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Abstract

Renal dysfunction is prevalent in the US among African Americans. Air pollution is associated 

with renal dysfunction in mostly white American populations, but not among African Americans. 

We evaluated cross-sectional associations between 1-year and 3-year fine particulate matter 

(PM2.5) and ozone (O3) concentrations and renal function among 5090 African American 

participants in the Jackson Heart Study. We used mixed-effect linear regression to estimate 

associations between 1-year and 3-year PM2.5 and O3 and estimated glomerular filtration rate 

(eGFR), urine albumin/creatinine ratio (UACR), serum creatinine, and serum cystatin C, adjusting 

for: sociodemographic factors, health behaviors, and medical history and accounting for clustering 

by census tract. At baseline, JHS participants had mean age 55.4 years, and 63.8% were female; 

mean 1-year and 3-year PM2.5 concentrations were 12.2 and 12.4 μg/m3, and mean 1-year and 3-

year O3 concentrations were 40.2 and 40.7 ppb, respectively. Approximately 6.5% of participants 

had reduced eGFR (<60 mL/min/1.73m2) and 12.7% had elevated UACR (>30 μg/g), both 

indicating impaired renal function. Annual and 3-year O3 concentrations were inversely associated 

with eGFR and positively associated with serum creatinine; annual and 3year PM2.5 
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concentrations were inversely associated with UACR. We observed impaired renal function 

associated with increased O3 but not PM2.5 exposure among African Americans.

Introduction

Chronic kidney disease (CKD) is increasingly prevalent, affecting approximately 11% of 

men and 15% of women in the US (1). CKD is identified using indicators of poor renal 

function, including low glomerular filtration rate (GFR) and/or high urine albumin/creatinine 

ratio (UACR) (2). In addition to higher risk of morbidity and mortality linked to CKD itself, 

CKD is associated with increased risk of cardiovascular disease (CVD) and all-cause 

mortality (3–5).

Epidemiologic studies have linked long-term exposure to traffic-related air pollution, 

including coarse and fine particulate matter (PM10 and PM2.5, respectively) and ozone (O3) 

(6–10) with excess CVD morbidity and mortality. Kidneys are highly vascular organs and 

interact greatly with the cardiovascular system, including blood pressure regulation (11, 12). 

CKD and poor renal function have been identified as independent risk factors for 

development of CVD (arterial vascular disease and cardiomyopathy) (3) as well as being 

associated with major CVD risk factors such as diabetes (1, 13) and hypertension (1, 11), 

which are especially prevalent among African Americans (14–17). Given that kidney 

function is closely related to blood pressure control, vascular function, and risk of CVD, it is 

plausible that long-term exposure to ambient air pollution may be associated with renal 

function.

Prior studies of long-term exposure to traffic-related air pollution and renal function have 

had mixed results. In our previous study in a cohort of older, predominantly white stroke 

survivors in Boston, living near a major roadway was associated with lower estimated 

glomerular filtration rate (eGFR) (12). Similarly, Mehta et al. observed an inverse 

association between ambient PM2.5 and eGFR, as well as annual decline in eGFR over time 

an eleven-year follow-up period among older, predominantly white men in the Boston area 

(18). Bowe et al. observed associations between PM2.5 concentrations and incident CKD and 

reduced eGFR(19). However, among participants in the Multi-Ethnic Study of 

Atherosclerosis (MESA), O’Neill et al. did not find evidence of an association between 

PM10 concentrations and UACR (20). These prior studies included small numbers of African 

Americans. However, CKD is especially concerning for African Americans, who have been 

shown to have greater risk of incident CKD and higher prevalence of end-stage renal disease 

compared to whites (21). The very limited availability of data, particularly among African 

Americans, highlights the need for additional studies evaluating the association between 

long-term exposure to traffic pollution and measures of renal function especially among 

African Americans. This study addresses this gap in the literature by evaluating the 

association between PM2.5 and O3, two common indicators of traffic-related air pollution, 

and renal function in the Jackson Heart Study (JHS), the largest African American cohort of 

cardiovascular diseases.
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Methods

The JHS is a longitudinal cohort study of 5301 non-institutionalized African-American men 

and women aged 21 years and older, recruited 2000–2004 residing in the tri-county Jackson, 

Mississippi Metropolitan Statistical Area (MSA) (22, 23). Although JHS consisted of three 

visits, we used cross-sectional data from the first visit only, due to loss to follow-up at visit 2 

and lack of exposure data at visit 3. Upon enrollment, participants completed an in-person 

interview, detailing demographics, health history, lifestyle factors, and healthcare access. 

