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Abstract

This paper investigates different approaches for causal estimation under multiple concurrent 

medications. Our parameter of interest is the marginal mean counterfactual outcome under 

different combinations of medications. We explore parametric and non-parametric methods to 

estimate the generalized propensity score. We then apply three causal estimation approaches 
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(inverse probability of treatment weighting, propensity score adjustment, and targeted maximum 

likelihood estimation) to estimate the causal parameter of interest. Focusing on the estimation of 

the expected outcome under the most prevalent regimens, we compare the results obtained using 

these methods in a simulation study with four potentially concurrent medications. We perform a 

second simulation study in which some combinations of medications may occur rarely or not 

occur at all in the dataset. Finally, we apply the methods explored to contrast the probability of 

patient treatment success for the most prevalent regimens of antimicrobial agents for patients with 

multidrug-resistant pulmonary tuberculosis.

Keywords

Causal inference; concurrent medications; generalized propensity score; machine learning; 
multidrug-resistant tuberculosis; targeted maximum likelihood estimation

1 Introduction

Polypharmacy is the intake of multiple medications, potentially more than medically 

necessary, at the same time. Apart from the increased costs for multiple medications, the 

degradation of quality of life, the possibility of interactions between those medications, and 

adverse drug reactions,1 make polypharmacy an important area of research.

The concurrent usage of multiple medications is necessary for some diseases. Multidrug-

resistant tuberculosis (MDR-TB), with almost 500000 new cases in 20162 and a 45% 

mortality rate worldwide,3 is defined as a disease caused by strains of Mycobacterium 
tuberculosis that are resistant to at least the two most effective drugs, isoniazid and rifampin, 

used to treat tuberculosis. Patients with MDR-TB are treated with multiple alternative 

antimicrobial agents in order to cure the infection and prevent further drug resistance (or to 

prevent the selection of drug resistant strains of M. tuberculosis). Current guidelines 

recommend the simultaneous usage of five or more antimicrobial agents depending on the 

therapeutic phase and drug resistance pattern.4 A systematic review published in 2012 

identified international studies that investigated associations between different treatments 

and treatment outcomes of MDR-TB.5 The combination of individual patient data from 

these studies is currently the greatest resource for evaluating medication effectiveness in 

MDR-TB. However, with patients taking as many as 7 antimicrobial agents concurrently,5 

and the data containing 15 different antimicrobial agents overall, the analysis presents a 

challenge for the application of causal inference methods.

Many causal estimation techniques for binary treatments use the propensity score, defined as 

the probability of receiving one of the two treatment options. In the case where multiple 

treatments are available, Imbens6 extended this framework by defining the generalized 
propensity score (GPS) as the probability of receiving a specific treatment. Imbens,6 Imai 

and Van Dyk,7 and Lopez and Gutman8 developed various techniques reliant on the GPS for 

the estimation of causal effects. Further, McCaffrey et al.9 proposed using generalized 

boosted models for the estimation of the GPS for multiple treatments.
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In this paper, we explore methods to estimate the relative effects of taking multiple 

medications. The previous methods cited above primarily estimated the effects of continuous 

(such as medication dose) or low-dimensional categorical treatment options. In contrast, we 

are interested in the setting where patients may take more than one medication of interest 

concurrently, resulting in a potentially large number of possible drug combinations, many of 

which may not be observed in the data.

In order to approach this problem, we take the exposure to be a categorical variable of 

regimens, where regimen refers to a specific combination of medications (perhaps taken 

over a pre-specified period). We then employ various machine learning algorithms for the 

estimation of the GPS. We provide short introductions for these machine learning algorithms 

along with several causal estimation procedures in Section 2. We present a simulation study 

in Section 3 in order to compare the appropriateness of each method. In Section 4, we 

present an application of these methods for the MDR-TB data in which we provide estimates 

of the expected rates of treatment success (with outcome defined by the World Health 

Organization4) for the 10 most prevalent regimens in the combined dataset of Ahuja et al.5

2 Methods

In order to estimate the causal effects of multiple medications, we propose to estimate the 

GPS, defined as the probability of taking a specific regimen conditional on covariates. To 

this end, we investigate the usage of different machine learning algorithms for the GPS. 

Further, in order to estimate the causal contrasts, we employ Inverse Probability of 

Treatment Weighting (IPTW),10 Propensity Score Adjustment11 and Targeted Maximum 

Likelihood Estimation (TMLE),12,13 all of which use the GPS. We also investigate G-

Computation,14 which exclusively uses a model for the outcome conditional on medications 

taken and covariates in order to estimate an effect of interest.

2.1 General notation

The observed data Oi include a vector of covariates, Xi = {Xij;j = 1, …, J}, and a univariate 

outcome, Yi where i = 1, …, n indexes the set of subjects. We consider a fixed set of K 
potential medications that all patients in the study are hypothetically eligible for. For any 

patient i, the binary variable Ai
k indicates exposure to medication k ϵ {1, …, K}. We define 

Ci = Ai
1, …, Ai

K  as the set of treatments being taken by patient i. We denote Ri as a 

categorical variable corresponding to the observed regimen for patient i, represented by the 

combination of treatments Ci. For each individual, Ri corresponds to one of the 2K different 

possible regimens. We denote a specific fixed regimen as r and the corresponding vector of 

binary elements as cr. We also define Bi
r as an indicator for the regimen r, i.e. if patient i took 

regimen r, then Bi
r = 1. Clearly, Ci, Ri, and Bi

r contain the same information, but we require 

these definitions in order to describe the proposed models. We drop the i subscript when 

referring to a random draw of a variable from the population.
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The goal of the analysis is to estimate 𝔼 Yr , which is also equivalent to 𝔼 Ycr
, where Y i

r or 

Y i
cr

 represents the potential outcome of subject i had they received an intervention 

corresponding with a treatment regimen r. We may then contrast different regimens by 

comparing their respective estimated values of 𝔼 Yr . In MDR-TB example, the binary 

outcome is defined as treatment success (the treatment was completed and cured the 

infection) versus failure (patient still tested culture positive for MDR-TB, died, or defaulted 

on treatment/were lost to follow-up). The goal of the application was therefore taken to be 

the estimation of the probability of treatment success under a given regimen of antimicrobial 

agents. The regimens with the higher probabilities of treatment success may then be 

interpreted as having greater effectiveness than those with a lower probability.

