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Anaplastic thyroid carcinoma (ATC) is one of the most aggressive and rapidly lethal tumors. However, limited advances have
been made to prolong the survival and to reduce the mortality over the last decades. Therefore, identifying the master regulators
underlying ATC progression is desperately needed. In our present study, three datasets including GSE33630, GSE29265, and
GSE65144 were retrieved from Gene Expression Omnibus with a total of 32 ATC samples and 78 normal thyroid tissues. A total of
1804 consistently changed differentially expressed genes (DEGs) were identified from three datasets. KEGG pathways enrichment
suggested that upregulated DEGs were mainly enriched in ECM-receptor interaction, cell cycle, PI3K-Akt signaling pathway, focal
adhesion, and p53 signaling pathway. Furthermore, key genemodules in PPI network were identified by Cytoscape plugin MCODE
and they were mainly associated with DNA replication, cell cycle process, collagen fibril organization, and regulation of leukocyte
migration. Additionally, TOP2A, CDK1, CCNB1, VEGFA, BIRC5,MAPK1, CCNA2,MAD2L1, CDC20, and BUB1were identified as
hub genes of the PPI network. Interestingly,module analysis showed that 8 out of 10 hub genes participated inModule 1 network and
more than 70% genes of Module 2 consisted of collagen family members. Notably, transcription factors (TFs) regulatory network
analysis indicated that E2F7, FOXM1, and NFYB were master regulators of Module 1, while CREB3L1 was the master regulator
of Module 2. Experimental validation showed that CREB3L1, E2F7, and FOXM1 were significantly upregulated in ATC tissue and
cell line when compared with normal thyroid group. In conclusion, the TFs regulatory network provided a more detail molecular
mechanism underlying ATC occurrence and progression. TFs including E2F7, FOXM1, CREB3L1, and NFYB were likely to be
master regulators of ATC progression, suggesting their potential role as molecular therapeutic targets in ATC treatment.

1. Introduction

Thyroid cancer is one of the most common cancers with
567,000 new cases worldwide in 2018 [1]. Anaplastic thyroid
carcinoma (ATC) is the most aggressive type of thyroid
cancer. It is responsible for more than half of all thyroid
cancer deaths, despite only accounting for 2% of thyroid
cancer incidence. The overall survival rate of this undiffer-
entiated thyroid cancer is as low as 13% [2]. ATC grows
rapidly and exhibits highly invasive behaviour, with 40% of
ATC patients suffering extrathyroidal extension and lymph
node metastasis, whereas the remaining 60% of patients

have distant metastases [3]. Although certain novel treatment
methods, including surgical resection, radioiodine ablation,
chemotherapy, and molecular targeted therapy, provide pos-
sibilities for the treatment of ATC, there is limited survival
improvement over the last decades. Therefore, identification
of regulatory networks associatedwithATCand investigation
of emerging molecularly targeted therapies have been an
ongoing interest.

In the past couple of years, considerable advances have
beenmade in demonstrating the genomic and transcriptomic
landscape of ATC. Landa et al. [4] reported that ATC
bore a high mutation burden and probably arose from
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preexisting differentiated thyroid cancer (DTC) through the
accumulation of key additional genetic abnormalities. Other
molecular alterations like microRNAs (miRNAs) expression
are also observed inATC. In particular, miR-200,miR-30, let-
7d, and let-7g are downregulated in ATC, and others, such
as miR-146, miR-221, miR-222, and the miR-17-92 cluster,
are upregulated [5, 6]. By performing mRNA expression
microarray, Hébrant et al. found much stronger epithelial-
mesenchymal transition (EMT), dedifferentiation, and gly-
colytic phenotypes showed by the ATC [7]. Although these
studies revealed dysregulation of key signals in ATC, the
master regulators underlying ATC progression are still far
from clear.

High-throughput gene profiling comparing cancer to
control has been a powerful tool in revealing pivotal path-
ways. Through transcriptomics data mining, the landscape
of tumor biology and malignant signatures were gradually
uncovered. Transcription factors (TFs) are known to play
master role in tumorigenesis and tumor progression by
widely promoting or blocking the transcription of their
targets, while they are often “buried” in the middle of the
data as not rank in the “top” list either by P value or by
fold change. Identifying TFs of malignant signatures could
provide a comprehensive view in interpretation of tumor
biology. Though TFs activation is regulated by many factors
more important than their expression levels such as protein
localization or protein post-translational modifications, the
transcriptomics mining of TFs offers a potential direction for
future mechanism research.