Shortly thereafter, participants were scheduled for a clinical exam and asked to bring in all 

medications that they used in the past two weeks, which were inventoried (23). Details of the 

home induction interview and baseline clinical exam are described elsewhere (22, 23). All 

participants provided written informed consent. All JHS protocols were reviewed and 

approved by the Institutional Review Boards at Jackson State University, Tougaloo College, 

and the University of Mississippi Medical Center. This analysis was approved by the 

Institutional Review Board at Indiana University.

Exposure assessment

Our primary exposures of interest were mean annual and 3-year PM2.5 and O3 

concentrations prior to participants’ visits at their zip codes of residence. Relevant exposure 

windows are unknown, but annual means are common measures of long-term air pollution 

exposure (24–26) (daily or monthly averages are typically used as measures of short-term 

exposure), and we additionally used 3-year means to explore the possibility of longer 

relevant exposure windows. We obtained geocoded address information from all JHS 

participants. We used publicly available data from the US Environmental Protection 

Agency’s Community Multiscale Air Quality Model (CMAQ) in order to calculate 1-year 

and 3-year PM2.5 and O3 concentrations. CMAQ uses emissions data as well as hourly 

monitoring data to estimate pollutant concentrations and applies a spatiotemporal 

downscaler model (27) to estimate 1-year and 3-year mean PM2.5 and O3 concentrations at 

the zip code level. Briefly, downscaler models use linear regression with spatially-varying 

coefficients on CMAQ data, then model them as correlated spatial Gaussian process via the 

method of coregionalization (28, 29).

Indicators of renal function

We examined the following indicators for renal function at the baseline exam as outcomes of 

interest: eGFR, urine albumin/creatinine ratio (UACR), serum creatinine, and serum cystatin 

C. UACR is an indicator of albuminuria, or abnormally high concentrations of the protein 

albumin in urine (2, 20). Serum creatinine and cystatin C are both measures of kidney 

filtration functions, as kidneys contribute to the regulation of circulating levels of creatinine 

and cystatin C, although serum creatinine concentration may be affected by diet, muscle 

mass, or illness (2, 30). Both measures are used to estimate glomerular filtration rate, the 

rate at which kidneys filter blood. We measured eGFR, using the CKD-EPI creatinine/

cystatin C equation:
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eGFR = 135 * min Scr /κ, 1 α * max Scr /κ, 1 −0 . 601 * min Scys/0 . 8, 1 −0 . 375

* max Scys/0 . 8, 1 −0 . 711 * 0 . 995Age * 0 . 969 i f f emale * 1 . 08

where Scr represents serum creatinine, κ is 0.7 for women and 0.9 for men, α is −0.329 for 

women and −0.411 for men, min and max denote the minimum or maximum of specified 

measurement or 1, and Scys denotes serum cystatin C (30). Urine albumin was measured 

using human albumin kit on a Dade Behring BN II nephelometer (Dade Behring, Newark, 

DE) (31). Serum and urine creatinine were measured using a multipoint enzymatic 

spectrophotometric assay on a Vitros 950 Ortho-Clinical Diagnostics analyzer (Raritan, NJ) 

(31).

At the baseline clinical exam, fasting blood samples were procured. Participants recruited 

from 2000–2002 were asked to collect a 24-hour urine sample for analysis, but only 586 out 

of 1914 participants agreed to provide one. To ease participant burden and increase 

compliance, spot urine samples were collected during baseline examinations beginning in 

2002, although 24hour samples were still collected for those willing to provide one (31). 

