA secondary structures -
stem-loops and quadruplexes. We distinguish three types
of stem-loops according to the size of the stem: short,
medium and long, and consider each type as a variable. For
each of these structures we calculated coverage as a meas-
ure of density (see Methods). Example of stem-loops, quad-
ruplexes and breakpoints distribution for some types of
cancer is given in Additional file 1: Figure S5. Spearman
correlation between densities of different cancers and
stem-loop/quadruplex coverage was calculated separately
for each chromosome for 10kb and 1Mb aggregation
levels (Additional file 1: Figures S6-7).

As for the stem-loops, correlation is higher in general
for 1 Mb aggregation level (Additional file 1: Figure S6)
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with the median correlation increased from 0 (for 10 kb
windows) to 0.3 for many types of cancers such as the
skin, prostate, uterus, pancreatic, and breast. In addition,
for almost all cancer profiles (except for the uterus can-
cer) there are chromosomes with the correlation higher
than 0.6. Correlation distributions among stem-loop
classes (short, medium and long stem-loops) do not dif-
fer much for different types of cancer.

Similar to stem-loops, correlations between breakpoint
densities and quadruplex coverage are higher for 1 Mb
aggregation level (Additional file 1: Figure S7). Also it
could be noted that there are cancer types with chromo-
somes that have a low correlation (blood, brain, liver,
uterus). The highest median correlation is found for the
breast and ovary cancer.

Machine-learning model building
For all cancer types we explored 6 aggregation levels of
10, 20, 50, 100, 500 kb and 1 Mb and 5 different labeling
types with probability thresholds of 0.01, 0.05, 0.1, 0.5,
and 1% to select breakpoint hotspots. This led to cre-
ation of 330 cancer profiles; the number of breakpoints
hotspots by the cancer type, aggregation level and label-
ing type are given in Additional file 1: Table S2. For
some labeling types, the number of breakpoint hotspots
at the majority of aggregation levels is not sufficient to
build machine learning models, thus these profiles were
excluded together with the duplicated profiles, reducing
the total number of datasets to 236 (see Methods).

The final datasets were composed from cancer profiles
and stem-loop and quadruplex coverage profiles. We
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built three types of models to predict breakpoint hotspots:
based on the stem-loop coverage, on quadruplex coverage,
and jointly on stem-loop and quadruplex coverage.

As classes in the considered datasets are extremely im-
balanced due to the selected labeling types, a reliable pro-
cedure for the prediction power estimation was required.
Initially we built Random Forest models varying different
resampling schemes (leave-one-out cross validation
(LOOCV), train-test split, 3-fold cross-validation) and
class balancing techniques (oversampling, stratification,
synthetic minority oversampling technique (SMOTE))
(see Methods). We found that the best performance is
achieved through the use of 3-fold cross-validation with
oversampling. At the same time, we observed overfitting
as the relative difference between median area under the
receiver operating characteristic curve (ROC AUC) for the
train and test sets reached 33%. In order to avoid overfit-
ting as well as inability of class separation we performed
15-times repeated 3-fold cross-validation based on the lo-
gistic regression with oversampling (see Methods).

Stem-loop based models

We built the logistic regression model (see Methods)
based on two types of stem-loops — short and long — for
all 236 datasets. We excluded medium stem-loops as they
have 94% correlation with short stem-loops. Concerning
ROC AUC, we calculated two types of confidence inter-
vals for the mean test AUC based on the standard devi-
ation and on the standard error (see Methods). Both
confidence intervals agreed in all cases with the only one
dataset having the value of 0.5 (Table 1).

Distributions of the datasets’ median test AUC metric
for each cancer type is given in Fig. 4a. There is no can-
cer type for which all settings (the aggregation levels and
labeling types) are equally good or bad. There are can-
cers, which have outliers with the median test AUC for
one particular setting being significantly higher than for
the others (blood, ovary, pancreatic, liver, skin, uterus
cancers, overall cancer profile). The median test AUC
(Table 1) is the highest for the brain cancer and the low-
est for the pancreatic cancer. The maximum values of
the test AUC > 0.7 are observed for the bone, liver, and
uterus cancer. Also it could be noted that the standard
deviation of the test AUC is the smallest for the pancre-
atic, prostate and skin cancers (0.024, 0.027, 0.030 re-
spectively) and it is the highest for the bone cancer
(0.069) (Additional file 2). Thus, according to the me-
dian test AUC values, the performance of models built
on different datasets varies for each cancer type.

