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-e aim of this study is to design GoogLeNet deep neural network architecture by expanding the kernel size of the inception layer
and combining the convolution layers to classify the electrocardiogram (ECG) beats into a normal sinus rhythm, premature
ventricular contraction, atrial premature contraction, and right/left bundle branch block arrhythmia. Based on testing MIT-BIH
arrhythmia benchmark databases, the scope of training/test ECG data was configured by covering at least three and seven R-peak
features, and the proposed extended-GoogLeNet architecture can classify five distinct heartbeats; normal sinus rhythm (NSR),
premature ventricular contraction (PVC), atrial premature contraction (APC), right bundle branch block (RBBB), and left bundle
brunch block(LBBB), with an accuracy of 95.94%, an error rate of 4.06%, a maximum sensitivity of 96.9%, and a maximum
positive predictive value of 95.7% for judging a normal or an abnormal beat with considering three ECG segments; an accuracy of
98.31%, a sensitivity of 88.75%, a specificity of 99.4%, and a positive predictive value of 94.4% for classifying APC fromNSR, PVC,
APC beats, whereas the error rate for misclassifying APC beat was relative low at 6.32%, compared with previous research efforts.

1. Introduction

Heart disease progresses because of insufficient blood supply
to the heart when coronary artery disease develops or ar-
rhythmias are severe and long-lasting [1]. According to
statistics from the Centers for Disease Control and Pre-
vention (CDC), heart disease is the world’s leading cause of
death. Consequently, early diagnosis of cardiovascular dis-
ease is important for reducing the devastating impact and
increasing quality of life. -e primary screening tool for
heart disease, the electrocardiogram (ECG), provides di-
agnostic features that determine the existence of irregular
heartbeats by measuring and recording the electrical activity
of the heart [2].

Common heart-monitoring devices for cardiac ar-
rhythmias include Holter equipment, which continuously
collects 24 hours ECG data [3, 4]. Various ECG arrhythmia
classification algorithms have been developed [5–8].

Artificial neural network models with backpropagation
algorithms have also been proposed to classify ECG data
into normal and abnormal patterns [9–11] by training and
testing the PhysioNet MIT-BIH Arrhythmia benchmark
database [12].

Recently, deep learning models trained on image data
have been applied to interpret ECG data for automatic
classification of arrhythmias [13–15]. Deep learning is a
subfield of machine learning, and it aims to learn features
from three or more hierarchical layers to solve the complex
tasks that were difficult for shallow neural network models
[16, 17].

Concerning patient-specific ECG heartbeat classification
via a deep learning approach, Kiranyaz et al. [18] imple-
mented a 1-dimensional convolutional neural network
(CNN) classifier with training and testing MIT-BIH ar-
rhythmia records acquired from 44 patients. -is proposed
CNN architecture achieved a classification performance
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detecting ventricular ectopic beats (VEBs) and supraven-
tricular ectopic beats (SVEBs) with an accuracy of 99% and
97.6%, respectively. Zhang et al. [19] claimed a higher ac-
curacy of detecting VEB and SVEB beats (99.7% and 99.3%,
respectively) by proposing a patient-specific ECG classifier
based on recurrent neural networks and a clustering tech-
nique. However, deep learning models for classifying ECG
beats might encounter difficulties in overtraining caused by
quasi-periodic behaviour of ECG data. -erefore, it is
necessary to exploit the number of samples contained in an
ECG segment for representing input variables to avoid
overtraining.-us, we first propose a way of determining the
optimal number of ECG segments used to encode the input
variables. -en, we build a modified deep neural network
based on GoogLeNet deep learning architecture [20, 21] with
modifying inception modules to classify ECG beats into
premature ventricular contraction (PVC), atrial premature
contraction (APC), right bundle branch block (RBBB), and
left bundle brunch block (LBBB). For the experimental tests
for ECG classification, the annotated information and raw
data of the MIT-BIH database from 44 patients were
evaluated by our proposed GoogLeNet deep neural archi-
tecture for expanding the kernel size of the inception
structure.