After this change in protocol, 2576 out of 3176 participants provided urine samples. In our 

analyses, we used measurements from baseline spot urine samples if available (n = 2434); if 

spot urine samples were unavailable, we used measurements from baseline 24-hour urine 

samples (n = 726).

Covariates

We examined the variables described below as potential covariates. Sociodemographic 

variables included self-reported age (years) and sex (male or female). Education was 

categorized as the highest level of education completed (less than high school, high school/

GED, college degree/certificate, or graduate/professional school). Medical insurance access 

was defined as any current medical insurance policy (public and/or private). Occupation was 

categorized based on Sims et al (32) and the distribution in our sample as management/

professional, service, sales, or other. Household income level (low, lower-middle, upper-

middle, and high) was determined based on self-reported income, family size, number of 

children <18 years old, and the US Census designated poverty level for the year of data 

collection (33). Neighborhood socioeconomic status (NSES) was determined at the census 

tract level, as described by Dubowitz et al (34); NSES was then converted to a z score, as 

described by Diez Roux et al (35). Anthropometrics, health behavior, and health history 

included measured body mass index (BMI, kg/m2), calculated from measured weight (kg) 

divided by measured height (m) squared, self-reported smoking status (never, former, 

current) and alcohol consumption in the past 12 months (yes, no). Nutritional status and 

physical activity were categorized as poor, intermediate, or ideal according to Life’s Simple 

7 criteria (36, 37). Participants were classified as having hyperlipidemia if total cholesterol 

was ≥ 240 mg/dl or low-density lipoprotein cholesterol level was ≥ 160 mg/dl or they were 

taking lipid-lowering medications (38). We additionally examined the use of medications 

that may affect renal function: non-steroidal anti-inflammatory drugs (NSAIDs), diuretic 

medications, and statin medications, as recorded from self-report and medication inventory.
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It is possible that diabetes and hypertension may be confounders or mediators in the 

association between traffic-related pollution and renal function. Participants were classified 

as having diabetes if they used any antidiabetic medications (self-report or medication 

inventory), measured hemoglobin A1c levels were ≥ 6.5%, or fasting glucose measurement 

was ≥ 126 mg/dl (39). Participants were classified as hypertensive if their supine blood 

pressure at the baseline clinical examination was ≥140/90 mmHg or they used blood 

pressure lowering medication; blood pressure medication use was defined as self-report of 

using medication for blood pressure or the following medications identified during 

medication inventory: beta blockers, calcium blockers, antihypertensives, or diuretics (40, 

41).

Statistical analyses

We excluded participants whose address could not be geocoded at the street level due to 

inaccurate or incomplete address data. We used mixed-effect linear regression models to 

estimate the cross-sectional associations between 1-year and 3-year PM2.5 and O3 with 

estimated eGFR, UACR, serum creatinine, and cystatin C, individually accounting for 

clustering at the census tract level. Due to its extreme left skew, we used natural log-

transformed UACR values in all models. We presented five statistical models: Model 1: 

unadjusted but accounting for clustering by census tract; Model 2: adjusted for all covariates 

that were associated with exposure and outcome at the p = 0.05 level by bivariate ANOVA or 

chi-square tests—age, sex, BMI, education level, NSES z-score, medical insurance, smoking 

status, physical activity, alcohol consumption, occupation, and hyperlipidemia, accounting 

for clustering by census tract; Model 3: adjusted for all covariates included in model 2 plus 

use non-steroidal anti-inflammatory drugs, diuretic medication, and statin medications, 

accounting for clustering by census tract; Model 4: adjusted for all covariates included in 

model 2 plus diabetes and hypertension, accounting for clustering by census tract; and 

Model 5: adjusted for all covariates included in model 2 plus the other pollutant (adjustment 

for O3 in PM2.5 models and for PM2.5 in O3 models).