We calculated the median value of the standard devi-
ation of the test AUC for each dataset of various cancer
types separately and found that it has the minimum
value for the skin and pancreatic cancer (0.032 and
0.034 respectively) and the maximum for the brain can-
cer (0.063). Thus, in general, the models for cancer types
with the small number of the analyzed samples are less
stable than the others although the liver cancer, which
has relatively many samples (255), demonstrates the
relatively big median standard deviation (0.047). The
analysis of combinations of the labeling type and aggre-
gation level revealed that the median values of the stand-
ard deviation of the test AUC and the median test AUC
changes in the same direction: the higher the median
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Stem-loop-based models

Cancer type Median test AUC

Percentage of datasets with the mean test

Median lift of recall

AUC confidence interval not containing 0.5

Percentage of datasets with the
lift of recall higher than 1.5

skin 0.54 100 1.12 22
overall 0.55 100 1.57 52
prostate 0.55 100 122 13
uterus 0.55 100 1.22 32
bone 0.56 100 1.00 35
brain 0.59 100 207 80
breast 0.57 96 1.57 52
ovary 0.54 100 118 14
pancreatic 0.54 100 1.06 5
blood 0.58 100 1.62 60
liver 0.57 100 1.60 57
Performance metrics by cancer type
~
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test AUC the higher the median of the test AUC stand-
ard deviation (Additional file 1: Figure S8A).

To keep the balance between the standard deviation and
the median of the test AUC the following combinations of
the aggregation level and labeling type could be selected:
(20 kb, 0.01%); (50 kb, 0.1%); (100 kb, 0.05%); (500 kb, 1%);
(I1Mb, 1%). In other words, it is preferable to classify
breakpoint hotspots either based on the higher probability
threshold with the larger window sizes or on the lower
probability threshold with the smaller window sizes.

Distributions of the median recall for all datasets
grouped by the different probability quantiles (the prob-
ability thresholds at which the given percentage of ob-
servations with the maximum probability is selected)
and cancer types are given in Fig. 4b. It could be seen
that the distributions are very broad so that in all cancer
types different settings (the aggregation level and label-
ing type) result in very diverse recall. For example, con-
sidering the probability threshold of 0.2 it could be seen
that the median recall of almost all types of cancer in-
cluding blood, bone, breast, liver, ovary, pancreatic, pros-
tate, skin and uterus cancer ranges from 0 to more than
0.2. It demonstrates that the aggregation level and label-
ing type considerably impact performance of the model.
Additional file 1: Table S3 contains the median and
the third quantile of recall (in brackets) for all data-
sets grouped by cancer type and the probability quan-
tile. It could be seen that in almost all cases the
median recall is not much higher than the probability
quantile. For the pancreatic and bone cancer the me-
dian recall for all probability quantiles is less or equal
to a random choice recall.

The lift of recall can provide an estimate of how the
model behaves in comparison to a random model and it
measures how much the performance of the model is
higher in comparison to a random choice (see Methods).
Filtering datasets with the lift of recall higher than 1.5,
revealed 89 cases (Table 1): 16 for the brain cancer (80%
of all brain cancer datasets), 12 for the blood, breast,
liver cancer and overall cancer profile (60, 52.18, 57.14,
52.17% respectively), 7 for the bone cancer (35%), 6 for
the uterus cancer (31.58%), 5 for the skin cancer
(21.74%), 3 for the prostate and ovary cancers (13.04 and
13.64%) and 1 for the pancreatic cancer (4.55%). Among
these 89 datasets 17 datasets have 1 Mb aggregation
level; 16-100 kb aggregation level; 15-50 kb and 10 kb;
13-20kb and 500 kb. As for the labeling type, 22 data-
sets have 0.5% labeling, 21-0.1% labeling, 18-0.05% la-
beling, 17-1% labeling, 11-0.01% labeling. The best
combinations of the labeling type and aggregation level
are (1 Mb, 1%) and (1 Mb, 0.5%) (8 and 9 datasets).

After selection of the best threshold for each dataset
according to the lift of recall and then calculation of the
median lift of recall for each cancer type it was revealed
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that the maximum median lift of recall is observed for
the brain cancer (2.07) and minimal for the bone (1.00)
and pancreatic cancer (1.06) (Table 1). Concerning the
other cancer types, the overall cancer profile, blood,
breast and liver cancer have the median lift of recall
higher than 1.5 (1.57, 1.62, 1.57 and 1.60 respectively)
while the median lift of recall for the uterus, skin, ovary
and prostate cancer under 1.5.

The lift of recall is considered to be a good measure of
prediction power. The best models (or datasets, for
which the created model achieved the best performance)
were selected for each cancer type based on the max-
imum lift of recall calculated for the given probability
quantile. With this approach 11 models were chosen
and for each of them the optimal probability quantile
was fixed (maximum among all probability quantiles for
the model) (Additional file 1: Table S4).

Figure 4c depicts the lift of recall for the best models
of all cancer types for all probability quantiles. It could
be seen that for all cancer types the highest lift of recall
is for the probability quantiles 0.05 and 0.10. For the
majority of the cancer types (not including the pancre-
atic, breast, ovary and skin cancer) the lift of recall is
higher than random (higher than 1) for all 10 considered
thresholds with 9 such thresholds for the breast cancer
profile, 8 — for the ovary cancer, 7 — for the pancreatic
cancer and 5 — for the skin cancer. Thus models for
some types of cancer perform better than a random
choice for all or almost all thresholds (brain, bone, liver,
uterus, blood and prostate cancer, overall cancer profile).
The lift of recall for the selected 11 models ranges from
1.67 to 6.67 being maximal for the overall cancer profile
(6.67), liver (5.71), bone and uterus (4) cancer and min-
imal for the pancreatic (1.67) and ovary cancer (1.82).

