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Abstract: Androgen-dependent prostate cancer (ADPC) eventually progresses to androgen-independent prostate 
cancer (AIPC), that has a poor prognosis owing to its unclear mechanism and lack of effective therapeutic targets. 
The human positive cofactor 4 (PC4) is a transcriptional cofactor, and plays a potential role in cancer development. 
However, the significance and mechanism of PC4 in AIPC progression are unclear. By analyzing the clinical data, 
we find that PC4 is overexpressed in prostate cancer and closely correlated with the progression, metastasis and 
prognosis of patients. Additionally, PC4 is significantly upregulated in AIPC cells compared with ADPC cells, imply-
ing its importance in the development and progression of AIPC. Then, in vivo and in vitro studies reveal that loss of 
PC4 inhibits cell growth by suppressing c-Myc/P21 pathway and inducing cell cycle arrest at G1/S phase transition 
in AIPC. PC4 knockdown also attenuates EMT-mediated metastasis in AIPC. Moreover, for the first time, we find 
that PC4 exerts its oncogenic functions by promoting the expression of HIF-1α and activating β-catenin signaling. 
Therefore, our findings determine the signatures and molecular mechanisms of PC4 in AIPC, and indicate that PC4 
might be a promising therapeutic target for AIPC. 
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Introduction

Prostate cancer is one of the most common 
malignant cancers and a leading cause of 
tumor-related death in males worldwide [1, 2]. 
In the early stage, prostate cancer patients are 
usually androgen-dependent prostate cancer 
(ADPC), and androgen deprivation therapy 
(ADT) is the mainstay of treatment [3, 4]. How- 
ever, the majority of prostate cancer patients 
eventually progress to androgen-independent 
prostate cancer (AIPC), that is resistant to ADT 
and also known as castration-resistant pros-
tate cancer (CRPC) [5]. Compared with ADPC, 
the incidence of local recurrence and distant 
metastasis in AIPC is markedly increased, and 
its prognosis is poor [6]. Thus, it is necessary to 
clarify the underlying molecular mechanisms of 

AIPC progression and identify novel therapeutic 
targets to improve AIPC patients’ outcomes [7].

Hypoxia is a common phenomenon in solid 
tumors including prostate cancer [8], and cellu-
lar response to hypoxia is mainly mediated by 
hypoxia-inducible factor-1α (HIF-1α) [9, 10]. As 
a nuclear transcription factor, HIF-1α binds to 
the hypoxia response elements of target gen- 
es and regulates various cellular processes 
including cell metabolism, growth, differentia-
tion and angiogenesis [11, 12]. In clinical sam-
ples of prostate cancer, HIF-1α is found to be 
overexpressed and correlated with histologic 
grade, distant metastasis and prognosis of 
patients [13, 14]. Moreover, targeting HIF-1α 
can enhance the radiosensitivity in prostate 
cancer cells [15-17]. Although HIF-1α plays an 

http://www.ajcr.us


PC4/HIF-1α/β-catenin promotes AIPC progression

683	 Am J Cancer Res 2019;9(4):682-698

important role in prostate cancer progression 
and treatment response, the molecular mecha-
nisms of HIF-1α in AIPC progression are unclear 
and remain to be elucidated [18, 19].

The human positive cofactor 4 (PC4) is a highly-
conserved nuclear protein and initially identi-
fied as transcriptional cofactor, that facilitates 
RNA polymerase II-driven gene transcription 
[20-22]. PC4 is composed of 127 amino acid 
residues with a C-terminal DNA-binding domain 
and an N-terminal transcriptional co-activating 
domain [23-25]. Increasing evidences show 
that PC4 is involved in various molecular bio-
logical processes including basal transcription, 
DNA replication, DNA repair and chromatin 
organization [26-31]. Previous studies by our 
group and others have identified that upregula-
tion of PC4 in several cancer types is involved 
in cancer development, lymphatic metastasis 
and radiosensitivity [24, 32-35]. However, the 
signatures and molecular mechanisms of PC4 
in AIPC progression still need to be clarified. 

In this study, we demonstrate that overexpres-
sion of PC4 in prostate cancer is closely corre-
lated with progression, metastasis and poor 
prognosis of patients. Then, PC4 is significantly 
upregulated in AIPC cells compared with ADPC 
cells, suggesting its importance in AIPC pro-
gression. Apart from the decreased EMT-
mediated metastasis, PC4 knockdown is also 
found to inhibit cell growth by suppressing 
c-Myc/P21-mediated G1/S transition in AIPC. 
Mechanistically, PC4 maintains its malignant 
phenotypes through HIF-1α/β-catenin pathway. 
Thus, PC4 plays an oncogenic role in AIPC and 
holds promise for cancer targeted therapy.