Individual study often suffered from lack of reproducibil-
ity. To overcome this shortage, we tried to find differentially
expressed genes (DEGs) and master regulators that consis-
tently changed inATC tumors via analyzing genemicroarrays
from three studies (GSE33630, GSE29265, and GSE65144)
in the present study. The commonly changed DEGs were
selected for gene function annotation and pathway enrich-
ment. Moreover, protein-protein interaction network and
TFs regulatory network were constructed to identify key gene
modules and master regulators in ATC. By combining inte-
grated bioinformatics analysis with experimental validation,
we found several novel TFs that were tightly relevant to
aggressiveness of ATC and may be potential targets for ATC
therapy.

2. Materials and Methods

2.1. Microarray Data. Three microarray datasets (GSE33630,
GSE29265, and GSE65144) containing anaplastic thyroid
carcinomas (ATC) and normal thyroid tissues were re-
trieved from Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database in the National Cen-
ter for Biotechnology Information (NCBI). The microarray
dataset of GSE33630 included 11 ATC and 45 normal thyroids
[8]. The GSE29265 dataset contained 9 ATC and 20 normal
thyroids, and the GSE65144 had 12 ATC and 13 normal thy-
roids [9]. All the datasets were based on GPL570 (Affymetrix
HumanGenomeU133 Plus 2.0 Array), which contains 54,675
probes.

2.2. Data Processing and Screening of Differentially Expressed
Genes (DEGs). TheRelative Log Expression (RLE) plots were
conducted and samples in each dataset centered near 0 and
had similar spread, which indicated that changes between
samples were low and these datasets were sufficient for
normalization and statistical analysis (Figures S1–S3). The
GEO2R web tool (http://www.ncbi.nlm.nih.gov/geo/geo2r)
was applied to identify the DEGs between ATC and normal
thyroid samples in three datasets, respectively. GEO2R is
an online tool that allows users to perform comparisons
between different groups in GEO series, which depends
on the GEOquery and the Linear Models for Microarray
Analysis (LIMMA) R packages [10, 11]. Significant DEGs
were identified by empirical Bayes test. To control the False
Discovery Rate (FDR), Benjamini and Hochberg method
was applied to adjust the P values for multiple testing. The
thresholds for filtering DEGs were set as FDR<0.05 and |log

2

fold change (FC)| ≥ 1. Consistently changed DEGs from
three datasets were identified by the Venny 2.1 online tool
(http://bioinfogp.cnb.csic.es/tools/venny).

2.3. Function Annotation and Pathway Enrichment of DEGs.
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were applied for the function annotation
and pathway enrichment analysis of DEGs through using
the Database for Annotation Visualization and Integrated
Discovery (DAVID; https://david.ncifcrf.gov) [12]. Adjusted
P values were calculated by Benjamini and Hochbergmethod
and the thresholds were set as FDR<0.05 to indicate a
statistically significant difference.

2.4. Protein-Protein Interaction (PPI) Network Construction
and Analysis of Modules. The online database Search Tool
for theRetrieval of InteractingGenes (STRING, http://string-
db.org) is widely used to identify the interactions between
known proteins and predicted proteins and to construct a
PPI network [13]. The common DEGs among three datasets
were inputted into STRING to construct PPI network and
visualized by Cytoscape software (version 3.6.1). To identify
the hub genes and key modules, the Cytoscape plugin
Molecular Complex Detection (MCODE) was applied to
conduct module analysis in the resulting PPI network [14].
Degree cut-off was set as 5, and the rest parameters were set
as default. Moreover, plugin ClueGO was employed to create
pathway interaction network and to annotate the function of
key modules [15].

2.5. Master Regulator Analysis. In order to characterize
regulatory networks underlying ATC, the Cytoscape plugin
iRegulon was used to identify master regulators that targeted
key modules above. Themaster regulators were transcription
factors whose transcriptional target sets are highly overlap-
ping with the observed gene signatures. The algorithm was
based on a typical ranking-and-recovery strategy, which was
previously described by Janky et al. [16]. All the default
parameters were left unchanged when predicting TFs. Then,
TFs that covered more than 50% of gene sets or normalized

http://www.ncbi.nlm.nih.gov/geo/geo2r
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enrichment score (NES) >5 were selected to construct the
regulatory network.