The variable importance analysis based on the logistic
regression coefficients for the predictors is depicted in
Fig. 4d. In general, the direction of the effect of each
type of stem-loops is similar for almost all cancer types.
For all cancer types the short stem-loops incorporate the
major part of the positive effect with the median coeffi-
cient value ranging from 0.23 for the breast cancer to
0.88 for the blood cancer. Concerning long stem-loops,
for all except the pancreatic cancer, the median effect is
negative being the strongest for the brain cancer (- 0.43)
and the weakest for the prostate cancer (- 0.039).

Quadruplex-based models

To estimate the prediction power of quadruplexes we
built logistic regression models similar to stem-loop
models to predict breakpoint hotspots by quadruplex
coverage for all 236 datasets. It was revealed that the
confidence intervals for the mean test ROC AUC do not
include 0.5 for all datasets (Table 2). Distribution of the
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Table 2 Quadruplex-based ML models
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Quadruplex-based models

Cancer type Median test AUC Percentage of datasets with the mean test Median lift of recall Percentage of datasets with lift
AUC confidence interval not containing 0.5 of recall higher than 1.5

skin 0.58 100 1.69 70

overall 0.55 100 1.58 61

prostate 0.54 100 1.00 9

uterus 0.58 100 1.76 79

bone 0.70 100 3.17 100

brain 0.56 100 1.63 65

breast 0.65 100 3.64 100

ovary 0.56 100 1.31 45

pancreatic 0.54 100 1.21 9

blood 0.55 100 1.32 40

liver 0.55 100 1.13 57

Performance metrics by cancer type

median test AUC by cancer type is demonstrated in
Fig. 5a and Table 2.

It could be seen that the median test AUC is max-
imum for the bone and the breast cancer while it is min-
imal for the prostate cancer (Table 2). At the same time
the breast and bone cancer have the biggest standard de-
viation of the test AUC (0.08 and 0.078 respectively),
which is more than 3 times higher than the minimal
standard deviation (for pancreatic cancer — 0.023). In
general, weak performance is associated with the
small standard deviation (a stable weak prediction
power) while for cancer types with a relatively high
performance dataset configuration is important. Simi-
larly, the median value of the standard deviation in
one dataset is the smallest for overall cancer profile
and prostate cancer (0.039 and 0.041) and the biggest
for the breast and uterus cancer (0.06 and 0.068) tak-
ing into account the small uterus cancer sample size
(16 samples from 7 donors). The distributions of the
median test AUC and the median of the standard de-
viation in a dataset are presented in Additional file 1:
Figure S8B. The optimal combinations of the aggrega-
tion level and labeling type are the same as in the
case of stem-loop-based models.

Distributions of the median recall for different cancer
types and probability thresholds are presented in Fig. 5b.
It could be seen that the distributions are broad with
outliers at values of 0 and 1. The highest median recall
is observed for the bone and breast cancer with the
prostate cancer having the lowest median recall for all
probability thresholds.

The median recall and third quantile of the distribu-
tions are given in Additional file 1: Table S5. For several
cancer types (prostate, pancreatic, blood and ovary) the
median recall is less or slightly higher than a random

choice recall for all probability thresholds. There are 135
datasets (Table 2) with the lift of recall higher than 1.5
including 23 datasets for the breast cancer (100%), 20
datasets for the bone cancer (100%), 16 - for the skin
cancer (70%), 15 — for the uterus cancer (79%), 14 — for
the overall cancer profile (61%), 13 — for the brain can-
cer (65%), 12 — for the liver cancer (57%), 10 — for the
ovary cancer (45%), 8 — for the blood cancer (40%), 2 —
for the prostate and pancreatic cancer (9%).

Selection of the optimal threshold for each dataset
(Table 2) leads to the conclusion that the median lift of
recall is the highest for the breast and bone cancer (3.64
and 3.17 respectively) and the lowest for prostate and
liver cancer (1.00 and 1.21). As for the other types of
cancer the median lift of recall is greater than 1.5 for the
skin (1.7), uterus (1.76), brain (1.63) cancers and overall
cancer profile (1.58).

Among the best models (Fig. 5¢ and Additional file 1:
Table S6), the highest lift of recall is observed for the
breast and bone cancer (10 for both) with the test ROC
AUC 0.94 and 0.85 respectively. For all cancer types ex-
cept for the pancreatic and prostate cancers (1.71 and
1.82) the lift of recall ranges from 3.33 to 6.67.