Materials and methods

Animals 

Athymic male nude mice (4-6 weeks) were 
obtained from the Center for Experimental 
Animals in a specific pathogen-free condition. 
Animal experiments were followed the Gui- 
delines for the Care and Use of Laboratory 
Animals of the TMMU, and all procedures were 
approved by the Animal Care and Use Com- 
mittee of the TMMU.

Cell lines 

The human prostate cancer cell lines (LAPC4, 
C4-2, PC3 and DU145) and non-cancerous 

prostate epithelial cell lines (RWPE-1) were  
purchased from the American Type Culture 
Collection (ATCC, Manassas, Virginia, USA) and 
the Cell Bank of the Chinese (Shanghai, Chi- 
na). C4-2, PC3, DU145 were grown in RPMI-
1640 (Hyclone, Logan, Utah, USA), LAPC4 was 
grown in DMEM (Hyclone, Logan, Utah, USA), 
and RWPE-1 was grown in K-SFM (Gibco, Gr- 
and Island New York, USA). All cells were cul-
tured in the above medium, supplemented with 
10% FBS (Gibco, Grand Island New York, USA) 
and 1% streptomycin/penicillin (Beyotime, Sh- 
anghai, China), and incubated in 5% CO2 at 
37°C.

Clinical samples 

The prostate cancer samples and paired adja-
cent normal tissues were collected from So- 
uthwest Hospital of Third Military Medical Uni- 
versity. All prostate cancer patients were diag-
nosed independently by at least two experi-
enced pathologists, according to the Union for 
International Cancer Control classification sys-
tem. This study was approved by the Ethics 
Committee of Third Military Medical University.

RNA interference and in vitro overexpression 

The shRNA lentivirus vector targeting human 
PC4 (shRNA: 5’-ACAGAGCAGCAGCAGCAGATT- 
3’; 5’-UCUGCUGCUGCUGCUCUGUTT-3’) and ne- 
gative control shRNA (5’-UUCUCCGAACGUGU- 
CACGUTT-3’; 5’-ACGUGACACGUUCGGAGAATT- 
3’) were constructed by GeneChem (Shanghai, 
China). The human HIF-1α plasmid were pur-
chased from GeneChem (Shanghai, China). The 
human β-catenin plasmid was purchased from 
Fenghbio (Hunan, China). According to the man-
ufacturer’s protocol, PC3 and DU145 cells were 
transfected with plasmid using Lipofectamine 
3000 (Invitrogen) in OptiMEM (Hyclone) accord-
ing to the manufactures’ instructions. 

Cell viability assay and colony formation assay

Cell viability assay was measured by the Cell 
Counting Kit-8 (Dojindo, Kumamoto, Japan). 
Briefly, the PC3 or DU145 cells with stable PC4 
knockdown and controls were seeded into 
96-well plates (3000 cells per well with 100 ul 
medium) and cultured in 5% CO2 incubator at 
37°C. Cell viability was tested at 24 h, 48 h, 72 
h and 96 at a wavelength of 450 nm (OD450). 
Experiments were performed in triplicate. For 
colony formation assay, the PC3 or DU145 cells 
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with stable PC4 knockdown and controls were 
trypsinized and seeded in 6-well plates. The 
medium was changed every three days, and 
cells were cultured for 14 d-21 d until colonies 
were clearly visible. At the endpoint, cells were 
washed twice with PBS, fixed with 4% parafor-
maldehyde, stained with crystal violet (Be- 
yotime, China) for 30 minutes, and then colo-
nies with > 50 cells were counted. Experiments 
were performed in triplicate.

Scratch-wound assay and transwell assay

For scratch-wound assay, the PC3 or DU145 
cells with stable PC4 knockdown and controls 
were seeded into 6-well plates. When they grew 
to full confluence, wounds were generated in 
the monolayer cells by a 10 ul pipette tip and 
dead cells were washed by PBS. Then, cells 
were cultured in serum-free medium and pho-
tographed at the indicated time. Experiments 
were performed in triplicate. For transwell 
assay, cells were suspended in serum-free 
medium and seeded into the upper chamber of 
the transwell (8 μm, Corning, NY, USA) with 
Matrigel (BD Pharmingen). The lower chamber 
was filled with culture medium containing 10% 
FBS. After incubation for 24 h, cells were 
removed from the upper chamber, and the bot-
tom of the filter were fixed in paraformaldehyde 
for 15 mins and stained with crystal violet. 
Under microscopy, cells were counted from five 
different fields of inserts. Experiments were 
performed in triplicate. 