2.6. Validation of Master Regulator Expression. Three human
ATC tissues and six nontumorous tissues were obtained
from patients who underwent surgical resection at Zhejiang
Cancer Hospital. All specimens had a pathological diagnosis
at the time of assessment. Studies were approved by the Ethics
Committee of Zhejiang Cancer Hospital. In vitro experiments
were conducted in 8505C (DSMZ, Cat# ACC-219), 8305C
(DSMZ, Cat# ACC-133), CAL62 (DSMZ, Cat# ACC-448),
and Nthy-ori 3-1 (ECACC, Cat# 90011609) cell lines. To
detect the protein expression of candidate TFs, western blot
and immunohistochemistry were employed as previously
described [17, 18]. The primary antibodies contained rabbit
anti-E2F7 (Proteintech, Rosemont, USA), rabbit anti-FOXM1
(Proteintech, Rosemont, USA), mouse anti-NFYB (Santa
Cruz Biotechnology, Dallas, USA), and rabbit anti-CREB3L1
(Abcam, Cambridge, UK). To detect the mRNA expression
of candidate TFs, total mRNA of the human specimens and
cell samples was extracted by Trizol (Invitrogen, San Diego,
CA). Then, RNA was treated by RT reagent kit (TAKARA,
Dalian, China). SYBR Premix Ex Taq Kit (TAKARA, Dalian,
China) was used for amplifications. All these reactions
were carried out in triplicate. The primer sequences were
listed as follows: CREB3L1 forward primer GCACCTG-
GACCACTTTACGG and reverse primer AGCACAGGGT-
CATCAAAGAAG. E2F7 forward primer AAAGGGAC-
TATTCCGACCCAT and reverse primer ACTTGGATAGC-
GAGCTAGAAACT. FOXM1 forward primer GGAGCAGC-
GACAGGTTAAGG and reverse primer GTTGATGGC-
GAATTGTATCATGG. NFYB forward primer GGTGC-
CATCAAGAGAAACGG and reverse primer GTGACT-
GCTCCACCAATTCC. ACTB forward primer AGGGGC-
CGGACTCGTCATACT and reverse primer GGCGGCAC-
CACCATGTACCCT.The relative expression levels of mRNA
were calculated using the 2−ΔΔCt method [19]. Statistical
analysis was performed by GraphPad Prism version 6.0.
Differences between ATC and normal groups were calculated
by two-tailed Student’s t-test. Differences between different
cell lines were calculated by One-way ANOVA. P value <0.05
was considered statistically significant.

3. Results

3.1. Identification of DEGs in Anaplastic �yroid Carcinoma
(ATC). Microarray datasets including GSE33630, GSE29265,
and GSE65144 were retrieved from GEO. DEGs (FDR<0.05,
|log
2
FC| ≥ 1) of three microarray datasets were screened

out basing on the GEO2R analysis, respectively. The per-
centages of dysregulated genes in GSE33630, GSE29265, and
GSE65144 were 20.4%, 12.7%, and 19.7%, respectively. A total
of 1807 consistently expressed genes (784 upregulated and
1023 downregulated genes) were identified by the intersec-
tion of DEGs from three datasets (Figures 1(a)-1(b)). Then,
mean fold changes of consistently changed DEGs from three
datasets were calculated. The top 20 up- and downregulated
DEGs were hierarchically clustered and displayed as heatmap

in Figures 1(c)–1(e), respectively. As the results showed in
Figures 1(c)–1(e), these top 40DEGs could clearly distinguish
ATC from normal thyroid tissues.

3.2. Function Annotation and Pathway Enrichment of DEGs.
To investigate the biological function of DEGs between ATC
and normal tissues, GO and KEGG analyses were performed
using the DAVID online analysis tool.

Basing on the GO biological process (BP) enrichment
(Figure 2(a)), the upregulated genes were mainly associ-
ated with cell division, sister chromatid cohesion, mitotic
nuclear division, extracellular matrix organization, collagen
catabolic process, inflammatory response, G1/S transition
of mitotic cell, collagen fibril organization, cell adhesion,
and endodermal cell differentiation. Function annotation
of downregulated DEGs by GO BP indicated that thyroid
hormone generation and hormone biosynthetic process were
significantly enriched (Figure 2(a)).