Sensitivity analyses

We conducted several sensitivity analyses. First, as many people were missing urine 

samples, we compared descriptive characteristics, renal function indicators derived from 

blood samples, and air pollution indicators between those missing and not missing urine 

samples. Second, we dichotomized indicators of renal function and used logistic regression 

to estimate associations with PM2.5 and O3. Specifically, we dichotomized UACR as ≤30 

mg/g and >30 mg/g, and eGFR as <60 mL/min/1.73m2 and ≥60 mL/min/1.73m2, according 

to clinical cutpoints (2). We dichotomized serum creatinine and cystatin C at the median. 

Third, we modeled exposure using distance to major roadways as an indicator of air 

pollution exposure. We used residential distance to U.S. Census Feature Class Code A1 

(primary highway with limited access) or A2 (primary road without limited access) 

roadways as a proxy for long-term exposure to traffic-related pollution (42–44). Fourth, we 

modeled exposure using distance to A1 roads only. We used ArcGIS (version 9.2; ESRI Inc., 

Redlands, CA) to geocode participants’ addresses and calculate the Euclidian distance from 

each residence to the nearest major roadway. For all analyses, we categorized residential 

DTR using the following cutpoints: <150 m, 150–299 m, 300–999 m, and ≥1000 m, as well 
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as a log-transformed continuous measure (45–47). Last, we calculated the Pearson 

correlations between PM2.5 and O3 concentrations.

Code availability

Data were analyzed using SAS version 9.4 (SAS Institute, Cary, NC, USA). Analytic code is 

available upon request from the corresponding author.

Results

We included 5090 JHS participants, excluding 211 (4%) whose street address could not be 

geocoded to street level. Those with poor (<60 mL/min/1.73m2) eGFR were, on 

average,older (67.9 years), less likely to be female (53.1%), had poorer SES indicators, but 

had better nutritional status (51.2% poor, 46.6% intermediate, 2.2% ideal), and were less 

likely to consume alcohol (24.3%) (Table 1). Those with poor eGFR lived in areas with 

higher mean 1-year and 3year PM2.5 concentrations (12.3 μg/m3 and 12.5 μg/m3, 

respectively) but similar ozone concentrations compared to those with normal eGFR. Table 2 

shows descriptive characteristics of indicators of renal function. Mean eGFR was normal at 

92.9 mL/min/1.73m2; The majority (93.4%) of participants had normal (≥90 mL/min/

1.73m2) eGFR and 6.5% had abnormal (<60 mL/min/1.73m2) eGFR. Median UACR was 

normal at 6.0 mg/g and most (87.3%) of participants had normal (≤30 mg/g) UACR. Mean 

serum creatinine was approximately 1.0 mg/dL, and cystatin C was approximately 0.8 mg/L.

Adjusting for covariates in model 2, we observed inverse associations between UACR and 1-

year (−0.09, 95% CI −0.2, −0.02) and 3-year PM2.5 (−0.2, 95% CI −0.3, −0.06) 

concentrations (Table 3). After additional adjustment for NSAIDs, diuretic and statin 

medications, we observed inverse associations between eGFR and 1-year (−0.3, 95% CI 

−0.5, −0.01) and 3-year (−0.3, 95% CI −0.6, −0.04) ozone concentrations and positive 

associations between serum creatinine and 1year (0.005, 95% CI 0.0006, 0.01) and 3-year 

(0.005, 95% CI 0.0005, 0.01) ozone concentrations. Models 2, 3, 4, and 5 produced similar 

results, with varying levels of statistical significance.

In sensitivity analysis, compared to those who were not missing urine samples, those 

missing urine samples (n = 1930) were, on average, older, had poorer socioeconomic 

indicators (education, household income, neighborhood socioeconomic status, lower 

proportion in management or professional occupations), and were more likely to be former 

or current smokers and more likely to have diabetes (Table S1). Those missing urine samples 

had lower eGFR, higher serum creatinine, and higher cystatin C levels; they had higher 1-

year and 3-year PM2.5 concentrations and 1-year O3 concentrations but lower 3-year O3 

concentrations compared to those who were not missing urine samples.