Cell cycle and apoptosis analysis by flow cy-
tometry 

For analysis of cell cycle distribution, the PC3 or 
DU145 cells with stable PC4 knockdown and 
controls were collected and fixed using 75% 
ethanol at -20°C overnight. After incubating 
with propidium iodide (PI, 50 μg/mL) and 
RNase for 20 min at 37°C in the dark, cells 
were analyzed by flow cytometry. For apoptosis 
analysis, cells were stained with AnnexinV-
FITC/PI (BD Biosciences) for 15 min at 37°C in 
the dark, and then analyzed by flow cytometry. 
Experiments were performed in triplicate.

Quantitative real-time PCR

Total RNA in PC3 or DU145 cells were extracted 
using Trizol reagent (Invitrogen, CA, USA). 
According to the manufacturer’s instruction, 

Real-time PCR was performed using a SYBR 
Green kit (Takara). The primers for PC4, HIF-1α 
and β-actin are listed in Table S1.

Western blot analysis 

Total proteins in PC3 or DU145 cells were 
extracted using RIPA buffer (Beyotime) and 
quantitated by a BCA kit (Beyotime). The pro-
tein samples were separated by electrophore-
sis, transferred to PVDF membranes (Millipore), 
and incubated with primary antibodies over-
night at 4°C. After washing and incubating 1 
hour with HRP-linked secondary antibody (Cell 
Signaling Technology, USA) at room tempera-
ture, the membranes were visualized and 
detected by an enhanced chemiluminescence 
detection system (Bio-Rad Laboratories). Pri- 
mary antibodies against c-Myc, P21, Cyclin D, 
Cyclin E, CDK6, Rb, PRb (ser807/811), PARP, 
Pro-Caspase 3, Cleaved-Caspase 3, Snail, 
E-cadherin, N-cadherin and β-catenin were 
obtained from Cell Signaling Technology. Pri- 
mary antibodies against HIF-1α were obtained 
from Abcam. Primary antibodies against PC4 
were obtained from Sigma, Primary antibodies 
against β-actin were obtained from Santa Cruz 
Biotechnology.

Immunohistochemical staining 

Immunohistochemical Staining was performed 
as previously described. After dewaxing, rehy-
drating, antigen retrieval and blocking nonspe-
cific binding, the paraffin-embedded sections 
of prostate cancer tissues and adjacent normal 
tissues were incubated with primary PC4 anti-
body (1:500, Sigma) at 4°C overnight. Then, the 
slides were sequentially incubated with biotinyl-
ated secondary antibody and visualized by 
using DAB. Positive PC4 expression in prostate 
cancer is located in the nucleus. All tissue sam-
ples were examined and independently evalu-
ated by two pathologists.

In vivo tumor growth and metastasis model

For in vivo tumor growth model, 100 ul PBS 
containing 5 × 106 PC4 stable knockdown PC3 
cells or controls were injected subcutaneously 
at one dorsal site of athymic male nude mice. 
Tumor growth was measured every 2 days, and 
tumor volume was calculated by the following 
formula: volume (mm3) = (width2 × length)/2. At 
the endpoint, the mice were sacrificed, and 
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xenografts were dissected, weighed and fixed 
in 4% paraformaldehyde for next immunohisto-
chemical staining.

For in vivo metastasis model, PC4 stable knock-
down PC3 cells and controls (1 × 106) were sus-
pended in 200 ul PBS and injected into the tail 
vein of athymic male nude mice. At the end-
point, the mice were sacrificed, and the lung tis-
sues were fixed in 4% paraformaldehyde for 
next hematoxylin-eosin (HE) staining.

Statistical analysis

All data are presented as means ± SD. The sta-
tistical analysis was carried out using SPSS 
13.0 software (SPSS Inc., Chicago, USA). 
Comparisons between two groups were per-
formed using the Student’s t-test. Comparisons 
among three or more groups were performed 
using a one-way analysis of variance (ANOVA). 
The survival data was performed using the 
Kaplan-Meier method. Correlation between 
PC4 expression and clinical parameters was 
determined using the Pearson’s χ2 method. 
P<0.05 was considered to be statistically 
significant.

Results

Overexpression of PC4 in prostate cancer is 
closely correlated with progression, metastasis 
and poor prognosis of patients

To investigate the role of PC4 in the develop-
ment and progression of prostate cancer, we 
firstly analyzed PC4 expression level in pros-
tate cancer specimens compared with their 
adjacent normal tissue. As shown in Figure 1A, 
high levels of PC4 were detected in carcinoma 
tissues, while almost undetectable levels in 
adjacent normal tissue. The average staining 
score of PC4 expression confirmed above 
results (Figure 1B), implying a potential role of 
PC4 in tumorigenesis. Then, we evaluated the 
possible correlation between PC4 expression 
and differentiation grade, and found that the 
intensity of PC4 in poorly differentiated tissue 
was significantly increased compared with that 
in well differentiated tissue (Figure 1C and 1D). 
Moreover, PC4 expression in carcinoma with 
metastasis was obviously upregulated than 
that without metastasis (Figure 1E and 1F). 
Finally, through analyzing 281 cases of pros-
tate cancer from public cancer databases 

(GSE16560), we found that the higher PC4 
expression group had poorer overall survival 
compared with lower PC4 expression group 
(Figure 1G and 1H). Collectively, these results 
suggest that PC4 is a potential oncogene and 
prognostic marker in prostate cancer.