Subsequently, KEGG pathway analysis demonstrated that
the upregulated DEGs were mainly enriched in key pathways
including ECM-receptor interaction, cell cycle, PI3K-Akt
signaling pathway, protein digestion and absorption, phago-
some, osteoclast differentiation, focal adhesion, p53 signaling
pathway, staphylococcus aureus infection, and leishmani-
asis (Figure 2(b)). The downregulated DEGs significantly
enriched in thyroid hormone synthesis (Figure 2(b)).

3.3. Protein-Protein Interaction (PPI) Network Construction.
The online database STRING was applied to construct the
PPI network. As shown inFigure 3, the PPI network consisted
of 1438 nodes interacting via 15,220 edges. Expression level of
upregulated DEGs (red) and downregulated DEGs (blue) in
the PPI network was shown using the mean expression value
of each gene from three datasets described above. Basing on
the PPI network analysis, the top 10 DEGs with highest node
degree were regarded as hub genes of ATC. These hub genes
were TOP2A (degree=239), CDK1 (degree=194), CCNB1
(degree=170), VEGFA (degree=169), BIRC5 (degree=154),
MAPK1 (degree=154), CCNA2 (degree=152), MAD2L1
(degree=151), CDC20 (degree=148), and BUB1 (degree=146).

3.4. Modules Analysis of PPI Network. Further MCODE
analysis revealed three key modules from the PPI network.
Module 1 consisted of 100 nodes and 4335 edges, which were
mainly enriched in DNA replication, spindle localization,
mitotic cell cycle phase transition, positive regulation of cell
cycle process, positive regulation of chromosome segrega-
tion, cell cycle process, histone phosphorylation, regulation
of sister chromatid segregation, regulation of chromosome
segregation, mitotic nuclear division, mitotic cell cycle, reg-
ulation of meiotic cell cycle, regulation of sister chromatid
cohesion,mitotic spindle organization, centrosome organiza-
tion, centromere complex assembly, and DNA conformation
change (Figures 4(a)-4(b)). Module 2 consisted of 25 nodes
and 285 edges, whichwere associatedwith collagenmetabolic
process, collagen biosynthetic process, collagen fibril orga-
nization, protein hydroxylation, protein heterotrimerization,
and endodermal cell differentiation (Figures 4(c)-4(d)).
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Figure 1: Identification of commonly changed DEGs from the three cohort profile datasets (GSE33630, GSE29265, and GSE65144) and the
hierarchical clustering analysis of DEGs. (a-b) Venn diagram displayed consistently up- and downregulated DEGs in three groups. (c–e)
Top 20 up- and downregulated DEGs depending on fold changes were hierarchically clustered and displayed by heatmap. Probe values (log2
transformation) of each gene were normalized by row Z-score, respectively. DEGs, differentially expressed genes.

Module 3 contained 49 nodes and 330 edges, which mainly
participated in regulation of leukocyte migration, positive
regulation of nitric oxide biosynthetic process, regulation of
interleukin-1 production, and cellular response to glucagon
stimulus (Figures 4(e)-4(f)).

3.5. Regulatory Network Construction and Master Regulators
Identification in ATC. To elucidate the potential regulators

that targeted the genes of key modules in the PPI network,
we queried iRegulon to predict the regulators and targets. In
the regulatory network of Module 1, 11 TFs were considered
as master regulators (Figures 5(a)-5(b)). TFDP3, E2F4, and
E2F7 were the top three enriched regulators with as much as
70, 100, and 71 targets, respectively. In the regulatory network
of Module 2, a total number of 12 TFs were strongly enriched
(Figures 5(c)-5(d)). CREB3L1 was the top enriched regulator
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Figure 2: Enriched GO (Biological Process) terms and KEGG pathways of upregulated and downregulated DEGs. For upregulated DEGs,
top ten significantly enriched GO terms and KEGG pathways were displayed, respectively. GO, gene ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; DEGs, differentially expressed genes.

that targeted 17 genes ofModule 2. InModule 3, only four TFs
were predicted, and SRF was the top enriched regulator that
targeted 20 genes of Module 3 (Figures 5(e)-5(f)).