In our second sensitivity analysis, 1-year PM2.5 concentration was inversely associated with 

high (> 0.9 mg/dL) serum creatinine (OR 0.86, 95% CI 0.75, 0.98) in model 2, with similar 

results for models 3 and 3 (Table S2). Third, those who lived 150–299 m from an A1 or A2 

road had, on average, 3.2 mL/min/1.73m2 (95% CI 1.2, 5.2 mL/min/1.72m2) higher eGFR, 

0.03 (95% CI −0.4, −0.1) lower log UACR (−0.03, 95% CI −0.4, −0.1), 0.06 mg/dL (95% CI 

−0.09, −0.03 mg/dL) lower serum creatinine concentration, and 0.05 mg/L (95% CI −0.08, 

Weaver et al. Page 6

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



−0.03 mg/L) lower serum cystatin C compared to those living ≥1000 m from an A1 or A2 

road (Table S3). Results were similar when examining distance to A1 roads only (Table S2). 

Annual and 3-year PM2.5 were highly correlated (r = 0.86), as were annual and 3-year O3 (r 

= 0.94). However, measures of PM2.5 were only weakly correlated with annual O3 

concentration (r=0.12 for annual, 0.044 for 3year PM2.5 concentration) and weakly inversely 

correlated with 3-year O3 concentrations (r = 0.069 for annual, −0.033 for 3-year PM2.5 

concentration) (Table S5). We examined whether our sample size was adequate based on R-

squared for full (0.31) and unadjusted (0.007) models with power of 90% of eGFR using 

SAS proc power; our sample size was adequate.

Discussion

This study examined the associations between 1-year and 3-year PM2.5 and O3 

concentrations and renal function among African Americans. We observed inverse 

associations between 1-year and 3-year O3 concentrations and eGFR and positive 

associations with serum creatinine, indicating poorer renal function with increased O3 

exposure. We observed inverse associations between 1-year and 3-year PM2.5 concentrations 

and UACR, indicating better renal function with increased PM2.5 exposure. We did not 

observe associations between either pollutant and serum cystatin C.

We observed inverse associations between 1-year and 3-year O3 concentrations and eGFR. 

We are not aware of any other epidemiologic study that examined the effect of long-term 

ambient O3 concentration on renal function. However, previous studies have shown inverse 

associations between other traffic-related pollutants and eGFR. Mehta et al. observed an 

inverse association between eGFR and annual PM2.5 (−0.6, 95% CI −0.79, −0.40 mL/min/

1.73m2 per 2.1 μg/m3 increase in PM2.5) among older men living in the Boston, 

Massachusetts area (18). In our previous study, we observed that those who lived within 50 

m from a major roadway had 3.9 mL/min/1.73 m2 lower eGFR (95% CI 1.0, 6.7; p=0.007) 

compared to those living >1000 m from a major roadway in the Boston area (12). In our 

current study, in sensitivity analyses, we also observed that those who live nearest roads 

(<150 m) have lower (−1.4, 95% CI −4.7, 2.0 mL/min/1.73 m2) eGFR, although this 

association was not statistically significant. The Jackson area is less densely populated 

compared to the Boston area and accordingly JHS did not have any participants living <50 m 

from a major roadway, making direct comparison to our previous study impossible. It is 

possible that these effects are strongest among those who live very near to major roads. 

Bowe et al. observed positive associations between annual PM2.5 concentrations and 

incident eGFR <60 mL/min/1.73m2 (HR 1.25, 95% CI 1.17, 1.34) in a national, 

predominately white older male cohort (19). Although we did not have follow-up data and 

could not estimate incidence, sensitivity analyses showed evidence of a possible positive 

association between 3-year (but not 1-year) PM2.5 concentration and prevalent eGFR <60 

mL/min/1.73m2 that was not statistically significant (OR 1.14, 95% CI 0.91, 1.42). Notably, 

previous studies were conducted in very different populations compared to our present 

study: predominantly older, white men; the present study is in African American adults of 

all ages including young adults. Our present results add to the current literature, as this is the 

first such study conducted among an African American community in a mixed urban/rural 
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area in the American South, examining multiple indicators of renal function, and examining 

effects of O3 exposure.