2. Representations of ECG Segments

2.1. Determination of ECG Intervals for Encoding Input Data.
To determine the number of ECG samples for supplying
input data, we define R-peak features of ECG data as follows:

Rn: reference beat in which the nth R-peak occurs in the
training and test dataset
Rn−k: time position in which the (n− k)th R-peak occurs
with respect to the reference beat
Rn+k: time position in which the (n + k)th R-peak occurs
with respect to the reference beat
Rn−k·Rn+k: time interval between the time locations of
Rn−k-peak and Rn+k-peak.

In our study, the range of training/test data, [Xfirst
n , Xend

n ],
ECG interval was configured to include Rn-reference peaks
by covering at least three and seven R-peaks prior and
posterior to Rn-peak by forming

X
first
n � Rn−k+1 +

Rn · Rn−k+2

2
, k � 3, 4, 5, 6, 7,

X
end
n � Rn+1 +

Rn · Rn+2

2
.

(1)

Because the number of samples contained in the ECG
interval was different depending on a patient’s type of ar-
rhythmia, a normalization process was necessary to unify the
number of samples for training and testing input data.
Kiranyaz et al. [18] and Zhang et al. [19] defined an ECG
segment for the input data by including three R–R intervals.
In our study, the test/training ECG data were acquired by
performing the normalization process with multiplying the
number of (R–R intervals-1) by 100 samples to avoid an

aliasing problem. Figure 1 shows an example of defining the
data interval with four ECG segments and the number of
normalized samples.

2.2. Training and Testing Set. To classify the ECG rhythm
using our proposed deep learning architecture, the rhythm
of arrhythmia was classified into normal sinus rhythm
(NSR), APC, PVC, RBBB, and LBBB as input data for
training and testing [22–24]. In the considered segment of
the MIT-BIH arrhythmia database, various arrhythmias are
present, and the classification is determined with a reference
beat.

All 48 patients from the MIT-BIH arrhythmia data were
randomly selected, excluding four with pacemakers. Table 1
shows the total number of rhythms from the MIT-BIH
arrhythmia data and the number of data used for training
and testing the GoogLeNet deep learning model.

3. GoogLeNet Deep Learning Structure

-e existing depth learning model can achieve high accuracy
by deepening the layers to increase the performance of the
neural network. A major drawback of this model is that the
computational complexity increases exponentially as the
layer becomes deeper. Google introduced the inception
structure at 2014 ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC14), being the best-performing model
and is called GoogLeNet [20]. At the core of this structure,
the inner layer of the neural network was extended to output
various correlation distributions based on the idea that the
neural network output of each layer has optimal efficiency if
various probability distributions with high correlations with
the input data are obtained. In the basic inception v1

Rn–2Rn–1

Rn–2 Rn–1

Reference beat

3 × 100 = 300 samples

Rn+1

Rn–1Rn RnRn+1

Rn

Figure 1: ECG segments normalization process for supplying input
data.

Table 1: Number of rhythms fromMIT-BIH arrhythmia data used
in our experiment.

Total beats Training beats Test beats
NSR 71,446 10,000 5,000
LBBB 8,025 6,025 2,000
RBBB 7,128 5,728 1,400
APC 2,470 1,870 600
PVC 6,128 4,928 1,200
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module, where input data are fed into four independent
layers (1× 1, 3× 3, 5× 5 convolution layers and 3× 3 max-
pooling layer), the outputs are combined into a single data

set. Inside, the convolutional layers derive various spatial
information of the input data, and the maximum pooling
layer plays the role of extracting distinct features by reducing
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Figure 2: Modified GoogLeNet neural network architectures. (a) Design I: one inception layer. (b) Design II: two inception layers. (c)
Design III: CNN layer + one inception layer.
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the channel and size of the input data. -erefore, the in-
ception module is a method of extracting more information
into a smaller layer by widening the layer of the neuron
network, which is only composed of the existing depth.