PC4 is significantly upregulated in androgen-
independent prostate cancer cells

To further validate the overexpression of PC4  
in prostate cancer, we extended the analysis to 
in vitro cell culture models. The qPCR (Figure 
2A) and Western blot (Figure 2B) assays con-
firmed that the mRNA and protein level of PC4 
were upregulated in prostate cancer cell lines 
(LAPC4, C4-2, PC3 and DU145) compared with 
non-cancerous prostate epithelial cell lines 
(RWPE-1). Moreover, the expression of PC4 was 
significantly elevated in AIPC cell lines (C4-2, 
PC3 and DU145) than that in ADPC cell lines 
(LAPC4). To our knowledge, AIPC cells have a 
more aggressive and invasive phenotype. Im- 
munofluorescent staining (Figure 2C) for PC4 
revealed prominent nuclear localization, and 
exhibited high signal intensity in C4-2, PC3 and 
DU145 cells, medium signal intensity in LAPC4 
cells, and low signal intensity in benign RWPE-1 
cells. Taken together, these results exhibit that 
PC4 is significantly upregulated in AIPC cells, 
suggesting its importance in the development 
and progression of AIPC.

Silencing of PC4 inhibits androgen-indepen-
dent prostate cancer cell growth both in vitro 
and in vivo

To investigate the functional significance of 
increased PC4 expression in AIPC, PC3 and 
DU145 cells were chosen for subsequent loss-
of-function study. The stable cell lines with PC4 
knockdown were established by specific shRNA 
(Figures 3A and S1). The cell viability and colo-
ny formation assays demonstrated that PC4 
knockdown inhibited the proliferation (Figure 
3B) and colony formation capacity (Figure 3C 
and 3D) of AIPC cells. In addition, we estab-
lished a subcutaneous xenograft model to 
determine the biological function of PC4 in vivo. 
PC3 cells with stable PC4-knockdown were 
inoculated into athymic male nude mice. During 
the whole experiment, xenograft growth in the 
sh-PC4 group was dramatically attenuated 
compared with the control groups (Figure 3E). 
The average tumor size and tumor weight at the 
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experimental endpoint was inhibited by PC4 
knockdown (Figure 3F and 3G). Furthermore, 

we detected the expressions of Ki67 as mark-
ers of proliferation. Consistently, sh-PC4 group 

Figure 1. Overexpression of PC4 in prostate cancer is closely correlated with progression, metastasis and poor prog-
nosis of patients. (A) Immunohistochemical staining for PC4 protein in prostate cancer tissues and their adjacent 
normal tissue. Scale bar represents 50 µm. (B) The average staining score of PC4 expression in prostate cancer 
derived from (A). (C) Immunohistochemical staining for PC4 protein in various differentiation degrees of human 
prostate cancer samples. Scale bar represents 50 µm. (D) The average staining score of PC4 expression in prostate 
cancer derived from (C). (E) Immunohistochemical staining for PC4 protein in prostate cancer tissues with or with-
out metastasis. Scale bar represents 50 µm. (F) The average staining score of PC4 expression in prostate cancer 
derived from (E). (G) Kaplan-Meier analysis of the correlation between PC4 expression levels and overall survival in 
prostate cancer (n = 281). Data was obtained from GSE16560. (H) PC4 expression levels stratified by risk group. All 
data indicate the mean ± SD. **P<0.01, ***P<0.001.
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presented a status of proliferation inhibition 
compared with the control groups (Figure 3H 
and 3I). These results indicate that PC4 pro-
motes AIPC cell growth both in vitro and in vivo.

Loss of PC4 induces cell cycle arrest at the G1-
to-S phase transition through inhibiting c-Myc/
P21 pathway 

In search for the potential mechanism of PC4 
on cell growth inhibition, the cell cycle distribu-
tion was determined by flow cytometry. As 
shown in Figure 4A and 4B, silencing of PC4 
caused more cells to arrest in the G1 phase 
and fewer cells entering the S phase, which 
mean G1/S phase arrest. Besides, knockdown 
of PC4 had no significant impact on cell apo- 
ptosis in both PC3 and DU145 cells (Figures 
4C, 4D and S2). To further investigate how PC4 
regulates G1/S phase transition, we detected 

the expression of cell cycle related proteins. As 
shown in Figure 4E, depletion of PC4 led to an 
increased expression of p21 and decreased 
expression of c-Myc, Cyclin D, Cyclin E and 
CDK6. Correspondingly, we found the steady-
state levels of phosphorylated retinoblastoma 
(pRb) was decreased. Overall, these results 
show that PC4 promotes cell proliferation by 
activating c-Myc/P21 pathway and accelerate 
G1/S phase transition in AIPC.