We observed inverse associations between 1-year and 3-year PM2.5 concentrations and log 

UACR, indicating that those with higher exposure to PM2.5 had better renal function. 

O’Neill et al. observed no associations between ambient particulate matter concentrations 

and UACR among a multi-ethnic population across 6 US centers (20). One important 

limitation of our study is that we were unable to calculate UACR for many (37.9%) of 

participants who were missing urine samples. Although 24-hour urine collection is standard 

for calculation of UACR, due to participant burden, we were unable to obtain this measure 

for most of our participants. In sensitivity analysis, those missing urine samples appeared to 

have generally poorer socioeconomic and health indicators, including serum-based measures 

of renal function, as well as higher PM2.5 exposures. These participants would likely have 

had relatively high UACR, were we able to measure it. Those with better renal function may 

have been more likely to provide urine samples, potentially biasing our results. If all 

participants had provided a urine sample, it is possible that we would have observed null or 

even positive associations between PM2.5 exposure and UACR; we believe our observed 

inverse associations may be due to bias.

Our results indicating poorer renal function with increased O3 exposure supports previous 

research showing similar associations with other traffic-related pollutants (19) and research 

showing associations between overall and cardiovascular mortality with increased O3 

exposure (10, 12, 18). Different results when studying PM2.5 exposure compared to O3 

exposure is not surprising given weak and even slightly inverse correlations between PM2.5 

and O3 metrics. This study is representative of the mixed urban/rural African American 

population living near Jackson, Mississippi (48). However, this study may not be 

generalizable to African Americans living outside of the Jackson, Mississippi area.

In conclusion, we observed associations between O3 exposure, an important air pollutant, 

and reduced renal function in an African American population. However, we did not observe 

such associations with PM2.5. This study adds to the limited literature on the associations 

between air pollution and renal function among African Americans, although more studies 

are needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Descriptive characteristics of participants in Jackson Heart Study by eGFR status

eGFR <60 mL/min/1.73m2 (n = 
322)

eGFR ≥60 mL/min/1.73m2 (n = 
4604)

Total (N = 5090)

Characteristic Mean (SD) or % Mean (SD) or % Mean (SD) or %

Age, years, mean (SD) * 67.9 (9.6) 54.5 (12.5) 55.4 (12.8)

Female* 171 (53.1) 2948 (64.0) 3245 (63.8)

BMI (kg/m2), mean (SD) 32.0 (6.8) 31.7 (7.3) 31.7 (7.2)

Highest level of education completed*

    Less than high school 136 (42.6) 841 (18.3) 1023 (20.2)

    High school/GED 103 (32.3) 1710 (37.3) 1866 (36.8)

    College degree/certificate 40 (12.5) 1273 (27.7) 1352 (26.7)

    Graduate/professional school 40 (12.5) 767 (16.7) 832 (16.4)

Household income status*

    Low 63 (23.7) 575 (14.7) 670 (15.5)

    Lower-middle 84 (31.6) 930 (23.8) 1049 (24.3)

    Upper-middle 67 (25.2) 1180 (30.1) 1283 (29.8)

    High 52 (19.6) 1230 (31.4) 1310 (30.4)

Neighborhood SES z-score, mean (SD)1* −1.42 (4.88) −0.22 (5.01) −0.29 (5.01)

Medical Insurance Access* 302 (94.4) 3952 (86.2) 4394 (86.7)

    Smoking status*

    Never 197 (61.8) 3117 (68.3) 3436 (68.1)

    Former 90 (28.2) 832 (18.2) 942 (18.7)

    Current 32 (10.0) 616 (13.5) 667 (13.2)

Physical activity2*

    Poor 203 (63.2) 2224 (48.3) 2515 (49.5)