2.2 Estimation of the generalized propensity score

The propensity score15 is defined as the probability of receiving a treatment conditional on 

covariates. When dealing with a binary treatment where C ϵ {0,1}, the propensity score can 

be mathematically expressed as

g(X) = Pr(C = 1 X)

With multiple treatments, the propensity score was extended to the GPS6 defined as

g(r, X) = Pr(R = r X) = Pr C = cr X

the probability of receiving a given regimen r. We use multi-class classification, with classes 

corresponding to regimens, in order to estimate the GPS. Multi-class classification is the 

fitting of models for different classes in the dataset where the classes are mutually exclusive. 

In this section, we provide basic descriptions of support vector machines, softmax regression 

(i.e. multinomial regression), and generalized boosted models, which we later use to 

estimate the GPS.

2.2.1 Support vector machines—Support Vector Machines (SVMs) (Hastie et al.,16 

Chapter 12), a supervised learning approach, have been proposed as a method for multi-class 

classification and have been identified as one the most important research topics in the field 

of machine learning.17 Computationally efficient, SVMs use hyperplanes to delineate a 

particular class by identifying the most influential observations in the determination of the 

boundaries between the classes. These observations are also known as the support vectors. 

The main aim of SVMs is to find a maximum margin hyperplane, where margin corresponds 

to the distance between the hyperplane and closest elements on either side of the hyperplane.

For the pairwise classification of two different regimens, say r1 and r2, Soft-Margin SVMs18 

construct a hyperplane {X; f(X) = wTX + b = 0}, with the constraint {I(Ri = r1) – I(Ri = r2)}

(wTXi + b) ≥ 1 −ζi, for all i = 1, …, n where the ζi ≥ 0 are called “slack variables” and I(·) is 

the indicator function. If ζi = 0 for all i = 1, …, n, this would imply that the hyperplane 
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would be able to perfectly separate and classify the data. The slack variables therefore allow 

for misclassification.

The parameters w, b and ζi are estimated by minimizing a loss function F(w, b, ζ) over w 
and b subject to the above constraints. This loss function is given by

F(w, b, ζ) =
w

2

2 + C ∑
i = 1

n
ζi

where C is a constant which maintains the trade-off between the training error and the 

margins (a smaller C allows for a smoother boundary f(X)). The function F(w, b, ζ) is 

minimized using optimization methods with Lagrangian multipliers.16

We apply the default settings of the function svm in the e1071R package19 for the 

implementation of SVMs. In particular, this function uses One-Vs-One classification20 (i.e. 

constructs boundaries for each pair of classes separately, and the final classification for each 

observation is determined by which class is most frequently selected), sets C=1, and applies 

a non-linear basis expansion with a radial kernel (Hastie et al.,16 Section 12.3). Finally, the 

probability of class membership (following a given regimen r) is estimated by fitting a 

logistic regression of R=r on the boundary values f(X) computed for each pairwise 

comparison.21,22

2.2.2 Softmax regression—Softmax regression,23 a common classification method, is 

equivalent to multinomial logistic regression. We restrict the probability for a patient to be 

treated with regimen r as

Pr Ri = r Xi, Φ =
exp ϕr

TXi

∑l = 1
2K

exp ϕl
TXi

The model parameters ϕr ∈ ℝ j + 1, r ϵ {1, … 2K}, with J corresponding to the number of 

covariates present in the model, are stacked together to form Φ, a matrix of dimension 2K × 

(J + 1) with entries Φr,j. The parameter matrix Φ is then estimated by minimizing the loss 

function L(Φ) (corresponding to the negative quasi log-likelihood), which is given by

L(Φ) = ∑
i = 1

n
∑

r = 1

2K

I Ri = r log
exp ϕr

TXi

∑l = 1
2K

exp ϕl
TXi

For implementation, we use the softmaxreg package24 in R.

2.2.3 Generalized boosting—Generalized Boosted Models (GBMs) (Hastie et al.,16 

Chapter 10) are machine learning algorithms that build up an additive model using multiple 

classification trees. Classification trees (Hastie et al.,16 Chapter 9) create a piecewise model 
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for a treatment by learning which sequential splits in the covariates most improve prediction 

of the treatment. Boosting generates a sequence of trees while upweighting the observations 

that were misclassified by the previous trees. Finally, the predictions from the individual 

trees are combined using an error-weighted majority vote.

Implementations of GBMs have been proposed to estimate the GPS for multiple treatments. 

To prevent overfitting, one needs to identify the total number of trees to use. McCaffrey et al.
9 propose to select the number of trees by comparing the values of the covariates in the GPS-

weighted treatment group versus the entire sample. A good “balance” means that covariate 

distributions are similar between these groups. The number of trees can be chosen by 

satisfying a criterion such as the Absolute Standard Bias (ASB), which compares the 

standardized difference in covariate means between groups, or the Kolmogovov–Smirnov 

(KS) Statistic, which compares the empirical distributions. In addition to the number of 

trees, the tuning parameters include a shrinkage term (learning rate) for the GBM, the 

minimum number of observations in the trees’ terminal nodes, and the depth of interactions 

(indicating the maximum number of splits the algorithm performs on a tree after the initial 

split) included in the model, all of which are important in order to properly smooth the 

model. We estimate the GPS for each regimen separately using the twang package25 in R.

2.3 Causal estimation methods

After obtaining the GPS, we aim to estimate 𝔼 Yr , where Yr is the potential outcome of an 

arbitrary patient under regimen r. In order to obtain an estimate of 𝔼 Yr , one may choose 

from various causal estimation methods, several of which we describe in this section. Causal 

estimation methods adjust for the confounders (roughly, those pre-treatment variables X that 

are related to both treatment regimen and Y) in order to produce estimates of the marginal 

parameter 𝔼 Yr . These causal estimation methods rely on several assumptions,6 including 1) 

positivity: the probability of receiving any regimen r conditional on the confounders, X, 

should be a non-zero quantity for all subjects; 2) consistency: for any patient i taking 

regimen Ri =r, the counterfactual outcome for patient i under r is the observed outcome of 

the patient; and 3) conditional exchangeability: the observed covariates should be sufficient 

to satisfy conditional independence between the regimens and the potential outcomes. Since 

we have 2K different regimens, some of which may not at all be observed in the data, the 

assumption of positivity is very likely to fail (either empirically or theoretically) for some 

regimens. This would imply that without additional extrapolation, we would not be able to 

estimate 𝔼 Yr  for those regimens. In the following, we only estimate the parameter of 

interest for prevalent regimens.