Analysis of logistic regression coefficients’ distribution
(Fig. 5d) revealed that in general probabilities of cancer
breakpoint hotspots are increasing with the growth in
the quadruplex coverage for all cancer types. The largest
positive effect is observed for the breast and bone cancer
with the median values of the coefficients equal to 115
and 112 respectively. The prostate and pancreatic can-
cers have the lowest coefficients (1.2 and 6.7). The
standard deviation of the coefficients behaves similarly:
it is relatively big for the breast and bone cancer and
small for the prostate and pancreatic cancer. In addition,
for almost all cancer types, except for the bone, breast,
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Table 3 Joint stem-loop and quadruplex-based ML models

Stem-loops and quadruplex-based models
Median test AUC

Cancer type Percentage of datasets with the mean test Median lift of recall

AUC confidence interval not containing 0.5

Percentage of datasets with lift
of recall higher than 1.5

skin 0.56 100 1.37 39
overall 0.56 100 167 57
prostate 0.55 100 1.21 4
uterus 057 100 2.00 68
bone 0.68 100 3.17 100
brain 0.59 100 1.93 90
breast 0.66 100 3.64 100
ovary 0.54 100 1.15 27
pancreatic 0.53 100 1.06 0
blood 0.58 100 133 60
liver 0.56 100 132 52

Performance metrics by the cancer type
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liver and overall cancer, there are datasets with negative
coefficient estimates.

Joint stem-loop and quadruplex-based models

Finally, in order to get deeper understanding of the rela-
tionship between stem-loops and quadruplexes and can-
cer breakpoints we built models taking into account
both stem-loop and quadruplex genome-wide coverage.
As in the case of quadruplex-based models, confidence
intervals for the mean test AUC do not include 0.5 for
all considered datasets (Table 3). Figure 6a demonstrates
the median test ROC AUC distribution by cancer type.
The bone and breast cancer show distinctive perform-
ance following by the brain cancer, and the lowest value
is observed for the pancreatic cancer. As in the previous
models, the standard deviation of the median test AUC
increases with the growth in performance. The median
standard deviation in one dataset does not behave like-
wise and the maximum value is observed for the brain
cancer (0.061) while the pancreatic cancer is again de-
scribed by the minimum value (0.033). Additional file 1:
Figure S8C demonstrates that in general specific combi-
nations of the aggregation levels and labeling types for
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the joint stem-loop and quadruplex-based models are
characterized by nearly the same relationship between
the median test AUC and the median standard deviation
as in the separate models.

Considering recall, Fig. 6b and Additional file 1: Table S7
show that the pancreatic, ovary, prostate and skin cancer
have less or insignificantly higher than random median re-
call for all probability quantiles taking into account cover-
age of both stem-loops and quadruplexes. On the other
hand, the breast and bone cancer have considerably higher
performance than the other cancer types.

As for the lift of recall, there are 126 datasets with the
lift of recall higher than 1.5 namely 23 datasets for the
breast cancer (100%), 20 — for the bone cancer (100%),
18 — for the brain cancer (90%), 13 — for the uterus can-
cer and overall cancer profile (68 and 57%), 12 — for the
blood (60%), 11 — for the liver (52%), 9 — for the skin
(39%), 6 — for the ovary (27%), 1 — for the prostate (4%)
and none for the pancreatic cancer (Table 3). Filtering
probability thresholds with the maximum lift of recall
for each dataset, we ended up with the next values of
the median lift of recall: for half of the cancer types
(overall cancer profile, uterus, brain, bone, breast) it is
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higher than 1.5 with the maximum for the breast cancer
(3.64). For the pancreatic and ovary cancer it is near 1
(1.06 and 1.15).

Selection of the best models (Additional file 1: Table S8)
for each cancer type according to the maximum lift of re-
call leads to the following results: for half of the cancer
types the lift of recall is not less than 4 (uterus, bone, brain,
breast, blood, liver) with the maximum lift of recall for the
breast and bone cancer (10). For the rest cancer types the
lift of recall ranges from 1.33 (for the pancreatic cancer)
to 3.33 (for overall cancer profile). The lift of recall for all
probability thresholds for these datasets is presented in
Fig. 6¢.

The variable importance analysis (Fig. 6d) showed that
the quadruplex coverage has the positive median coeffi-
cient for all cancer types except for the prostate cancer
(- 0.001), which is very close to zero in comparison to
other types of cancer where the maximum coefficient is
observed for the bone and breast cancer (0.64 and 0.62).
Analogously, for all cancer types short stem-loops also
demonstrate positive relationship with cancer break-
points hotspots. Only for long stem-loops the relation-
ship is negative in most cases excluding the pancreatic
cancer (0.02) with the greatest median coefficient for the
brain cancer (- 0.43).

Selection of the strongest predictors for each cancer
type leads to the conclusion that for the breast and bone
cancer it is the quadruplexes coverage, for the brain can-
cer — long stem-loops and for the rest of the cancers —
short stem-loops.

Model comparisons

We built three types of models for 236 datasets of 10
cancer types with 6 aggregation levels and 5 labeling
types: stem-loop-based models, quadruplex-based
models and joint stem-loop and quadruplex-based
models. Additional file 1: Figure S9 summarizes per-
formance of all models for different cancer types con-
cerning the median test AUC and the median recall. It
could be seen that for the majority of cancers the differ-
ence in the model performance is not significant (except
for the breast and bone cancer). Strictly speaking, the
analysis of the median test AUC of different models for
each cancer type (Fig. 7a) leads to the conclusion that
only models for the breast and bone cancer demonstrate
relatively high performance in comparison to other can-
cer types.