Depletion of PC4 suppresses EMT-induced 
metastasis in androgen-independent prostate 
cancer cells

Except for cell proliferation, metastasis is the 
key characteristic of cancer cells. Therefore, we 
conducted the scratch-wound assay and tran-
swell assay to determine the role of PC4 in AIPC 
cell migration and invasion. The results showed 

Figure 2. PC4 is significantly upregulated in androgen-independent prostate cancer cells. A. The mRNA level of 
PC4 in non-cancerous prostate epithelial cell lines (RWPE-1) and prostate cancer cell lines (LAPC4, C4-2, PC3 and 
DU145). LAPC4 is ADPC cell lines, C4-2, PC3 and DU145 are AIPC cell lines. B. The protein level of PC4 in non-
cancerous prostate epithelial cell lines (RWPE-1) and prostate cancer cell lines (LAPC4, C4-2, PC3 and DU145). 
C. Immunofluorescent staining for PC4 expression in non-cancerous prostate epithelial cell lines (RWPE-1) and 
prostate cancer cell lines (LAPC4, C4-2, PC3 and DU145). Scale bar represents 50 µm. All data indicate the mean 
± SD. **P<0.01, ***P<0.001.
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Figure 3. Silencing of PC4 inhibits androgen-independent prostate cancer cell growth both in vitro and in vivo. (A) 
The stable PC4 knockdown cell lines (PC3 and DU145 cells) were determined by specific shRNA. The PC4 knockout 
efficiency were examined by western blot. (B) Cell viability in stable PC4 knockdown cell lines (PC3 and DU145 cells) 
and controls was determined by CCK-8 assay at 24 h, 48 h, 72 h and 96 h. (C) The clone formation assay in stable 
PC4 knockdown cell lines (PC3 and DU145 cells) and controls. (D) Statistical analysis of the data derived from (C). 
Experiments were repeated three times independently. (E) The PC3 cell with stable PC4-knockdown was inoculated 
into athymic male nude mice. Tumor growth curves was measured every 2 days, and the volume was estimated us-
ing the following formula: volume = length × width2/2. (F and G) The dissected xenografts were photographed and 
weighed at the endpoint. (H and I) Evaluation of proliferation index by Ki67 staining. Scale bar represents 100 µm. 
All data indicate the mean ± SD. *P<0.05, **P<0.01, ***P<0.001.
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Figure 4. Loss of PC4 induces cell cycle arrest at the G1-to-S phase transition through inhibiting c-Myc/P21 pathway. 
(A) Cell cycle distribution in stable PC4 knockdown cell lines (PC3 and DU145 cells) and controls was determined by 
flow cytometry. (B) Statistical analysis of the data derived from (A). Experiments were repeated three times indepen-
dently. (C) Apoptosis rate in stable PC4 knockdown cell lines (PC3 and DU145 cells) and controls was determined 
by flow cytometry. (D) Statistical analysis of the data derived from (C). Experiments were repeated three times inde-
pendently. (E) The protein levels of c-Myc, P21, Cyclin D, Cyclin E, CDK6, Rb and phosphorylated Rb (ser807/811) 
were determined by Western Blot in stable PC4 knockdown cell lines (PC3 and DU145 cells) and controls. All data 
indicate the mean ± SD. *P<0.05, **P<0.01.

and proliferation inhibition (Figure 6G) in PC4-
knockdown PC3 cells. The inhibitory effects of 
PC4 knockdown on migration (Figure 6E and 
6F) and invasion (Figure 6H and 6I) were also 
reversed by β-catenin overexpression. More- 
over, downregulation of c-Myc, Cyclin D, Cyclin 
E, N-cadherin and upregulation of P21, E-ca- 
dherin in PC4-knockdown cells were all reve- 
rsed by β-catenin overexpression (Figure 6J). 
Taken together, these results demonstrate that 
β-catenin is critically involved in the oncogenic 
functions of PC4 in AIPC.