    Intermediate 81 (25.2) 1471 (32.0) 1601 (31.5)

    Ideal 37 (11.5) 907 (19.7) 970 (19.1)

Nutritional status* 165 (51.2) 2811 (61.1) 3082 (60.6)

    Poor

    Intermediate 150 (46.6) 1752 (38.1) 1958 (38.5)

    Ideal 7 (2.2) 41 (0.9) 50 (1.0)

Alcohol consumption, past 12 months* 78 (24.3) 2177 (47.5) 2318 (45.8)

Occupation*
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eGFR <60 mL/min/1.73m2 (n = 
322)

eGFR ≥60 mL/min/1.73m2 (n = 
4604)

Total (N = 5090)

Characteristic Mean (SD) or % Mean (SD) or % Mean (SD) or %

    Management/professional 83 (25.9) 1674 (36.4) 1811 (35.6)

    Service 98 (30.5) 1134 (24.6) 1277 (25.1)

    Sales 40 (12.5) 820 (17.8) 890 (17.5)

    Other 100 (31.2) 974 (21.2) 1108 (21.8)

Hypertension* 293 (91.0) 2669 (58.0) 3053 (60.0)

Diabetes* 145 (45.0) 928 (20.2) 1103 (21.9)

Hyperlipidemia* 136 (42.5) 1338 (29.1) 1505 (29.7)

PM2.5 1-year mean (μg/m3)* 12.3 (0.6) 12.2 (0.6) 12.2 (0.6)

PM2.5 3-year mean (μg/m3)* 12.5 (0.5) 12.4 (0.5) 12.4 (0.5)

O3 1-year mean (ppb) 40.3 (3.0) 40.2 (2.7) 40.2 (2.7)

O3 3-year mean (ppb) 40.6 (2.9) 40.7 (2.6) 40.7 (2.6)

Percent missing: BMI 0.2, Education level 0.3, Household income status 15.3, medical insurance access 0.4, smoking 0.9, physical activity 0.08, 
alcohol consumption 0.6, occupation 0.08, hypertension 0.08, diabetes 1.2, hyperlipidemia 0.3

*
p<0.05
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Table 2.

Markers of renal function of participants in Jackson Heart (N = 5090)

Mean (SD) or n (%)

eGFR

Mean (SD), mL/min/1.73m2 92.9 (21.8)

Abnormal <60 mL/min/1.73m2 322 (6.5)

Normal ≥60 mL/min/1.73m2 4604 (93.4)

Urine Albumin/Creatinine ratio
1

Median (IQR), mg/g 6.0 (9.0)

Normal ≤30 mg/g 2759 (87.3)

Abnormal >30 mg/g 401 (12.7)

Serum Creatinine

Mean (SD), mg/dL 1.00 (0.6)

Cystatin C

Mean (SD), mg/L 0.76 (0.38)

Percent missing: eGFR 3.2, Urine Albumin/Creatinine Ratio 37.9, serum creatinine 1.7, serum cystatin C 2.8

1
Calculated from spot urine samples of 2434 participants and 24-hour urine samples of 726 participants (37.9% missing urine)
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Table 3.

Results from linear regression of PM2.5 and O3 and markers of renal function among Jackson Heart Study 

participants (N = 5090).

Pollutant

1-year PM2.5 3-year PM2.5 1-year O3 3-year O3

Beta (95% CI) Beta (95% CI) Beta (95% CI) Beta (95% CI)

eGFR

Model 1
a

−3.0 (−4.5, −1.6)
*

−2.9 (−5.8, −2.0)
* −0.1 (−0.3, 0.1) 0.2 (−0.08, 0.4)

Model 2
b 0.7 (−0.2, 1.6) 0.8 (−0.4, 2.0) 0.3 −0.2 (−0.4, 0.01)

−0.2 (−0.4, −0.02)
*

Model 3
c 0.3 (−0.8, 1.3) (−0.9, 1.6)

−0.3 (−0.5, −0.01)
*
 −0.2 −0.3 (−0.6, −0.04)