At the same time, considering the median lift of recall
(Fig. 7b) the difference in model performance is notice-
able for some other types of cancer too. In addition,
comparing different cancer types, difference in the me-
dian test AUC is less significant than in the median lift
of recall. For example, median test AUC of the bone
cancer is 1.21 times higher than the median test AUC
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for all cancer types and models. The median lift of recall
shows 2.32 growth in comparison to the median lift of
recall of all cancer types and models, which is equal to
1.37. This demonstrates that ROC AUC is not very sen-
sitive in cases of imbalanced classes.

In general, according to the median lift of recall
quadruplex-based models are higher in performance for
the bone, breast, skin, ovary, pancreatic cancer while
stem-loop-based models are higher for the blood, brain,
liver, and prostate cancer. For the overall cancer profile and
uterus cancer the highest performance is achieved by the
joint model. It is worth noting that the stem-loop-based
and quadruplex-based models demonstrate almost equal
prediction power for the overall cancer profile, which incor-
porates breakpoints density of all cancers.

The Fig. 7c shows the lift of recall for the best models
for each cancer type. The results show that for some
cancer types one model is better for all probability quan-
tiles (i.e., quadruplex-based model for the breast and
bone cancers). For other cancer types the choice of
model depends on the probability quantiles.

The model with the highest lift of recall and the model
with the highest median lift of recall are different for the
blood, brain and overall cancers. At the same time all
three best models show the same lift of recall for the
uterus cancer. Stem-loop and quadruplex-based models
have the same performance only in a few cases: consid-
ering the median lift of recall for the best model — for
the bone and breast cancer, and considering the lift of
recall for the best model — for the bone, breast, blood
and liver cancer.

Our results show that adding the second predictor to
the best model (stem-loops to quadruplexes or vice versa)
in almost all the cases does not improve the model pre-
dictive power, but on the contrary could decrease it. For
quadruplex-based models with one predictor relative dif-
ference between the median train and test AUC ranges
from -4.5% to —0.9%, for stem-loop-based models with
two predictors - from -3.6 to 2.8% and for the joint
stem-loop and quadruplex-based model - from -2.2 to
4.3%. This variance could be explained by the fact that in
the case of extremely imbalanced classes introduction of a
weak predictor into a model leads to a fitting noise.

We observed that the tissue type specificity is revealed
already at the level of breakpoint hotspots formations.
Given the fact that breakpoint hotspots hardly overlap
with each other in different types of cancers (see the Jac-
card similarity matrix in Additional file 1: Figure S3), the
model trained on one type of cancer more likely will not
work well for predicting breakpoint hotspots in the
other type of cancer. To verify this we took the best
model trained to predict hotspots in the blood cancer
and applied it to the breast and pancreatic cancers
(Additional file 1: Figure S10). Out of 20 combinations
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of different aggregation levels and labelling types only
for 1 combination (500 kB; 0.5%) the blood cancer
model showed better results than that of the model
trained specifically for the pancreatic cancer and only
for 2 combinations (100 kB; 0.1% and 500 kB; 0.1%) the
blood cancer model showed better results than that of
the breast cancer model. Also, in the majority of the
cases tissue-specific models perform better than the

model for the generalized cancer profile, which supports
the tissue type specificity of breakpoint hotspots formation.

Discussion

Determination of causes of cancer genome transloca-
tions is an active area of research. Cancer genome rear-
rangements are tightly connected with the DSBs. Many
studies have been attempting at finding sequence-based



Cheloshkina and Poptsova BMC Cancer (2019) 19:434

determinants for DSBs and recently machine learning
models have been successfully employed for this pur-
pose. Analysis of somatic copy number alteration break-
points showed that the regions around somatic copy
number variants are enriched with quadruplexes and
hypomethylated sites [8]. Using DSBcapture data [13]
for training, DSBs were predicted with the Random for-
est model using epigenetic marks, chromatin state and
DNA motifs [11]. The most important predictor ap-
peared to be DNAse binding sites followed by CTCF
motif and epigenetic marks H3K4mel, H3K4me2,
H3K4me3, and H3K27ac [13]. Different types of
non-B-DNA structures (Z-DNA, cruciform DNA,
G-quadruplexes, R loops and triplexes) have been docu-
mented to be a causative agent in translocations of sev-
eral genes (see [5] for a review).

A number of cases of recurrent chromosomal translo-
cations are implicated with non-B DNA structures. The
reported examples when stem-loop structures are causa-
tive agents of genome rearrangements include: frequent
recurrent translocations in the sperm genomes where
the breakpoint occurs within the palindromic AT-rich
repeat region [14]; the translocation in the gene NF1 in
patients with neurofibromatosis containing palindromic
AT-rich repeat region [15]; the recurrently mutated pro-
moter of PLEKHS1 gene that contains an inverted repeat
[16]. Quadruplexes are often found in telomeres and
promoters and they were also reported to be associated
with translocations. Quadruplexes were found in the
promoter of c-kit oncogene [17], HOX11 gene [18], and
in the fragile regions of near the genes BCL1(CCND1)
MTC, E2A(TCF3), BCR, NCOA4, HOX11, ERG, FLI1,
TMPRSS2 [19].