3.6. Correlation Analysis of Master Regulators and Modules.
To elucidate the correlation between master regulators and
regulated genes, we compared the expression profile of
predicted TFs to expression profile of targeted genes. Basing
on the correlation analysis in three microarray datasets, we
found that four TFs were coincidentally correlated with key
modules in three datasets. Among all candidate genes, E2F7
and FOXM1 showed the highest correlation with the mean
expression profile of Module 1 (Pearson r (GSE33630) =
0.9087 and 0.9715, respectively; P value < 0.0001) (Figures
6(a), 6(c), and 6(e)). Moreover, E2F7, FOXM1, and CREB3L1
were significantly increased in ATC tissues from three
datasets (Figures 6(b), 6(d), and 6(f)). Interestingly, we also
found that NFYB, a component of highly conserved tran-
scription factor that bound with high specificity to CCAAT
motifs in the promoter regions in a variety of genes, exhibited
negative correlation with Module 1 (Pearson r (GSE33630)
= -0.6728; P value < 0.0001) (Figures 6(a), 6(c), and 6(e)).
The expression of NFYB was obviously decreased in ATC
tissues among threemicroarray datasets, which indicated that
NFYB may act as a repressor of genes in Module 1 (Figures
6(b), 6(d), and 6(f)). Additionally, CREB3L1 was the only
master regulator that significantly correlated with Module 2
(Pearson r (GSE33630) = 0.8923; P value < 0.0001) (Figures
6(a), 6(c), and 6(e)). For Module 3, no TFs were identified as
master regulators due to the low correlation between TFs and
Module 3.

3.7. Experimental Validation of Candidate Master Regulators
in�yroidTissues andCell Lines. Tovalidate the essential role
of CREB3L1, E2F7, FOXM1, and NFYB in ATC progression,
we detected their gene expression levels in both human tumor
tissues and cell lines. The results showed that CREB3L1,
E2F7, and FOXM1 were significantly upregulated in ATC

tissues when compared to normal thyroid tissues, while
NFYB obviously decreased in ATC tissues (Figures 7(a)-
7(b)). Moreover, immunohistochemistry staining indicated
that these four TFs were obviously increased or decreased
in nuclei of ATC cells (Figure 7(c)). Consistently, we also
found that these master regulators significantly changed in
three human ATC cell lines as compared with Nthy-ori 3-1
(human thyroid follicular epithelial cell line) (Figures 7(d)-
7(e)). Thus, these dysregulated master regulators may be
critical for facilitating the aggressiveness of ATC.

To test the consistency of transcriptomics data with the
proteomics data in the literature, we examined 18 candidate
markers identified by other independent studies [20–23].The
results indicated that only 10 out of 18 genes were significantly
changed in microarray datasets. TIMP1, LGALS3, CD44, and
HAPLN1 were consistently changed in at least two datasets
as compared with the cell line proteomics data by Arcinas
et al. [22]. EPCAM and TSPAN8 showed inconsistent trend
in ATC tissues, which may result from the heterogeneity
between cell line data and tumor tissue data. VDAC2 and
BAK1 did not change significantly, which coincided with the
results of Mato et al. [21]. According to the results above,
more than half candidates matched with current proteomics
data. The rest inconsistent candidates may be caused by
the heterogeneity of ATC or the complex process from
transcription to translation.

4. Discussion

Anaplastic thyroid carcinoma (ATC) is an aggressive malig-
nancy with extremely poor prognosis. Its rapid progres-
sion and limited therapeutic effect have caused consider-
able concern. Several studies have attempted to investigate
the aberrant gene expression in ATC by high-throughput
microarrays. Von Roemeling et al. [9] performed microarray
analysis (data deposited as GSE65144) and found that SCD1,
a constituent of fatty acid metabolism, was critical for ATC
cell survival and proliferation, while they did not conductGO
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Figure 3: The protein-protein interaction network of DEGs. The PPI network was constructed by STRING and visualized by Cytoscape
software. Red nodes represented upregulated DEGs. Blue nodes represented downregulated DEGs. DEGs, differentially expressed genes; PPI,
protein-protein interaction; STRING, Search Tool for the Retrieval of Interacting Genes.

and KEGG pathway enrichment. The work by Hébrant et al.
[7] (data deposited as GSE33630) demonstrated an aggressive
molecular switch between PTC and ATC, which supported
that ATC may derive from PTC. Recently bioinformatics
analysis by Hu et al. [24] also revealed some key pathways
in ATC as compared with normal thyroid tissues, while
independent cohort validation may be essential for support-
ing their findings. There are also other literature focuses on
the genomic or transcriptomic alteration in ATC leveraging
different technologies [25–27]. However, the transcription

factor regulatory network in ATC has been little known. In
our present study, we used multiple microarrays to identify
uniquely changedDEGs between cancerous and normal sam-
ples. Integrated bioinformatics analysis and human tissues
and cell lines validation were combined to unveil master reg-
ulators and key pathways that tightly related to aggressiveness
of ATC.