*

Model 4
d 0.6 (−0.3, 1.5) 0.8 (−0.4, 1.9) (−0.4, 0.03)

−0.2 (−0.4, −0.004)
*

Model 5
e 0.8 (−0.08, 1.7) 0.8 (−0.4, 2.0)

−0.2 (−0.4, −0.01)
*

−0.2 (−0.4, −0.02)
*

Log of urine albumin/creatinine 
ratio

Model 1
a −0.0008 (−0.08, 0.08) −0.007 (−0.1, 0.1) 0.005 (−0.02, 0.03) −0.003 (−0.03, 0.02)

Model 2
b

−0.09 (−0.2, −0.02)
*

−0.2 (−0.3, −0.06)
* −0.009 (−0.03, 0.01) −0.006 (−0.03, 0.02)

Model 3
c −0.09 (−0.2, 0.009) −0.1 (−0.3, 0.004) −0.0004 (−0.03, 0.03) 0.01 (−0.02, 0.04)

Model 4
d

−0.1 (−0.2, −0.03)
*

−0.2 (−0.3, −0.09)
*
 −0.2

−0.008 (−0.03, 0.01) −0.005 (−0.03, 0.02)

Model 5
e

−0.09 (−0.2, −0.02)
*

(−0.3, −0.06)
* 0.004 (−0.02, 0.03) 0.0008 (−0.02, 0.03)

Serum Creatinine

Model 1
a 0.002 (−0.01, 0.02) −0.01 (−0.03, 0.01) 0.003 (−0.002, 0.008) 0.002 (−0.003, 0.006)

Model 2
b −0.009 (−0.03, 0.007) −0.02 (−0.04, 0.001) 0.004 (−0.0005, 0.008) 0.004 (−0.0001, 0.007)

Model 3
c 0.009 (−0.02, 0.04) 0.008 (−0.02, 0.04)

0.005 (0.0006, 0.01)
*

0.005 (0.0005, 0.01)
*

Model 4
d −0.008 (−0.02, 0.008) −0.02 (−0.04, 0.002) 0.004 (−0.0008, 0.008) 0.003 (−0.0004, 0.007)

Model 5
e −0.01 (−0.03, 0.004) −0.02 (−0.04, 0002) 0.004 (−0.0002, 0.009) 0.004 (−0.0002, 0.007)

Cystatin C

Model 1
a

0.02 (0.005, 0.04)
*

0.02 (0.005, 0.05)
* 0.002 (−0.002, 0.005) −0.001 (−0.004, 0.002)

Model 2
b −0.008 (−0.02, .005) −0.01 (−0.03, 0.005) 0.002 (−0.002, 0.005) 0.002 (−0.001, 0.004)

Model 3
c 0.004 (−0.01, 0.02) 0.009 (−0.01, 0.03) 0.002 (−0.0006, 0.005) 0.003 (−0.0007, 0.006)

Model 4
d −0.007 (−0.02, 0.006) −0.01 (−0.03, 0.006) 0.001 (−0.002, 0.004) 0.001 (−0.002, 0.004)

Model 5
e −0.009 (−0.02, 0.004) −0.01 (−0.03, 0.005) 0.002 (−0.001, 0.005) 0.002 (−0.001, 0.004)

a
Model 1 unadjusted, accounting for clustering on census tract
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b
Model 2 adjusted for age, sex, BMI, education level, NSES z-score, medical insurance, smoking status, physical activity, alcohol consumption, 

occupation, and hyperlipidemia, accounting for clustering by census tract

c
Model 3 adjusted for all covariates in model 2, plus use of non-steroidal anti-inflammatory drugs, diuretic medication, and statin medications, 

accounting for clustering by census tract

d
Model 4 adjusted for all covariates in model 2, plus diabetes and hypertension, accounting for clustering by census tract

e
Model 5 adjusted for all covariates in model 2, plus the other pollutant, O3 in PM2.5 models, and PM2.5 in O3 models, accounting for clustering 

by census tract

*
p<0.05
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