Non-B DNA structures are formed in the regions of un-
wound DNA, which occur in the cell during transcription
and replication and can mechanistically induce genome
instability [20]. At the same time these structures are lo-
cated in promoters and near other functional elements
and perform important regulatory functions. We see that
breakpoint hotspot distributions are specific to cancer
types, reflecting the fact that in different tissues different
genomic regions are susceptible to damage but the under-
lying mechanisms should be similar and related to the
genome regulation at the tissue-specific level.

The purpose of this study was to compare the impact
of stem-loops and quadruplexes on breakpoint hotspots’
formation in different types of cancers as well as to
study the variation at the individual level of individual
cancer genomes. For that we built machine-learning
models predicting breakpoint hotspots based either on
stem-loops and/or quadruplex genome-wide coverage.
The results of our modeling showed that all cancer types
could be divided in two groups — one group is with
stem-loop-based models having a higher predictive
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power (blood, brain, liver, and prostate) and the other is
with quadruplex-based models having a higher predict-
ive power (bone, breast, skin, ovary, pancreatic). Charac-
teristically, the joint model built on both stem-loops and
quadruplexes did not result in a better performance.

The analysis of machine learning model performance
at the level of individual genomes revealed the character-
istic trends inherent to various cancer types. In general
the variance is higher for stem-loop-based models com-
pared to quadruplex-based models. The highest variance
in the median test AUC is observed for the bone cancer
both for stem-loop- and quadruplex-based models, and the
lowest for the liver, prostate, pancreatic for stem-loop-based
models, pancreatic and brain for the qudruplex-based
models, and the prostate for the joint models.

Within the boundaries of one cancer type there are ge-
nomes for which models achieve a very high perform-
ance. Thus, for a breast cancer sample the lift of recall
equals to 10 for the quadruplex-based model, while for
the same sample the lift of recall is less than one for the
stem-loop-based model. And vice versa, a sample from
the liver cancer has the lift of recall of 5.71 for the
stem-loop-based model and it equals to 2.85 for the
quadruplex-based model.

There are three types of cancer for which the perform-
ance of the quadruplex-based model is considerably bet-
ter than that of the stem-loop model (0.1-0.3 in the
median AUC and 3—4 in the lift of recall): bone (median
AUC =0.86, lift of recall 10), breast (median AUC = 0.94,
lift of recall 10) and ovary (median AUC = 0.68, lift of recall
6.7) cancer. For the prostate and brain cancers stem-loop
models have better performance than quadruplex-based
models. For uterus and pancreatic cancer two types of
models have almost equal prediction abilities.

For stem-loops we studied three ranges of different
size as they can potentially be important in different
genomic processes. Thus, we found that short (stem 6—
15bp) and medium (stem 15-30bp) stem-loops have
more correlation with breakpoint hotspots rather than
long (stem 16-50 bp) stem-loops. We excluded medium
size stem-loops from the modeling because short and
medium stem-loops are 94%-correlated. The impact of
short stem-loops is positive while the impact of long
stem-loops is negative. This finding supports the idea
that short stem-loops are likely to be formed during
transcription or replication processes with DNA being in
a single-stranded state.

We also checked how known translocations (from Mitel-
man Database of Chromosome Aberrations in Cancer [21])
overlap with the defined hotspots (Additional file 1: Figure
S11 and Additional file 3). Since a hotspot is a region of a
high breakpoint density with the length from 10 kb to 1 Mb,
well-known translocations leading to recurrent gene fusions
are not necessarily lie in the regions of high breakpoint
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density; the density of the region harboring these transloca-
tions can be moderate or even low. We found 5 known gene
fusions that fall into breakpoint hotspots (namely, IGL-
CCND1, CTNNBI1-PLAG1, FUS-ATF1, IGH-CCNDI1,
KMT2A-AFF1). The other known translocations including
IGH-MYC, IGH-BCL2, and others are not in the hotspot re-
gions, or regions of significantly high breakpoint densities
compared to the other genomic regions. This could be ex-
plained by the fact that different mechanisms are responsible
for the formation of dense breakpoint regions and recurrent
point translocations leading to gene fusions. Totally,
from 1273 analyzed translocations 362 fall into hot-
spots (Additional file 3).

All the models detected false positives (Additional file 2),
which is the number of genomic regions designated by a
model as breakpoint hotspots but they are not found in the
real data. These false positives could be considered as gen-
omic regions similar to breakpoints hotspots by the DNA
secondary structures’ coverage, and thus can be areas of po-
tential genome breakage.

Since breakpoint hotspots are poorly correlated be-
tween different cancer types, the difference in contribu-
tion of stem-loops and quadruplexes are tissue-specific.
As it was mentioned earlier machine learning modeling
with inclusion of epigenetic information revealed that
epigenetic factors such as DNAse biding sites, some his-
tone modifications and methylation states are important
predictors. The interrelation of non-B DNA regulatory
structures with epigenetic regulation is a poorly studied
area. Our results suggest that tissue-specific impact of
stem-loops and quadruplexes most likely reflects the dif-
ference in non-B DNA structure tissue-specific regula-
tion — the area that has not yet been extensively studied
and is a subject for future research.