2.3.1 G-Computation—G-computation is a causal estimation method proposed by 

Robins14 that can be used for the estimation of 𝔼 Yr . The algorithm for G-Computation26 is 

as follows:
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Algorithm 1.

G-Computation for E(Yr)

1: Fit an outcome model for 𝔼(Y | R, X) using the available data, defined as Q(R, X). We then compute predictions 
of the conditional expectations under the regimen r for every subject. In our context, one may use a model Q(a)(R, 
X) that is conditional on the regimens directly (i.e. subsetting on Br = 1 or taking the indicators Br as covariates) or 
an alternative Q(b)(C, X) that is conditional on the medications (taking the Ak as covariates).

2: For each observation, predict the value of Qn r, Xi = 𝔼n Y | R = r, Xi  using the above obtained model where 

a subscript n denotes an estimate of the quantity.

3: The G-computation estimate of 𝔼 Yr
 is thus given by

ψn, G − comp
r = 1

n ∑
i = 1

n
Qn r, Xi .

The unbiasedness of G-computation relies on the correct specification of the outcome 

model.

2.3.2 Inverse probability of treatment weighting—IPTW10 is an approach for the 

estimation of 𝔼 Yr  using the propensity score. The algorithm for performing IPTW is as 

follows:

Algorithm 2.

IPTW for E(Yr)

1: Estimate the GPS for each regimen, gn(r,Xi) = Prn(R = r|Xi).

2: Obtain the weight wn(r,Xi) = I(Ri = r)gn(r,Xi) for each observation, which is only non-zero for subjects who took 
the regimen of interest, r.

3: Run a linear regression model of Y on an intercept, with weights wn(r,X).

The resulting estimate of the intercept is our IPTW estimate, ψn, IPTW
r . The consistency of 

IPTW relies on the correct specification of the propensity score model. In order to calculate 

the variance of the resulting estimate, we use the sandwich package27 in R, which is used for 

calculating robust variance estimates (that take into account the uncertainty in the propensity 

score). One could alternatively use the non-parametric bootstrap to estimate the variance, but 

this may be excessively time-consuming when the GPS is estimated with a machine learning 

method.

2.3.3 Propensity score adjustment—Propensity Score Adjustment (PSA) is a causal 

estimation method that relies on the specification of the propensity score model in addition 

to a model for the outcome, conditional on the propensity score and treatment. The 

propensity score is a balancing statistic, that is, given the propensity score, the potential 

outcome is conditionally independent of the treatment.11 For a single binary treatment C ∈ 
{0, 1}, one might use the following model

Siddique et al. Page 7

Stat Methods Med Res. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



𝔼(Y C, g(X)) = θ0 + θ1C + θ2g(X)

where θ1 can also be written as θ1 = 𝔼(Y |C = 1, g(X)) − 𝔼(Y |C = 0, g(X)). The estimate θ1 is 

obtained using least squares and is an unbiased estimate of 

𝔼(Y |C = 1, g(X)) − 𝔼(Y |C = 0, g(X)) = 𝔼 Y1 − Y0  if the propensity score and the outcome 

regression model are correctly specified and if the causal assumptions hold. However, if the 

expected outcome is not linearly dependent on the propensity score or if the propensity score 

model is incorrectly specified, then the ordinary least squares estimate of θ1 is a biased 

estimator of 𝔼 Y1 − Y0 .11 If a non-linear model is used, the above result may not be 

applicable, since θ1 for this case might correspond with a conditional parameter (and 

estimation would therefore be biased for the marginal contrast between the potential 

outcomes).

This method of estimation can also be extended to the case with multiple treatments.6 For 

our setting, we propose the following algorithm.

Algorithm 3.

Propensity Score Adjustment for E(Yr)

1: Fit a model Q(1)(R, g(r,X) (conditional on the regimen indicators, Br) or Q(2)(C,X) (conditional on the treatment 
indicators, Ak) for 𝔼(Y | R, g(r, X)).

2: Using the model fit, obtain predictions

Qn
(1) r, gn(r, X) = 𝔼n Y Br = 1, gn(r, X) or

Qn
(2) cr, gn(r, X) = 𝔼n Y C = cr, gn(r, X))

3: The estimates of 𝔼 Yr
 are then given as

ψn, PSA(I)
r = 1

n ∑
i = 1

n
Qn

(1) r, gn r, Xi , and

ψn, PSA(II)
r = 1

n ∑
i = 1

n
Qn

(2) cr, gn r, Xi

2.3.4 Targeted maximum likelihood estimation—TMLE13 is a semi-parametric 

estimation technique that produces doubly robust and locally efficient plug-in estimators. In 

our situation, TMLE invokes a two-step process that first produces estimates of the 

conditional expectation of the outcome under a fixed regimen (as in the first step in G-

Computation) and then updates these initial estimates.28 The update procedure uses the 

propensity score and is designed to reduce the bias in the estimate of the causal parameter of 

interest. An algorithm for the computation of TMLE for the multiple medication case with 

target parameter 𝔼 Yr  is described below.
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Algorithm 4.

Targeted Minimum Loss-Based Estimation for E(Yr)

1: First, fit an outcome model and generate estimates of the conditional expectation under the fixed regimen r, 

denoted Qn(r,X). We may use Qn
(a)(r, X) or Qn

(b) cr, X  as described in Section 2.3.1.

2: Define weights wn(r,X)=I(R = r)gn(r,X).

3: Regress Y on 1 with offset logit{Qn(r,X)} and weights wn(r,X). Denote the estimate of the intercept term by ϵ .