Activation of β-catenin signaling by PC4 is HIF-
1α dependent 

Through bioinformatics analysis of GEO data-
base, we found that HIF-1α was positively cor-
related with high expression of PC4 in cancers. 
Considering that HIF-1α plays a critical role in 
cancer progression [42], the qPCR and Western 
Blot assay were performed to measure the 
expression levels of HIF-1α in PC4-knockdown 
AIPC cells. As shown in Figure 7A and 7B, PC4 
knockdown markedly suppressed the mRNA 
and protein level of HIF-1α in both PC3 and 
DU145 cells. To further determine whether HIF-
1α was responsible for the malignant pheno-
types of PC4, HIF-1α plasmid was used to over-
express HIF-1α in PC4-knockdown cells. Then, 
we found that the inhibitory effects of PC4 
knockdown on proliferation (Figure 7D), migra-
tion (Figure 7E and 7F) and invasion (Figure 7G 
and 7H) were rescued by HIF-1α overexpres-
sion. Moreover, upregulation of HIF-1α could 
rescue the decreased β-catenin in PC4-
knockdown cells (Figure 7I), indicating that HIF-
1α was required for activation of β-catenin sig-
naling by PC4. In addition, overexpression or 
knockdown of HIF-1α could increase or 
decrease β-catenin expression (Figure 7C), 
implying that β-catenin was the downstream 
target of HIF-1α in AIPC cells. Given the above, 
PC4 promotes proliferation and metastasis of 
AIPC cells through inducing HIF-1α/β-catenin 
pathway. 

that depletion of PC4 suppressed cell migra-
tion (Figure 5C and 5D) and invasion (Figure 5A 
and 5B) in both PC3 and DU145 cells. Owing to 
the critical role of EMT in cancer metastasis 
[36, 37], we measured the protein levels of 
EMT markers by Western Blot. As shown in 
Figure 5E, the expression levels of epithelial 
markers such as E-cadherin were elevated, 
while the expression levels of mesenchymal 
markers such as Snail and N-cadherin were 
reduced in PC4-knockdown cells. Moreover, we 
established lung metastasis model to evaluate 
the role of PC4 in cancer metastasis in vivo. 
PC3 cells with stable PC4-knockdown were tail 
vein injected into athymic male nude mice. At 
the endpoint, lung metastatic lesions in PC4-
knockdown group were decreased compared 
with the control groups (Figure S3A and S3B). 
And hematoxylin-eosin (HE) staining demon-
strated that loss of PC4 significantly attenuat-
ed the number and size of tumor metastatic 
foci in lung tissues (Figure 5F and 5G). Th- 
erefore, PC4 promotes EMT-mediated metasta-
sis in AIPC. 

PC4 exerts the oncogenic functions through 
enhancing β-catenin signaling 

Given that c-Myc [38, 39] and EMT-related 
genes [40, 41] are downstream targets of 
β-catenin signaling, we hypothesized that loss 
of PC4 inhibits c-Myc/P21-mediated G1/S 
phase transition and EMT-induced metastasis 
through downregulating β-catenin. As shown  
in Figure 6A, immunofluorescent staining re- 
vealed that loss of PC4 significantly suppress- 
ed the expression of β-catenin in both PC3 and 
DU145 cells. Western Blot assay (Figure 6B) 
confirmed an obviously decreased of β-catenin 
in PC4-knockdown cells. To further determine 
whether β-catenin was required for the onco-
genic functions of PC4, the specific plasmid 
was used to overexpress β-catenin in PC4-
knockdown cells (Figure 6J). As expected, 
upregulation of β-catenin rescued the cell cycle 
arrest in the G1/S transition (Figure 6C and 6D) 
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Discussion

Owing to the increased recurrence and metas-
tasis and androgen resistance, current strate-

gies to treat AIPC are still confronted with great 
challenges [5, 43]. Thus, there is a serious 
need to elucidate the underlying molecular 
mechanisms of AIPC progression and identify 