Conclusions

Using machine learning approach, we performed the
comprehensive analysis of cancer breakpoint hotspots
from 2234 samples of 10 cancer types available at ICGC
with the aim to study the impact of stem-loops and
quadruplexes on cancer breakpoint hotspot formation
and found that stem-loops are important determinants
for the blood, brain, liver, and prostate cancer while
quadruplexes - for the bone, breast, ovary, pancreatic,
and skin cancer. For specific datasets models showed
very high prediction accuracy. Cancer genomes are
highly heterogeneous, and this heterogeneity is also
manifested at breakpoint hotspots distribution and
non-B structures contribution to mutagenesis. From one
hand, non-B structures are important regulatory func-
tional elements, from the other they cause chromosome
instability. Non-B DNA structures’ contribution to muta-
genesis is defined by the regions of chromosomal activ-
ity. The role of non-B structures as functional regulatory
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elements at the tissue-specific level are yet to be discov-
ered at the genome-wide scale.

Methods

Data Data of cancer breakpoints were downloaded from
the International Cancer Genome Consortium Data Por-
tal (release 25). The fields of the data table used in the
research are presented in (Additional file 1: Table S9). In
total, the available data covers 10 cancer types and 2234
samples.

Breakpoints selection As it was mentioned in data fields
description, there are two columns — «chr_from_range» and
«chr_to_range» — which show the radius in base pairs
around breakpoint position stated at «chr_from_bkpt» and
«chr_to_bkpt» which could contain real breakpoint. This
way these fields demonstrate inaccuracy in breakpoint loca-
tion definition. During checking the distributions of these
fields it was noted that there are missing values which
means that the quality of measurement is perfect and fields
«chr_from_bkpt» and «chr_to_bkpt» give precise location of
breakpoint (Additional file 1: Figure S12). Taking this into
account these missing values should be replaced with 0.

Although «confidence intervals» («chr_from/to_range»)
around breakpoints in most cases are narrow, there are
some outliers which will bring the noise to data. Besides it
could be seen that 95% of breakpoints have a range not
greater than 10 in both cases (for donor chromosome as
well as acceptor chromosome) so this value is used as a
threshold.

The list of all breakpoints was formed where each
breakpoint is characterized by chromosome, position,
range and cancer type. Then breakpoints with range
higher than 10 were excluded from consideration. For
each of the rest breakpoints the beginning and the end
of breakpoint were calculated accounting for range.

Density calculations For each cancer type genome was
split on disjoint “windows” of specified length (10 kb,
100kb, 1 Mb, etc.) and for each window breakpoints
density was calculated as the number of breakpoints lo-
cated in a window divided by the total number of break-
points in the genome.

General Cancer profile calculations The general cancer
breakpoint density profile was calculated using Bayes for-
mula of total probability. Let A be an event of a break-
point occurrence in a given window. P(A|B;) - is the
probability of breakpoint occurrence in a given window
for a specific cancer type B;, which is the calculated dens-
ity for each cancer type. The total probability of break-
points for all cancer types can be calculated with the
formula P(A) = X P(A|B;) = P(B;), where P(B;) - probability
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of a specific type of cancer. We used the World Cancer
Research Fund International (http://www.wcrf.org), which
provided the data about the number of new cancer cases
in 2012 for each type of cancer (Additional file 1: Table
$10). Bone cancer was not presented in the dataset, and
we imputed this value with the minimum available value
in the source dataset.

Breakpoint hotspots We selected high-density regions
based on five different quantile thresholds: 1, 0.5, 0.1,
0.05, 0.01%. Number of breakpoints hotspots by cancer
type for 6 different length of window (10, 20, 50, 100,
500 kb and 1 Mb) and for 5 different thresholds is given
in the Additional file 1: Table S2. The table demonstrates
that cancer profiles have very small (less than 10) num-
ber of breakpoints hotspots for some labeling types at
aggregation levels of 50kb, 100kb, 500 kb and 1 mb.
This number of breakpoints hotspots (or positive exam-
ples) is not enough for building machine learning
models that’s why these profiles were excluded. Besides
there are identical cancer profiles for given aggregation
level and cancer type as different “neighboring” labeling
types (for example, 0.5 and 1%) give the same break-
points hotspots locations (17 profiles have a copy in
total). Finally, there are 236 cancer profiles for analysis.
Breakpoint hotspots at 6 aggregation levels are available
in Additional file 4.

DNA secondary structures annotations and coverage
Human genome annotations with stem-loops (hgl9)
were downloaded from the DNA punctuation project
(http://www.dnapuncutation.org). Labels of three types
of stem-loops are available: length of stem: 6-15, length
of loop: 0-10, 1 mismatch is allowed (S6-15); length of
stem: 15-30, length of loop: 0-10, 5 mismatches are
allowed (S15-30); length of stem: 1650, length of loop:
0-10, 3 mismatches are allowed (S16—50). Annotation of
human genome (hgl9) with G-quadruplexes was done
by applying regular expression [22].