3.1. Designing GoogLeNet Deep Learning Model for Ar-
rhythmia Detection. Currently, the inception structure has
been updated to v4. -e shape of v1 is slightly extended. In
this research, we use the v1 model as a basis to construct
three CNN layers, an activation layer, and a maximum
pooling layer. Figure 2(a) shows a Design I model using a
single inception module, consisting of a complete connec-
tion layer and an output layer, and Figure 2(b) represents a
Design II model using two inception modules. In
Figure 2(c), Szegedy et al. [20] claimed that the use of the
incoherence structure was efficient after using the convo-
lution layer. Table 2 summarizes the composite specifica-
tions of the constructed incessant model and the detailed
parameters for the pooling layer.

3.2.OptimizationParameters of theGoogLeNetDeepLearning
Model. -e proposed deep learning model was imple-
mented by MATLAB codes using a desktop PC that com-
prised AMD FX-8350 CPU and 12GB memory for matrix
computational loads under the Windows 10 operating
system. As the number of convolution filters inside the
inception increases, the number of filters on the second floor
increases by fixing the number of filters on the first floor of
the reception to 15, when only the inception layer is used to
confirm the change in the arrhythmia classification accuracy.
We also evaluated the inception model using the convolu-
tion layer together. Even if the number of filters in an in-
ception layer increases, as shown in Figure 3, the accuracy is
not significantly enhanced. In fact, the accuracy of the model
combined with the convolution layer, and inception layer is
reduced by the difference in precision because of the ECG
interval representation.

To ascertain the influence of the ECG segment on
classification accuracy of the arrhythmia in our constructed
inception model, the classification accuracy with the highest
number of filters on each floor is summarized in Table 3.-e
combination model of the inception layer with the convo-
lution layer reveals no clear difference from the model of the
first floor of the reception, and the difference in accuracy of
the ECG segment section decreased from 2.2% to 0.8%. -e
input data achieved by the inception layer was higher by
about 1% in 2-layer inception models. -e highest accuracy
was achieved with three ECG segments.

3.3. Expansion of Kernel Size in the GoogLeNet Deep Neural
NetworkModel. -e conception filter of the basic inception
module seems to be suitable for extracting the feature in-
formation of the normalized ECG with a kernel size of 1, 3,
and 5, but may not be suitable for deriving information
between R–R intervals. -erefore, by increasing the kernel
size to 10, 50, and 100, time information included in the ECG
such as the R–R interval of the ECG signal could be obtained.

To apply this inception model, it can only be used in the first
layer directly computed with ECG input data. -e ar-
rhythmia classification accuracy is summarized in Figure 4
and Table 4, showing the increasing number of internal
convolution filters by 2 steps in the range from 1 to 19 of the
inception layer.-us, the number of filters increases, and the
accuracy rises little by little, but the accuracy gets converged
to a constant value from nine layers, and the maximum
accuracy is achieved when it is comprised of three segments
of ECG signals.

4. Results

4.1. Evaluation of Arrhythmia of Whole ECG Data

4.1.1. Performance of Basic Inception Module. -e highest
classification performance was achieved by considering
three ECG segments. Figure 5 shows the changes in accuracy
and errors, and the arrhythmia classification index of the
ECG signal is listed in Table 5. APC has the highest error rate
of 13.99% of the percentage, and it costs a half portion of the
total error at the rate judged to be an error of each ar-
rhythmia rhythm. -erefore, we need to focus on reducing
errors in APC.

4.1.2. Expanded Inception Module. -e highest accuracy
parameter is obtained in the model in which the kernel size
was expanded to the nine inception modules, and the
number of input data and the number of filters in the ECG
three segments are nine. When evaluating the ECG ar-
rhythmia as shown in Figure 6, a change in accuracy and
error appears as listed in Table 6, which shows the ar-
rhythmia classification index. From the results of this
model, the overall arrhythmia error increased; however, the

Table 2: Components of the deep learningmodel using GoogLeNet
inception architecture.