4: Compute the updated estimate, Qn*(r, X), which is given by

logit Qn*(r, X) = logit Qn(r, X) + ϵ

5: The TMLE estimate for 𝔼 Yr
 is then given by

ψn, TMLE
r = 1

n ∑
i = 1

n
Qn* r, Xi

The double robustness property of this TMLE means that, unlike the propensity score 

adjustment method, the TMLE is a consistent estimator if either 𝔼(Y | R = r, X) or g(r, X) is 

consistently estimated. For the approximation of the estimation standard error, one may use 

the efficient influence function (EIF),29 corresponding to the firstorder expansion of the 

estimator

EIFr(Q, g)(O) = (Y − Q(r, X)) I(R = r)
g(r, X) + Q(r, X) − ψTMLE

r

In large samples, the variance of the estimator will correspond to the sample variance of the 

estimated EIF. Therefore, the 95% confidence interval for ψn, TMLE
r  can be estimated by 

ψn, TMLE
r ± 1.96 (σn, TMLE

r )2/n, where (σn, TMLE
r )2 denotes the sample variance of EIFr(Qn,gn)

(Oi).

3 Simulation study

In order to evaluate the appropriateness of the above causal estimators paired with each GPS 

method, we contrast their performance in a Monte Carlo simulation study. We first describe 

the data-generating mechanisms. We estimate the expected counterfactual outcomes under 

the most prominent regimens. We compare the performance of several implementations of 

G-computation and then of each causal estimator that uses the GPS. In the Supplementary 

Materials, we perform a second simulation study with a larger number of medications, often 

leading to more regimens than subjects in the sample. For this second scenario, we evaluate 

a data subsetting method that can greatly reduce computational time.
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3.1 Data generation

Full details of the data generation are given in Section 1 of the Supplementary Materials.

We independently generate 12 baseline variables Xij,j = 1, …, 12 from a standard uniform 

distribution, i.e. Xij ~ U(0, 1). We also generate four dichotomous treatment indicators, Ai
k, k 

= 1, 2, 3, 4, conditional on a subset of the baseline variables. In addition, A1 and A2 are 

generated as positively correlated as are A3 and A4, and all other treatments pairs are 

independent. Specifically, a patient is more likely to take medication 1 if they are also taking 

medication 2 (and vice versa), and similarly for medications 3 and 4. A binary outcome Yi is 

generated using a logistic model conditional on the Xijs and Ai
ks with first-order interactions 

(including treatment–treatment, covariate–covariate, and covariate–treatment interactions). 

As subjects can take up to four medications, there are 24 = 16 possible regimens. The two 

most likely regimens (on average) are regimen 1 (1,1,0,0) and regimen 2 (1,1,1,1) and are 

defined as the regimens of interest. The true propensity score Pr(A1 = a1,A2 = a2, A3 =a3,A4 

= a4 | X) in this case can be factorized as

Pr A1 = a1, A2 = a2, A3 = a3, A4 = a4 X = Pr A1 = a1, A2 = a2 X Pr A3 = a3, A4 = a4 X

The true values of 𝔼 Yr  are 0.61 and 0.57 for regimens 1 and 2, respectively.

3.2 Comparison of outcome regression models

Since propensity score adjustment and TMLE both use a model for the outcome, we first 

evaluate the performance of six implementations of G-Computation to see whether each 

outcome model produces biased effects of E(Yr). We fit the following outcome models with 

logistic regressions: 1) by regimen, subsetting on Br = 1 for each r of interest, and 2) by 

treatment, adjusting for the treatment indicators Ak, k = 1,2,3,4 in the regression. For the 

latter case, we fit the outcome models without interactions (taking the main terms of Ak 

only) and then with first-order interactions between the Ak. We apply these three approaches 

to G-Computation both with and without adjustment for the baseline covariates as main 

terms.

We generated 1000 datasets of sample sizes n=500 and n=1000, respectively. Table 1 gives 

the mean estimates and Monte Carlo standard errors for each implementation. For regimen 

1, the G-computation estimate had little bias when adjusting by regimen or by treatment 

with first-order interactions, regardless of the adjustment for Xij as main terms. However, it 

was substantially biased when fit with treatment main terms only, regardless of adjustment 

for Xij. For regimen 2, the G-computation estimate was unbiased when adjusting by regimen 

or by treatment with first-order interactions but only when also adjusting for confounding by 

Xij. It was biased when not adjusting for confounding and when the treatment interactions 

were not included. The standard error was lower for the larger sample size but the bias 

remained steady.
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3.3 Comparison of methods

The implementations of causal estimators that are evaluated in this section are:

• IPTW, using a weighted linear regression model (Section 2.3.2);

• PSA(I), propensity score adjustment with a logistic regression to estimate Q(1) 

conditional on regimen (Section 2.3.3);

• PSA(II), propensity score adjustment with a logistic regression to estimate Q(2) 

conditional on treatments as main terms (Section 2.3.3);

• TMLE(I), using a logistic regression to model the outcome conditional on 

regimen and baseline covariates, i.e. Q(a) (Section 2.3.4);

• TMLE(II), using a logistic regression to model the outcome conditional on 

treatments and baseline covariates, i.e. Q(b) (Section 2.3.4).

The GPS for each regimen of interest was estimated using the three approaches in Section 

2.2. When fitting GBMs for each regimen Ri, we chose values of the tuning parameters that 

optimized the balance between the pretreatment covariates in Ri and the pooled sample of all 

the other regimens for five simulated datasets using the plots function in twang. The 

maximum number of iterations in the Softmax regression was set to 100 with the default 

learning rate of 0.05 and the tuning parameters for SVMs were similarly assigned the default 

values.

We drew 1000 samples of sizes n=500 and n=1000, respectively. Table 2 gives the mean 

estimates and Monte Carlo standard errors for the top two occurring regimens in our 

simulated data. The numbers of subjects exposed to each of these regimens varied by sample 

and are given in Section 3 of the Supplementary Materials. TMLE performed well when 

implemented with SVMs, Softmax regression, and GBMs. IPTW and PSA(I) performed 

well with Softmax regression but were biased with SVMs and GBMs for the second 

regimen, likely due to the suboptimal convergence rate of these nonparametric GPS 

methods.30 The estimates of PSA(I) and IPTW with SVMs and GBMs appeared to slowly 

approach the true values with larger sample sizes (results not shown) though some bias still 

existed at n = 10000. PSA(II) performed poorly throughout, due to the incorrect 

specification of the outcome model when conditional on the treatments only as main terms, 

and did not converge with larger sample sizes. Note that PSA(II) performed similarly to the 

closely related adjusted G-Computation with treatment main terms. For the second regimen, 

TMLE(I) was essentially unbiased but often had more variance than IPTW and TMLE(II).