Figure 5. Depletion of PC4 suppresses EMT-induced metastasis in androgen-independent prostate cancer cells. (A) 
Cell invasive capacity in stable PC4 knockdown cell lines (PC3 and DU145 cells) and controls was determined by 
transwell assay. Scale bar represents 100 µm. (B) Statistical analysis of the data derived from (A). Experiments were 
repeated three times independently. (C) Cell migration capacity in stable PC4 knockdown cell lines (PC3 and DU145 
cells) and controls was determined by scratch-wound assay. Scale bar represents 200 µm. (D) Statistical analysis 
of the data derived from (C). Experiments were repeated three times independently. (E) The protein levels of EMT 
markers (Snail, E-cadherin and N-cadherin) were detected by Western Blot in stable PC4 knockdown cell lines (PC3 
and DU145 cells) and controls. (F) Tail vein injection of stable PC4-knockdown and control PC3 cells into athymic 
male nude mice were used to establish lung metastasis model. Lung tissue was dissected and stained with HE at 
the endpoint. Scale bar represents 100 µm. (G) Statistical analysis of lung metastatic lesions per mouse in PC4 
knockdown group and control groups. All data indicate the mean ± SD. *P<0.05, **P<0.01, ***P<0.001.
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Figure 6. PC4 exerts the oncogenic functions through enhancing β-catenin signaling. (A) Immunofluorescent staining for β-catenin expression in stable PC4 knock-
down cell lines (PC3 and DU145 cells) and controls. Scale bar represents 50 µm. (B) Western Blot assay for β-catenin expression in stable PC4 knockdown cell lines 
(PC3 and DU145 cells) and controls. (C) After overexpression of β-catenin in PC4 knockdown PC3 cells, cell cycle distribution was determined by flow cytometry. 
(D) Statistical analysis of the data derived from (C). Experiments were repeated three times independently. (E) After overexpression of β-catenin in PC4 knockdown 
PC3 cells, cell migration capacity was determined by scratch-wound assay. Scale bar represents 200 µm. (F) Statistical analysis of the data derived from (E). Experi-
ments were repeated three times independently. (G) After overexpression of β-catenin in PC4 knockdown PC3 cells, cell viability was determined by CCK-8 assay 
at 24h, 48h, 72h and 96h. (H) After overexpression of β-catenin in PC4 knockdown PC3 cells, cell invasive capacity was determined by transwell assay. Scale bar 
represents 100 µm. (I) Statistical analysis of the data derived from (H). Experiments were repeated three times independently. (J) After overexpression of β-catenin 
in PC4 knockdown PC3 cells, the protein levels of c-Myc, P21, Cyclin D, Cyclin E, Snail and E-cadherin were determined by Western Blot. All data indicate the mean 
± SD. *P<0.05, **P<0.01.
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Figure 7. Activation of β-catenin signaling by PC4 is HIF-1α dependent. (A) The mRNA level of HIF-1α in stable PC4 knockdown cell lines (PC3 and DU145 cells) and 
controls. (B) The protein level of HIF-1α in stable PC4 knockdown cell lines (PC3 and DU145 cells) and controls. (C) After overexpression or knockdown of HIF-1α 
in PC3 cells, the protein level of β-catenin was determined by Western Blot. (D) After overexpression of HIF-1α in PC4 knockdown PC3 cells, cell viability was de-
termined by CCK-8 assay at 24 h, 48 h, 72 h and 96 h. (E) After overexpression of HIF-1α in PC4 knockdown PC3 cells, cell migration capacity was determined by 
scratch-wound assay. Scale bar represents 200 µm. (F) Statistical analysis of the data derived from (E). Experiments were repeated three times independently. (G) 
After overexpression of HIF-1α in PC4 knockdown PC3 cells, cell invasive capacity was determined by transwell assay. Scale bar represents 100 µm. (H) Statistical 
analysis of the data derived from (G). Experiments were repeated three times independently. (I) After overexpression of HIF-1α in PC4 knockdown PC3 cells, the 
protein levels of β-catenin were determined by Western Blot. All data indicate the mean ± SD. *P<0.05, **P<0.01, ***P<0.001.
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novel therapeutic targets to improve AIPC 
patients’ outcomes. Here, we find a novel onco-
gene, PC4, that is significantly upregulated in 
AIPC and plays a crucial role in AIPC develop-
ment and progression through HIF-1α/β-catenin 
pathway.

Originally isolated from the “upstream stimula-
tory activity” (USA) of HeLa cell nuclear extracts, 
PC4 is a multifunctional transcriptional cofac-
tor [20, 21]. By interaction with distinct domains 
of transcription activators such as AP-2α, 
NF-κB, Sp1, SMYD3, BRCA1, GAL4 and VP16, 
PC4 facilitates assembly of the preinitiation 
complex through bridging between activators 
and the general transcriptional machinery [44-
47]. As a DNA-binding protein, PC4 is also 
involved in DNA replication, DNA repair and 
chromatin organization [23, 48, 49]. In PC4 
knockout mice, loss of PC4 led to gastrulation 
arrest in early embryos, highlighting its essen-
tial role in embryogenesis. Our previous study 
shows that upregulation of PC4 is involved  

notype. These findings prompt us to further 
investigate the functional significance of in- 
creased PC4 expression in AIPC. Then, in vivo 
and in vitro studies exhibit that loss of PC4 evi-
dently suppresses AIPC growth and metasta-
sis, implying its importance as a potential����� the-
rapeutic target.