Dedifferentiation is one of the malignant features for
ATC. In contrast to the DTC, ATC cells do not remain any
of the biological features or functions of normal follicular
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Figure 4: Module analysis of PPI network and gene function annotation. (a, c, e) Three key modules identified from the PPI network. Red
nodes represented upregulated DEGs. Blue nodes represented downregulated DEGs. (b, d, f) Pathway interaction network of three gene
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Figure 5: Identification of master regulators in regulatory network of ATC. (a, c, e) Results of the regulatory analysis with iRegulon for three
key modules. The cyan nodes represented regulated targets. The light red nodes indicated transcription factors. (b, d, f) Lists of TFs that
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Figure 6: Correlation analysis ofmaster regulators andmodules. (a, c, e) Pearson correlation analysis of TFs andmodules. Blue fonts indicated
consistently correlated TFs in three microarray datasets. (b, d, f) The expression profiles of TFs with Pearson r >0.5 or < -0.5 were retrieved
from GSE33630, GSE29265, and GSE65144. TFs, transcription factors.
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Figure 7: Experimental validation of master regulators in different tissues and cell lines. (a) ThemRNA expression levels of CREB3L1, E2F7,
FOXM1, and NFYB in normal tissues (n=6) and ATC tissues (n=3). Results were presented as mean ± SD. (b) The expression levels of
CREB3L1, E2F7, FOXM1, and NFYB in normal tissue and ATC tissue were detected by western blot. (c) Immunohistochemistry staining
of CREB3L1, E2F7, FOXM1, and NFYB in normal tissue and ATC tissue. (d) The mRNA expression levels of CREB3L1, E2F7, FOXM1, and
NFYB in Nthy-ori 3-1 and three ATC cell lines. Results were presented as mean ± SD, n=3. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001. (e) The
expression levels of CREB3L1, E2F7, FOXM1, and NFYB in Nthy-ori 3-1 and three ATC cell lines were detected by western blot. (f) Heatmap
of the candidate markers in microarray as retrieved from the proteomics data in the literature. Grey block indicated candidates were not
significantly changed in microarray dataset. NT, normal thyroid tissues; ATC, anaplastic thyroid carcinoma.
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cells, such as thyroglobulin synthesis, TSH dependence, and
iodine uptake [28]. Among the top 20 downregulated DEGs,
near half DEGs were involved in thyroid differentiation
and function maintaining. DEGs like thyroglobulin (TG),
thyroid peroxidase (TPO), thyrotropin receptor (TSHR),
dual oxidase 2 (DUOX2), iodothyronine deiodinase 1 (DIO1),
solute carrier family 26 member 4 (SLC26A4, also known
as pendrin), and iodotyrosine dehalogenase 1 (IYD-1) are
critical for biosynthesis, storage, and secretion of the thyroid
hormones T3 and T4 [29]. Other DEGs including FOXE1 and
NKX2-1, PAX8, and HHEX (significantly changed but not in
the top 20 downregulated DEGs) are thyroid transcription
factors that are fundamental for thyroid differentiation and
formaintaining the functional differentiated state of the adult
thyroid [29]. Though loss of differentiation in ATC has been
generally recognized, our current study provided a better
insight into the transcriptomic landscape of thyroid cancer
dedifferentiation.