We conducted a second simulation study with eight dichotomous treatment variables and a 

sample size of n=500. In our simulated data, out of the 256 possible regimens, roughly 150 

different regimens occurred in each dataset. Some of these regimens were only followed by 

several subjects, making the corresponding GPSs difficult to estimate. We tested whether 

removing the observations corresponding to the 20 and 30% least supported regimens 

affected the causal estimation. Specifically, we did not use these observations in the GPS 

model fitting but kept them in for the other causal estimation steps. We found that, out of a 

total of 500 observations, this resulted on average in the removal of only 30 and 45 

observations, respectively, reduced the computational time, and did not change the quality of 
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the estimation. We present the full description and the results of this simulation study in the 

Supplementary Materials Section 2.

4 Application of the above methods to the MDR-TB data

The Collaborative Group for Meta-Analysis of Individual Patient Data in Multidrug-

Resistant Tuberculosis (IPD-MDRTB)5 assembled individual patient data on treatment 

outcomes from 31 observational studies comprising 9290 individual pulmonary MDR-TB 

patients. This dataset contains information on the antimicrobial agents used, the baseline 

covariates (summarized in Table 3), and clinical outcomes. Patients were observed to take 15 

different antimicrobial agents in various combinations. We refer to these different sets of 

medications as regimens and present the 10 most prevalent regimens used in the first row of 

Table 3. Notably, the most common regimens included five or more different antimicrobial 

agents, while 207 subjects did not take any antimicrobial agent. The antimicrobial agents in 

the ten most observed regimens are ethambutol (EMB), ethionamide (ETH), ofloxacin 

(OFX), pyrazinamide (Z), kanamycin (KM), cycloserine (CS), capreomycin (CM), para-

aminosalicylic acid (PAS), prothionamide (PTO), streptomycin (SM), and rifabutin (RBT).

A binary outcome was defined as either treatment success (the treatment was completed and 

cured the infection) or failure (patient still tested culture positive for MDR-TB, died, or 

defaulted on treatment/were lost to follow-up). After removing the 2.77% of subjects with a 

missing outcome and the 0.34% with missing baseline information, we were left with a 

sample size of n = 9001 observations taking 1626 different regimens. The covariate age was 

divided into six categories (0–24, 25–33, 34–42, 43–52, 53–63, 64–) approximately 

corresponding to age sextiles and the year of study (defined as the final year of patient 

treatment) was treated as categorical with 14 values. As observed in Table 3, there are 

differences across the regimen groups in terms of all covariates. This is evidence of 

indication bias as medication regimens may be differentially assigned across countries, time 

periods, and patient disease characteristics.

The objective of this data analysis is to compare the results of the different methodological 

approaches for the estimation of 𝔼 Yr . We do this for the 10 most prevalent regimens in the 

dataset, corresponding to the first ten regimens in Table 3. The parameter 𝔼 Yr  can be 

interpreted as the proportion of the study population that would have had a successful 

recovery had all the patients been treated with regimen r. Therefore, larger values of this 

parameter indicate which regimens may be more beneficially applied on a large scale. Ethics 

approval was obtained for the reanalysis of this data through the Ethics in Health Research 

Committee at Université de Montréal (certificate number 17–111-CERES-D).

In order to estimate the GPS with SVMs and Softmax Regression, we removed all of the 

subjects with regimens only supported by one or two subjects (1420 subjects). The models 

were fit using the 7581 remaining observations. The GPS was then predicted for the entire 

population of n = 9001 patients conditional on the covariates in Table 3 and indicators for 

missing values. GBMs were run using the twang package and we selected the combinations 

of interaction depth, n.minobsinnode (minimum observations in each node), and shrinkage 

parameters that produced the best balance using the KS statistic as explained in McCaffrey 
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and others.9 After obtaining the GPS with these methods, we proceeded with the causal 

estimation procedures described in Section 3.3 for the estimation of 𝔼 Yr .

Tables 4 and 5 present the estimates of 𝔼 Yr  obtained for the 10 most frequent regimens. No 

closed-form approximation of the standard error is available for the multi-treatment version 

of PSA, and given that the machine learning methods were very computationally intensive, 

numerical methods like bootstrapping weren’t feasible for our implementation. Therefore, 

the confidence intervals for this method were omitted. The logistic regression outcome 

model used in TMLE(I) overfit the data (causing the update step to fail) and therefore a 

LASSO penalty was added to the outcome model with penalty parameter chosen using cross 

validation with the R package glmnet.31 We used empirical summaries of the weights and 

GPS (Supplementary Materials Sections 5 and 6) to evaluate whether the positivity 

assumption may be nearly violated for some subjects. No truncation of the GPS32 was used 

for the results presented, though we conducted a sensitivity analysis where 20% truncation 

was used to remove the smallest values of the GPS. Numerical results of the sensitivity 

analyses are presented in the Supplementary Materials Section 6 and discussed below.

The point estimates of 𝔼 Yr  and the confidence intervals in Tables 4 and 5 often varied 

depending on which method was used to estimate the GPS. The point estimates also 

sometimes disagreed between causal inference methods using the same GPS vector (e.g. 

regimens 1 (OFX-KM-Z-EMB-ETH) and 5 (OFX-SM-PTO-CS-PAS)) and to a lesser extent 

between GPS methods using the same causal inference method. None of the GPS methods 

consistently produced narrow confidence intervals for TMLE or IPTW. However, TMLE 

was often found to have narrower confidence intervals than IPTW. GPS truncation resulted 

in at most small changes in the point estimates though very small values of the GPS were 

observed, suggesting possible near-positivity violations.

Table 6 presents the top 5 most beneficial regimens based on the estimates of 𝔼 Yr . 