HIF-1α is a key regulator of cellular response to 
hypoxia. Due to the commonness of hypoxia in 
solid tumors, HIF-1α is found to be upregulat- 
ed in various cancer types including prostate 
cancer [9-11]. As an important transcription 
factor, HIF-1α is involved in various cellular pro-
cesses including cell metabolism, growth, dif-
ferentiation and angiogenesis [8, 18]. In this 
study, for the first time, we demonstrate that 
PC4 exertes its oncogenic functions in AIPC by 
promoting the expression of HIF-1α and activat-
ing β-catenin signaling. By the model of brain 
specific PC4-knockout mice, recently study 
also found that loss of PC4 could increase the 
sensitivity to hypoxia in neurons and decrease 

Figure 8. Schematic illustration for the potential mechanisms of PC4 in AIPC 
progression. In AIPC, PC4 can promote the expression of HIF-1α and en-
hance β-catenin signaling. On one hand, β-catenin activates c-Myc and mod-
ulates p21 mediated cyclin-dependent kinase-pRb pathway, that accelerates 
G1/S phase transition to promote cell proliferation in AIPC. On other hand, 
β-catenin regulates the EMT-related gene and promotes metastasis in AIPC. 

in the malignant transforma- 
tion of normal dermal multi-
potent fibroblasts, suggest- 
ing its importance in cancer 
progression. Other studies 
also reveal that inhibition of 
PC4 radiosensitizes esopha-
geal squmaous cancer [35] 
and non-small cell lung can-
cer [50] by transcriptional- 
ly suppressing XLF-mediated 
nonhomologous end joining. 
Although some studies indi-
cate the potential oncogenic 
role of PC4 in tumor, how  
PC4 works in AIPC progres-
sion are still unclear. Here, we 
analysis the clinical data and 
find that overexpression of 
PC4 in prostate cancer is 
closely correlated with differ-
entiation grades and metas-
tasis of patients. The Kaplan-
meier analysis exhibits that 
PC4 was a predictor of poor 
prognosis for prostate cancer. 
Compared with ADPC cells, 
PC4 is significantly upregulat-
ed in AIPC cells. To our knowl-
edge, AIPC cells have a more 
aggressive and invasive phe-
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the expression of VEGF-A, a key downstream 
target gene of HIF-1α [51]. To our knowledge, 
HIF-1α can directly binds to the promoters of 
the Lef-1 and TCF-1 genes to enhance β-catenin 
transcription [52, 53]. As a fundamental path-
way, Wnt/β-catenin signaling is widely involved 
in various cellular processes. When aberrantly 
activated, β-catenin accumulates in the cyto-
plasm and translocates into the nucleus to pro-
mote transcription of target genes, such as 
c-Myc, Cyclin D1 and EMT-related gene [38, 
40]. Then, c-Myc can directly repress the p21 
promoter [54] and modulate cyclin-dependent 
kinase-pRb pathway, that accelerates G1/S 
phase transition to promote cell proliferation 
[55, 56]. Taken together, these findings provide 
novel insights into the signatures and molecu-
lar mechanisms of PC4 in AIPC development 
and progression.

In conclusions, this study provides novel in- 
sights into the signatures and molecular mech-
anisms of PC4 in AIPC progression (Figure 8). In 
AIPC, PC4 can promote the expression of HIF-
1α and enhance β-catenin signaling. On one 
hand, β-catenin activates c-Myc and modulates 
p21 mediated cyclin-dependent kinase-pRb 
pathway, that accelerates G1/S phase transi-
tion to promote cell proliferation in AIPC. On 
other hand, β-catenin regulates the EMT-re- 
lated gene and promotes metastasis in AIPC. 
Combination with the diagnostic and prognos-
tic value in prostate cancer patients, PC4 may 
be a promising therapeutic target for AIPC.
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Table S1. List of utilized primer sequence for real-time qPCR
Gene Forward Reverse
PC4 TGATTCTGACAGTGAGGTTGAC TTATCATCTCTGCTGCTGCTG
HIF-1α GACAGCCTCACCAAACAGAG CTCAAAGCGACAGATAACACG 
β-actin GGACTTCGAGCAAGAGATGG AGCACTGTGTTGGCGTACAG

Figure S1. The PC4 knockout efficiency were examined by qPCR in PC3 (A) and DU145 (B) cells. All data indicate 
the mean ± SD. ***P<0.001.

Figure S2. The protein levels of apoptosis markers (PARP, Pro-Caspase 3 and Cleaved-Caspase 3 were determined 
by Western Blot in stable PC4 knockdown cell lines (PC3 and DU145 cells) and controls. 

Figure S3. A. Tail vein injection of stable PC4-knockdown and control PC3 cells into athymic male nude mice were 
used to establish lung metastasis model. Lung tissue was dissected and photographed at the endpoint. B. Statisti-
cal analysis of lung metastatic lesions per mouse in PC4 knockdown group and control groups. All data indicate the 
mean ± SD. **P<0.01.