Deep learning list Parameters
Input size 200∼600

CNN layer

Number of filters: 15
Kernel size: 5

Stride: 1
Padding: 0

Max-pooling layer
Pooling size: 2

Stride: 2
Padding: 0

Inception layer

Number of filters: 3∼15
Kernel size: 1, 3, 5
Pooling size: 3× 3

Stride: 1
Padding: 0

FC layer 2 layers, [100, 50] neurons
Output size 5 classes
Iteration 10
Weight optimization function Adam

Optimization parameters Learning rate: 0.001,
beta1: 0.9, beta2: 0.999

Batch size 100
Batch normalization Not used
Dropout Not used
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error rate of APC decreased to 6.78%. -erefore, when
using only the first filter on the first floor of inception and
nine filters, we can be sure that it effectively responds to
APC detection.

4.2. Evaluation of Patient-Specific Arrhythmia. -e ECG
signal can vary depending on the patient. -e waveform of

the cardiovascular symptoms such as the rhythm changes in
shape depending on individual differences and the applied
measurement device or method. In addition, when analyzing
the rhythm of the MIT-BIH arrhythmia data, although two
specialists aided in the evaluation, there were cases where the
opinions were classified into rhythms that differ from each
other. -is is the reason why the type of arrhythmia differed
for a given pattern. As a result of evaluating the MIT-BIH
arrhythmia data with a deep learning model with five ar-
rhythmia rhythms, the arrhythmia classification accuracy
did not exceed 97%.

-erefore, we applied the deep learning model, which
the evaluation rather presented the important rhythm of
the individual custom heart, and classified the input data
into the normal and the abnormal rhythm. Given that MIT-
BIH 109, 111, 118, 124, 207, 214, and 232 NSR rhythm does
not exist and only LBBB and RBBB rhythm exists, LBBB
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Figure 3: Accuracy of arrhythmia detection with varying the number of filters changed in the inception model. (a) Design I: one inception
layer. (b) Design II: two inception layers. (c) Design III: CNN layer + one inception layer.

Table 3: Mean accuracy of arrhythmia using the inception model.

ECG segments (%) Mean accuracy
(%)3 4 5 6 7

Design I 96.3 95.8 95.2 95 94.1 95.3
Design II 97.1 96.4 96.8 95.5 95.1 96.2
Design III 96.3 96.5 96 95.4 95.5 95.9
Mean accuracy (%) 96.6 96.2 96 95.3 94.9
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Figure 4: Accuracy of arrhythmia classification of as number of filters in expanded kernel model.

Table 4: Accuracy of arrhythmia classification by the expanded kernel model with increasing number of filters.

Number of filters
ECG segments (%)

Mean accuracy (%)
3 4 5 6 7

1 95.1 94.4 92.7 92.4 94.1 93.7
3 95.6 95.1 95.6 93.8 94.5 94.9
5 96.4 95.5 95.1 94.8 94.4 95.2
7 96 95.8 95.6 94.7 94.4 95.3
9 96.2 96.1 95.9 94.8 95.3 95.7
11 96.1 95.7 96 95.6 94.8 95.7
13 96.5 96.1 95.5 95.4 95.1 95.7
15 96.4 96.3 96.1 95.5 94.7 95.8
17 96.7 96.1 96.3 95.6 95.6 96.0
19 96.5 96 96.2 95.6 95.1 95.9
Mean accuracy (%) 96.2 95.7 95.5 94.8 94.8
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Figure 5: Training and testing result by basic inception module. (a) Accuracy. (b) Error.
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and RBBB can be regarded as normal rhythms. Further-
more, MIT-BIH arrhythmia data are about 2000 pieces for
each number. -e normal rhythms occupy a considerable
part, the basic rhythms are about 20% of the verification
data, and the abnormal rhythm is the number in total.
Approximately 100 rhythms were sorted out, and the re-
sults were derived.

In our experimental simulations, the performance of
accuracy, sensitivity, specificity, and positive predictive value
(PPV) was evaluated, while varying the size of input data in

our deep learning model during the training and test stage
true positives (TPs) and true negatives (TNs) were used as
metrics to detect abnormal heartbeats. TP refers to the
judgements of arrhythmia rhythm, and TN defines the case
of detecting NSR beats. Additionally, false positive (FP)
refers to the decision of abnormal heart beat on NSR, and
false negative (FN) defines the case of classifying NSR beats
on the irregular heartbeats.