Regimens 2 (OFX-KM-Z-ETH-CS) and 8 (OFX-CM-Z-ETH-CS-PAS) were often classified 

in the top 2 and were in the top 5 of all methods except for PSA(II) with SVMs and GBMs. 

Regimens 3 (OFX-KM-PTO-CS-PAS), 7 (OFX-KM-Z-ETH), and 10 (OFX-KM-Z-EMB-

ETH-CS) were also often ranked in the top 5. This would suggest the superior effectiveness 

of these treatment combinations among the regimens investigated.

World Health Organization (WHO) guidelines4,33 suggest that MDR-TB regimens include a 

fluoroquinolone (such as OFX) and an injectable agent (such as KM, SM or CM). No 

treatment (included as a benchmark despite questionable clinical interest) and regimen 4 (Z-

EMB-RBT) performed the worst overall and follow neither of these guidelines. Regimen 9 

(OFX-PTO-CS-PAS), which also performed poorly, also lacked an injectable agent.

WHO guidelines also point to the importance of the number of drugs in the regimen, 

suggesting five or more that have certain or almost certain effectiveness.4 Previous studies 

have suggested that a majority of MDR-TB patients are resistant to EMB and Z in many 

settings.34,35 When excluding EMB and Z, of the regimens evaluated here, regimens 3, 5, 

and 8 had five remaining drugs, though only regimens 3 and 8 were found to be among the 
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most effective. Regimen 5 was identical to regimen 3 except that it replaced KM by SM, for 

which resistance is also commonly seen among MDR-TB isolates. Regimens 2, 9, and 10 

had four remaining drugs. Regimens 2 and 10 both included an injectable (KM) and were 

identical except that regimen 10 also included EMB. Interestingly, regimen 2 was found to 

perform the best among the regimens evaluated while 10 was found to be less effective. 

These results point to the potential importance of the inclusion of KM in a regimen. While 

we estimated the expected mean of the potential outcome under 10 regimens, future 

applications may use marginal structural models (modeling of the expected potential 

outcomes conditional on treatments) and a broader range of regimens to estimate the 

contributions of each individual treatment and treatment interaction on the outcome. In the 

discussion, we point out some limitations of the simplified analysis in the current paper, 

which limits the interpretability of the results.

5 Discussion

In this paper, we investigated the causal estimation of multiple concurrent medications as 

motivated by the clinical question of how best to treat patients with MDR-TB. The topic of 

polypharmacy (resulting in potential overmedication and dangerous medication interactions) 

is gaining in importance in the medical literature. In particular, polypharmacy is highly 

prevalent in the elderly (ages ≥ 65), an important and growing population36, leading to 

potential adverse drug reactions.37 For example, multiple cardiovascular medications, taken 

by more than 50% of elderly people, have been shown to be associated with an increased 

risk of acute kidney disorders.38 Given the toxicity of second-line anti-tuberculosis drugs, 

the analysis of polypharmacy is particularly relevant for treating MDR-TB cases.

In order to address estimation in this challenging scenario, we defined a treatment “regimen” 

as each unique combination of medications and used three methods to estimate the GPS, or 

the probability of receiving a specific regimen. One weakness of this GPS approach is that it 

does not directly allow for information to be shared between different regimens that contain 

one or more of the same medications. In a Monte Carlo simulation study, we showed that 

missing treatment interactions in the outcome model can lead to bias in the estimation of 

both PSA and G-Computation. In real world applications, it might therefore be difficult to 

correctly specify these models. However, due to its double robustness property, TMLE was 

found to produce unbiased point estimates even when the outcome model was incorrectly 

specified. Further investigations could involve the implementation of TMLE with a non-

parametric method used for the outcome model as well, which might add additional 

robustness to the estimation.39

In the application, we estimated the probability of treatment success for the 10 most 

prevalent medication combinations in the MDR-TB dataset. We chose to estimate the most 

prevalent medications because they may be of greatest clinical interest and also have the 

greatest amount of data support (i.e. number of patients following the regimens) which 

allowed for better estimation. An interesting question for future research would involve 

empirically identifying which regimens have sufficient data support. One may also integrate 

existing methods to data-adaptively select covariates in the GPS for a given regimen.40
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The different methods often agreed on the preferred MDR-TB regimens but produced 

sometimes differing estimates of probabilities of treatment success. Closed-form confidence 

intervals are not available for PSA with multiple regimens and we were unable to use a 

numerical approach to approximate them given the computational complexity of the GPS 

estimation. Previous investigations of this data source5 used regression analyses to estimate 

the associations between each treatment and outcome separately, ignoring other treatments. 

Associations between the number of treatments and duration of treatment were also 

investigated. In contrast to the previous approach, our general approach considers the joint 

effect of treatments. TMLE also has the advantage of being doubly robust and therefore 

consistent when either the GPS or the outcome model is correctly specified. Since the 

dataset consists of the fusion of multiple observational studies, a more appropriate 

application of these methods would formally consider the heterogeneity between studies in 

the point estimation (e.g. using a random effects outcome model by study) and standard 

error estimation41 and account for selection bias as different populations were observed to 

take different regimens of antimicrobial agents. Our analysis also did not consider known 

drug resistance in the analysis, which may affect treatment decisions and outcomes, nor did 

we address the extrapolation required to synthesize evidence when certain regimens are only 

observed in select time periods. Ongoing analyses more appropriately address these issues 

and strong clinical conclusions about medication or regimen effectiveness are beyond the 

scope of this article.

Because of the large number of regimens, the GPS model may sometimes predict very small 

probabilities for some regimens. This creates well-known stability problems for methods 

that weight by the inverse of the GPS. We addressed this problem by using formulations of 

IPTW and TMLE that use the inverse GPS as a weight in a regression. Alternative 

approaches (results not shown) were sometimes highly biased in the simulation study. The 

robustness of the regression approach is likely due to the dampening of the residuals in the 

weighted regression step. TMLE and IPTW often benefit from GPS truncation as a bias-

variance trade-off and data-adaptive approaches have been recently proposed.42 However, 

small values of the GPS may also indicate true positivity violations and the nonexistence of 

the parameter of interest. Very small values of the GPS could be investigated to identify 

patients who were truly ineligible for a given treatment due to clinical or demographic 

features. Related to the simplifications mentioned above, we did not consider this possibility.