We used coverage as a measure secondary structure
density in a given window. For DNA secondary struc-
tures of a specified type the coverage in a given window
was calculated as the total length of all structures in the
window (without overlaps) divided by the window size.
Stem-loop coverage at 6 aggregation levels are available
in Additional file 5. Quadruplex coverage at 6 aggrega-
tion levels are available in Additional file 6.

Machine learning (ML) model building and
evaluation We performed 15-times repeated 3-fold
cross-validation based on the logistic regression with
oversampling. The following algorithm was applied to all
datasets. Each dataset represents a dataset with the tar-
get (0/1 breakpoint hotspots labeling) and predictors
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(stem-loops and/or quadruplexes coverage, standardized
with z-score transformation). 15-times repeated 3-fold
cross-validation procedure was applied to each dataset
to estimate train and test ROC AUC and model coef-
ficients. In 3-fold cross validation each dataset was
split into 3 folds with stratification. One fold was
used as a test set and the rest two folds as a train
set. Oversampling was done on the train set so that
the number of positive examples will be equal to the
number of negative examples. Logistic regression was
built on the train set.

Recall was calculated on the test set at different prob-
ability thresholds. Set of thresholds is defined as thresh-
olds related to specific predicted probability quantiles
(0.5, 0.55, 0.60,0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95).
Thus, 10% probability threshold will mark 10% of the
test set observations with maximal probability as “1”
(breakpoint hotspot) and the rest as “0”. The procedure
was repeated 15 times and the mean performance based
on performance of all built models was used to estimate
the model prediction power: the median train ROC
AUC, median test ROC AUC point estimate, confidence
interval for the mean test ROC AUC based on the
standard deviation and standard error, the median coeffi-
cient of each predictor, a distribution of the recall and
lift of recall on a test set at different probability
quantiles.

Confidence interval calculation Due to AUC variability
caused by the class imbalance it was required to estimate
the confidence interval for the mean test AUC. The first
type of confidence interval was calculated based on
t-interval. As described in the procedure above 15 * 3 =
45 AUC values were generated, its distribution tends to
normal according to the central limit theorem and,
hence, the t-statistic could be used to calculate confi-
dence interval:

— S
AUC £t op—=
v/n

where n is the population size, s is the standard devi-
ation and tl-alpha/2 is a critical value from the t-
distribution.

The second type of confidence interval was calculated
based on standard error.

The standard error of the mean test AUC measures
the dispersion of sample means around the population
mean. As it was shown, the area under ROC curve eval-
uates the same quantity as Wilcoxon statistics [23] so
that its statistical properties (including the standard
error) could be used for AUC as well. We used the fol-
lowing formula for SE(W):
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SE(W) = \/Q(I_Q) + (m-1)(Q;-Q%) + (mo-1) * (Qu-Q?)
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, where #n - number of examples of “normal” class, n -
!
number of examples of “abnormal” class, Q — estimate

2
of AUC, Q, :(27QQ)'QZ :%

New confidence interval could be calculated using this
standard error estimate of the mean AUC. The model is
considered as having prediction power if both confi-
dence intervals do not include 0.5.

Calculation of the lift of recall If there is no relation-
ship, the expected median recall of the model should be
close to the recall of a random selection while in the
random selection taking n% of the data gives approxi-
mately n% recall. The metric “lift of recall” can provide
an estimate of how the model behaves in comparison to
a random. The lift of recall is calculated as the ratio of
the median recall to the probability quantile and it mea-
sures how the performance of the model differs from a
random selection. It is less than 1 in the case of the
model’s performance near or worse than a random
model and is greater than 1 in the case of the model’s
performance better than random.

Choice of resampling schemes In order to choose best
resampling methods we tested three several resampling
schemes: LOOCYV, train-test splits and repeated 3-fold
cross-validation. LOOCYV takes a single point from the
data for the validation, and the remaining records are
used as the training set. This is repeated as many times
as the number of records in the data so that each point
is used once for the validation. In the train-test splits we
created 100 random splits of the data on the train and
test sets separately for each class in proportion of 50/50.
In the repeated 3-fold cross-validation a dataset was ran-
domly split in 3 folds separately for negative and positive
class. For each split 3 models were trained with over-
sampling for training data. The procedure repeated 15
times and totally 45 model performance metrics were
obtained. Estimation of the model performance was
done with F-score (the harmonic mean of the precision
and recall).

As a test data set we choose data from the breast can-
cer with 500kb aggregation level and 0.5% labeling
threshold and only stem-loops as predictors. In the
choice of resampling scheme, we chose oversampling as
a class balancing method.

Class balancing techniques We tested three class bal-
ancing techniques, which can affect model performance:
oversampling, stratification, and SMOTE. In oversam-
pling we duplicated minority class examples (hotspots,
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in our case) and made the proportion of two classes
equal. In SMOTE we tested 2000, 5000 and 10,000 of
oversampling percentages. In stratification method we
doubled the size of the imbalanced class (hotspots) and
randomly selected the same number of samples from the
negative class.
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and tables (Tables S1-S10). (PDF 853 kb)
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