ATC is extremely malignant with significant changes in
both intracellular signal pathways and tumor microenvi-
ronment. Pathway enrichment showed that ECM-receptor
interaction, cell cycle, PI3K-Akt signaling pathway, protein
digestion and absorption, phagosome, osteoclast differenti-
ation, focal adhesion, p53 signaling pathway, staphylococcus
aureus infection, and leishmaniasis were potentially activated
in ATC. Aberrant activation of PI3K-Akt signaling pathway
and p53 signaling pathway was tumorigenic for thyroid gland
[30]. Both pathway mutations were higher prevalence in
ATC [4, 31]. Alterations in these signals were correlated
with tumor recurrence, lower survival rates, and poor prog-
nosis in thyroid cancer patients [32]. Gene mutation and
aneuploidy in tumor cells also lead to the generation and
aggregation of misfolding protein, which could induce cell
apoptosis. Activation of the protein digestion and absorption
pathway or phagosome could clean misfolding protein and
prevent tumor cells from apoptosis [33]. Additionally, ECM-
receptor interaction and focal adhesion are also essential
for tumor invasion and migration [34]. The interactions
between extracellular matrix and tumor cells lead to a direct
or indirect control of cellular activities such as cell motility,
adhesion, migration, differentiation, proliferation, and sur-
vival. Strikingly, we found that the collagen family members
werewidely involved inATCprogression. Ten collagen genes,
including COL1A1, COL1A2, COL3A1, COL5A1, COL5A2,
COL5A3, COL6A1, COL6A2, COL6A3, and COL11A1, were
commonly enriched in ECM-receptor interaction, PI3K-Akt
signaling pathway, protein digestion and absorption, and
focal adhesion. Type I collagen was upregulated in PTC and
expressed at the highest levels in PDTC and ATC. Fibroblast-
derived type I collagen could enhance cancer cell motility and
facilitate the progression of thyroid cancers [35]. Even though
type I collagen has been fully studied in ATC, the role of types
III, IV, VI, and XI collagens in ATC progression still remains
mystic. Further studies were needed to unveil their functions
and to explore their values as therapeutic targets.

By constructing the PPI network and regulatory network,
three keymodules and fourmaster regulators were identified.
Module analysis showed that 8 out of 10 hub genes were
involved in Module 1 network, including TOP2A, CDK1,

CCNB1, BIRC5, CCNA2,MAD2L1, CDC20, andBUB1. Func-
tion annotation indicated that these genes were essential for
cell cycle, cell division, and DNA replication. Uncontrolled
cell proliferation and DNA replication have been considered
as one of the hallmarks of cancer [36]. Our regulatory
network analysis indicated that E2F7, FOXM1, and NFYB
were master regulators of Module 1, and most hub genes
above were targeted. E2F7 is an E2F transcription factor
that is involved in various processes such as angiogenesis
and DNA damage response. Studies showed that E2F7 could
promote cancer cell proliferation, migration, and metastasis
[37, 38]. Liu et al. found that the feedback loop between miR-
26a and E2F7 could also promote tamoxifen resistance in ER-
positive breast cancer [39]. However, the role of E2F7 had not
been specifically implicated in ATC. FOXM1 is a member of
the forkhead box family that participated in cell proliferation,
chromosomal stability, angiogenesis, and invasion, while its
role in ATC has not been fully determined.We found FOXM1
significantly increased in ATC and highly correlated with
Module 1. Accordingly, results from the study by Bellelli et
al. [40] also identified FOXM1 as a molecular determinant of
the mitogenic and invasive phenotype of anaplastic thyroid
carcinoma [40]. Further study was needed to elucidate the
pivotal role of FOXM1 during ATC progression. Notably,
we also found that the NFYB (nuclear transcription factor
Y subunit beta) was a potential repressor of Module 1 and
was downregulated in ATC. NFYB was component of the
heterotrimeric transcription factor (NF-Y) and NF-Y can
function as both an activator and a repressor depending on
its interacting cofactors.The tumor suppressor p53 negatively
regulated CHEK2 gene transcription through modulation of
NF-Y function, and this regulation was important for reentry
of cells into the cell cycle after DNA damage is repaired
[41]. However, the regulatory function of NFYB in ATC
progression still remained mystic.

CREB3L1 was the master regulator that specifically tar-
geted genes in Module 2. More than 70% genes of Mod-
ule 2 consisted of collagen family members, including ten
collagen genes that shared by four key pathways above.
CREB3L1 is activated by endoplasmic reticulum (ER) stress.
Knockdown of CREB3L1 in glioma cells resulted in decreased
expression of extracellular matrix proteins and attenuated
ER stress response [42]. Moreover, recent study indicated
that CREB3L1 was a key downstream mediator of PERK-
driven metastasis in breast cancer [43]. Even though limited
studies determined the role of CREB3L1 in ATC progression,
transcriptional regulation of collagen family by CREB3L1
holds promise for it to be the candidate target of ATC.

5. Conclusions

In conclusion, our current study aimed at identifying master
regulators involved in the progression of ATC via integrated
bioinformatics analysis. This study provided several novel
master genes and pathways for future investigation of the
mechanisms underlying ATC. This comprehensive bioinfor-
matics analysis sheds light on the pathogenic mechanism
investigation and target mining, while their preclinical and
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clinical values require further validation. Moreover, the
transcriptional regulation of candidate genes by TFs and
the activation manner of TFs need further experimental
validation in ATC.
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