An alternative approach that we considered but did not take in this paper (that addresses the 

mentioned limitation) involves treating the regimens not as categorical, but as a multivariate 

binary variable, with each component indicating whether a subject was on that specific 

medication. One could then attempt to use multivariate regression modeling43 for the GPS 

that allows for some correlation between the treatments. Optimal Classifier Chains44 or 

simpler regression approaches that otherwise allow for dependencies between the usage of 

different treatments are potential approaches.

It is clear from the medical literature that the estimation of the effects of multiple concurrent 

medications is an important topic but standard methods are limited. Given the complexity of 

the problem, we hope that this paper encourages additional focus on these methodological 

issues.
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Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Monte Carlo mean estimates and standard errors for different implementations of G-Computation.

n = 500 n = 1 000

Qncorr Reg 1 Reg 2 Reg 1 Reg 2

Unadjusted

 By Regimen Y 0.63(0.05) 0.62(0.07) 0.63(0.03) 0.62(0.04)

 By treatment (main terms) N 0.48(0.05) 0.83(0.03) 0.48(0.03) 0.83(0.03)

 By treatment (first order interactions) Y 0.63(0.05) 0.62(0.07) 0.63(0.03) 0.62(0.04)

Adjusted for Xij

 By Regimen Y 0.64(0.04) 0.57(0.07) 0.64(0.03) 0.57(0.05)

 By treatment (main terms) N 0.47(0.04) 0.81(0.03) 0.47(0.03) 0.82(0.03)

 By treatment (first order interactions) Y 0.62(0.05) 0.58(0.06) 0.62(0.03) 0.58(0.04)

Note: The true value for regimen 1 is 𝔼 Y1
 = 0.61 and the true value for regimen 2 is 𝔼 Y2

 = 0.57. Qn corr indicates whether the outcome 

model includes the true treatment–treatment interactions.
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Table 2.

Monte Carlo means and standard errors over 1000 draws for different causal estimators that utilize the 

generalized propensity score.

n = 500 n = 1000

Qncorr Reg 1 Reg 2 Reg 1 Reg 2

SVM

 IPTW N/A 0.63(0.05) 0.61(0.07) 0.63(0.04) 0.61(0.05)

 PSA(I) Y 0.64(0.06) 0.51(0.08) 0.64(0.04) 0.52(0.05)

 PSA(II) N 0.44(0.05) 0.83(0.04) 0.44(0.03) 0.83(0.03)

 TMLE(I) Y 0.62(0.05) 0.58(0.09) 0.62(0.04) 0.58(0.06)

 TMLE(II) N 0.62(0.05) 0.60(0.07) 0.62(0.04) 0.59(0.05)

Softmax Regression

 IPTW N/A 0.62(0.06) 0.58(0.11) 0.62(0.04) 0.58(0.07)

 PSA(I) Y 0.64(0.05) 0.57(0.07) 0.63(0.04) 0.57(0.05)

 PSA(II) N 0.47(0.04) 0.83(0.04) 0.47(0.03) 0.83(0.03)

 TMLE(I) Y 0.62(0.06) 0.58(0.10) 0.62(0.04) 0.58(0.07)

 TMLE(II) N 0.62(0.06) 0.58(0.10) 0.62(0.04) 0.58(0.07)

GBM

 IPTW N/A 0.62(0.05) 0.60(0.08) 0.62(0.04) 0.59(0.06)

 PSA(I) Y 0.63(0.06) 0.51(0.10) 0.63(0.04) 0.52(0.06)

 PSA(II) N 0.42(0.04) 0.85(0.04) 0.43(0.03) 0.84(0.03)

 TMLE(I) Y 0.62(0.06) 0.58(0.10) 0.62(0.04) 0.58(0.07)

 TMLE(II) N 0.62(0.05) 0.59(0.08) 0.62(0.05) 0.59(0.06)

Note: The true value for regimen 1 is 𝔼 Y1
 = 0.61 and the true value for regimen 2 is 𝔼 Y2

 = 0.57. Outcome regression models were fit by (I) 

regimen and (II) treatments as main terms covariates. Qncorr indicates whether the outcome model includes the true treatment-treatment 

interactions. SVM: Support vector machine; GBM: generalized boosted model; IPTW: inverse probability of treatment weighting; PSA: propensity 
score adjustment; TMLE: targeted maximum likelihood estimation.
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Table 4.

Estimates of the probability of treatment success along with the confidence intervals under regimens 1–5 for 

the MDR-TB application in Section 4.

Regimen 1 2 3 4 5

OFX-KM-Z-EMB-ETH OFX-KM-Z-ETH-CS OFX-KM-PTO-CS-PAS Z-EMB-RBT OFX-SM-PTO-CS-PAS

SVM 0.46 0.71 0.59 0.27 0.32

 IPTW 0.46 0.71 0.59 0.27 0.32

(0.44,0.49) (0.62,0.80) (0.47,0.70) (0.09,0.45) (0.17,0.46)

 PSA(I) 0.44 0.67 0.63 0.32 0.55

 PSA(II) 0.66 0.69 0.64 0.42 0.68

 TMLE(I) 0.61 0.78 0.63 0.54 0.31

(0.60,0.61) (0.76,0.80) (0.60,0.65) (0.52,0.57) (0.28,0.34)

 TMLE(II) 0.49 0.69 0.60 0.34 0.37

(0.48,0.50) (0.68,0.70) (0.58,0.63) (0.31,0.36) (0.35,0.38)

Softmax

Regression

 IPTW 0.46 0.65 0.56 0.27 0.37

(0.43,0.49) (0.59,0.70) (0.49,0.64) (0.18,0.36) (0.29,0.44)

 PSA(I) 0.38 0.63 0.55 0.22 0.45

 PSA(II) 0.56 0.64 0.59 0.36 0.62

 TMLE(I) 0.60 0.65 0.61 0.57 0.37

(0.59,0.62) (0.62,0.67) (0.59,0.64) (0.54,0.60) (0.35,0.39)