Accuracy(Acc) �
TP + TN

TP + TN + FP + FN
,

Sensitivity(Se) �
TP

TP + FN
,

Specificity(Sp) �
TN

TN + FP
,

PPV(Pp) �
TP

TP + FP
.

(2)

Tables 7 and 8 list the accuracy, sensitivity, specificity,
and PPV of all the considered data. Figure 7 shows the
comparison of results.

With regard to the accuracy and specificity with the four
indicators, given that the NSR rhythms have more beats than
the abnormal waveform in MIT-BIH database, a higher
accuracy for the classification of NSR beats was obtained for
all cases. -erefore, sensitivity and positive predictive value
in the NSR classification must be judged more thoroughly.
-e sensitivity obtained by using an inception model with
convolution filter sizes of [1, 3, 5] was between 96.2 and
96.9% accuracy, which is slightly higher than the expanded
inception model. In contrast, in terms of positive prediction,
the inceptionmodel with convolutional kernel size of [10, 50,
100] was somewhat higher with an accuracy ranging be-
tween 91.4 and 95.7%.

5. Conclusions

In this study, we explored the influence of detailed pa-
rameters by presenting a model suitable for the evaluation
of ECG rhythm via various deep learning models. To ac-
complish this objective, the MIT-BIH ECG arrhythmia
database was used to evaluate arrhythmia classification
with varying of the inception structure to classify LBBB,
RBBB, PVC, and APC rhythm. Based on Figure 4 and
Table 4, the number of filters in the inception module
should be at least 5 to detect arrhythmia beat. For the

Table 5: Arrhythmia classification using the basic inception
module.

Ground truth
Classification result

NSR LBBB RBBB APC PVC
NSR 4,788 51 39 66 56
LBBB 19 1,973 3 3 2
RBBB 21 2 1,371 5 1
APC 41 3 6 541 9
PVC 10 6 1 14 1169
Misclassification error (%) 1.87 3.05 3.45 13.99 5.5
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Figure 6: Training and testing of an inception module with
expanding kernel size. (a) Sensitivity. (b) Error.

Table 6: Arrhythmia classification results of the inception module
with increased kernel size.

Ground truth
Classification result

NSR LBBB RBBB APC PVC
NSR 4794 81 33 29 63
LBBB 26 1968 2 0 4
RBBB 25 3 1363 5 4
APC 62 14 15 489 20
PVC 19 4 1 4 1172
Misclassification error (%) 2.68 4.93 3.61 7.21 7.2
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Table 7: Result of abnormal rhythm detection using the inception model.

Segment Acc (%) Se (%) Sp (%) Pp (%)
3 99.2 98 99.3 95.2
4 98.8 97.6 99 93.2
5 98.6 97.5 98.7 91.5
6 98.5 97.1 98.7 91.1
7 98.4 96.9 98.6 90.5

Table 8: Result of abnormal rhythm detection using the inception model with expanding kernel size.

Segment Acc (%) Se (%) Sp (%) Pp (%)
3 99.1 96.9 99.4 95.7
4 98.8 96.6 99.1 94.0
5 98.7 96.8 98.9 92.6
6 98.4 96.3 98.7 91.2
7 98.4 96.2 98.7 91.4
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Figure 7: Performance index of patient-specific inception module. (a) Accuracy. (b) Sensitivity. (c) Specificity. (d) PPV.
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comparison with the previous state-of-the-art concerning
the classification of heartbeats, we illustrated Table 9 to
show the misclassification error rate of classifying NSR,
APC, and PVC beats with the additional specifying ac-
curacy, sensitivity, specificity, and positive predictive value
in Table 10.

For the case of extended inception deep learning model
used in our research, the misclassification error rate of APC
was 7.2% for classifying NSR, LBBB, RBBB, APC, and PVC
beats, whereas the error rate was 6.32% for classifying only
NSR, APC, and PVC beats, which is relatively low compared
with the previous research studies.-us, we can conclude that
the extension of the inception deep learning model can detect
five distinct ECG rhythms with the highest accuracy of
classification for the detection of APC beats.
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