 TMLE(II) 0.48 0.64 0.59 0.26 0.45

(0.47,0.50) (0.62,0.67) (0.57,0.62) (0.22,0.30) (0.43,0.48)

GBM

 IPTW 0.55 0.81 0.59 0.25 0.27

(0.39,0.72) (0.64,0.98) (0.47,0.70) (0.11,0.39) (0.01,0.52)

 PSA(I) 0.43 0.68 0.63 0.35 0.55

 PSA(II) 0.65 0.68 0.64 0.37 0.66

 TMLE(I) 0.63 0.83 0.60 0.54 0.27

(0.58,0.68) (0.79,0.87) (0.54,0.67) (0.51,0.56) (0.22,0.32)

 TMLE(II) 0.55 0.77 0.57 0.34 0.30

(0.50,0.60) (0.76,0.79) (0.50,0.64) (0.30,0.37) (0.28,0.32)

SVM: Support vector machine; GBM: generalized boosted model; IPTW: inverse probability of treatment weighting; PSA: propensity score 
adjustment; TMLE: targeted maximum likelihood estimation. Outcome regression models were fit (I) by regimen and (II) with treatments as main 
terms covariates.
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Table 5.

Estimates of the probability of treatment success along with the confidence intervals under regimens 6–10 for 

the MDR-TB application in Section 4.

Regimen 6 7 8 9 10

None Z-ETH OFX-KM-Z-ETH-CS-PAS OFX-CM-PTO-CS-PAS OFX-Z-EMB-ETH-CS OFX-KM-

SVM

 IPTW 0.20 0.56 0.67 0.57 0.56

(0.08,0.31) (0.48,0.64) (0.55,0.0.80) (0.37,0.77) (0.47,0.64)

 PSA(I) 0.29 0.59 0.61 0.56 0.57

 PSA(II) 0.38 0.63 0.61 0.58 0.66

 TMLE(I) 0.21 0.58 0.67 0.62 0.61

(0.18,0.23) (0.56,0.60) (0.65,0.69) (0.58,0.66) (0.58,0.63)

 TMLE(II) 0.24 0.58 0.60 0.58 0.57

(0.21,0.27) (0.56,0.60) (0.58,0.62) (0.55,0.61) (0.54,0.60)

Softmax

Regression 0.31 0.56 0.69 0.45 0.56

 IPTW 0.31 0.56 0.69 0.45 0.56

(0.24,0.38) (0.48,0.64) (0.61,0.78) (0.35,0.54) (0.48,0.65)

 PSA(I) 0.37 0.55 0.56 0.46 0.54

 PSA(II) 0.38 0.56 0.59 0.50 0.65

 TMLE(I) 0.25 0.58 0.68 0.55 0.60

(0.22,0.28) (0.55,0.61) (0.66,0.70) (0.52,0.58) (0.57,0.64)

 TMLE(II) 0.35 0.56 0.62 0.49 0.56

(0.29,0.41) (0.53,0.60) (0.60,0.64) (0.47,0.52) (0.52,0.61)

GBM

 IPTW 0.24 0.70 0.75 0.56 0.55

(0.17,0.32) (0.41,0.98) (0.65,0.83) (0.25,0.86) (0.45,0.65)

 PSA(I) 0.38 0.60 0.60 0.54 0.57

 PSA(II) 0.40 0.62 0.60 0.52 0.65

 TMLE(I) 0.25 0.67 0.73 0.62 0.59

(0.21,0.28) (0.62,0.73) (0.70,0.77) (0.56,0.67) (0.57,0.62)

 TMLE(II) 0.26 0.67 0.67 0.58 0.54

(0.22,0.31) (0.65,0.68) (0.63,0.71) (0.54,0.61) (0.52,0.58)

SVM: Support vector machine; GBM: generalized boosted model; IPTW: inverse probability of treatment weighting; PSA: propensity score 
adjustment; TMLE: targeted maximum likelihood estimation. Outcome regression models were fit (I) by regimen and (II) with treatments as main 
terms covariates.
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Table 6.

Ranking of the top 5 medication regimens estimated by each method in terms of the estimated population 

recovery rate of MDR-TB treatment success.

Causal Estimation IPTW TMLE(I) TMLE(II) PSA(I) PSA(II)

Methods

SVM Reg 2 Reg 2 Reg 2 Reg 2 Reg 2

Reg 8 Reg 8 Reg 8 Reg 3 Reg 5

Reg 3 Reg 3 Reg 3 Reg 8 Reg 10

Reg 9 Reg 9 Reg 7 Reg 7 Reg 1

Reg 10 Reg 10 Reg 9 Reg 10 Reg 3

Softmax Regression Reg 8 Reg 8 Reg 2 Reg 2 Reg 10

Reg 2 Reg 2 Reg 8 Reg 8 Reg 2

Reg 10 Reg 3 Reg 3 Reg 3 Reg 5

Reg 7 Reg 10 Reg 10 Reg 7 Reg 8

Reg 3 Reg 1 Reg 7 Reg 10 Reg 3

GBM Reg 2 Reg 2 Reg 2 Reg 2 Reg 2

Reg 8 Reg 8 Reg 8 Reg 3 Reg 5

Reg 7 Reg 7 Reg 7 Reg 7 Reg 10

Reg 3 Reg 1 Reg 9 Reg 8 Reg 1

Reg 9 Reg 9 Reg 3 Reg 10 Reg 3

Reg 1: OFX-KM-Z-EMB-ETH; Reg 2: OFX-KM-Z-ETH-CS; Reg 3: OFX-KM-PTO-CS-PAS; Reg 4: Z-EMB-RBT; Reg 5: OFX-SM-PTO-CS-
PAS; Reg 6: None; Reg 7: OFX-KM-Z-ETH; Reg 8: OFX-CM-Z-ETH-CS-PAS; Reg 9: OFX-PTO-CS-PAS; Reg 10: OFX-KM-Z-EMB-ETH-CS; 
SVM: Support vector machine; GBM: generalized boosted model; IPTW: inverse probability of treatment weighting; PSA: propensity score 
adjustment; TMLE: targeted maximum likelihood estimation. Outcome regression models were fit (I) by regimen and (II) with treatments as main 
terms covariates.
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