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Abstract

Telomerase and telomerase-generated telomeric DNA sequences are widespread throughout 

eukaryotes, yet they are not universal. Neither telomerase nor the simple DNA repeats associated 

with telomerase have been found in some plant and animal species. Telomerase was likely lost 

from Diptera before the divergence of Diptera and Siphonaptera, some 260 million years ago. 

Even so, Diptera is one of the most successful animal orders, making up 11% of known animal 

species. In addition, many species of Coleoptera and Hemiptera seem to lack canonical telomeric 

repeats at their chromosome ends. These and other insects that appear to lack canonical terminal 

repeat sequences account for another 10–15% of animal species. Conversely, the silk moth 

Bombyx mori maintains canonical telomeric sequences at its chromosome ends but seems to lack 

a functional telomerase. We speculate that a telomere-specific capping complex that recognizes the 

telomeric repeats and protects chromosome ends is the determining factor in maintaining 

canonical telomeric sequences, and that telomerase is an early and efficacious mechanism for 

satisfying the needs of capping complex. There are alternate mechanisms for maintaining 

chromosome ends that do not depend on telomerase, such as recombination found in some human 

cancer cells and yeast mutants. These mechanisms may maintain the canonical telomeric repeats 

or allow the terminal sequence to evolve when specificity of the capping complex for terminal 

repeat sequences is weak.
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Introduction

Telomeres are protective, nucleoprotein structures at the ends of eukaryotic chromosomes. 

Regardless of some differences in their DNA sequences or protein compositions, telomeres 
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across phyla cope with the same issues arising from the nature of linear chromosomes. First, 

they distinguish natural chromosome ends from chromosomal breaks through a telomere 

specific, multiprotein structure called a telomere cap (Muller 1938). Second, they 

compensate for chromosome shortening due to incomplete DNA replication at chromosome 

ends (Greider and Blackburn 1996). As formation of the telomere cap in many species is 

telomere sequence-dependent and requires satisfactory sequence length, the gradual loss of 

telomeric DNA ultimately leads to replicative senescence or apoptosis (Sfeir and de Lange 

2012). Telomeres thus work as cellular timekeepers. However, in some cells, such as germ or 

stem cells, telomere maintenance mechanisms are activated (Shay and Wright 2010), which 

by extending telomere length compensate the telomere loss and enable further cell 

proliferation.

Several mechanisms of telomere maintenance have been identified. The most common 

mechanism is telomerase, a specialized reverse transcriptase that according to its RNA 

template repeatedly synthesizes a short telomeric sequence onto chromosome ends. 

Telomeres maintained by telomerase thus contain tandem arrays of a short, 5–8 bp repeat 

(Greider 1996). Another telomere maintenance mechanism is homologous recombination, 

which has been found to extend long satellite sequences at telomeres of several organisms, 

such as representatives of lower Diptera (Mason et al. 2011) and is also found in human cells 

as an alternative to telomerase (Cesare and Reddel 2010). A third method to extend 

telomeres has been found in Drosophila species, in which telomeres consist of arrays of 

retrotransposons that maintain telomere length by transposition specifically to chromosome 

ends (Casacuberta and Pardue 2002; Pardue and DeBaryshe 2003; Biessmann and Mason 

2003; Mason et al. 2008; Capkova Frydrychova et al. 2009).

Although canonical telomeric repeat sequences generated by telomerase follow certain rules, 

such as being relatively G-rich in the 3’ strand that extends to the chromosome end, these 

sequences are not uniform throughout eukaryotes. Within Chromalveolata, for example, the 

terminal repeat sequence varies considerably (Mason et al. 2011); there may also be 

variation within smaller taxa as well, such as green algae (Fulnečková et al. 2012). In 

contrast, telomeric sequence is highly conserved in Unikonta, in which (TTAGGG)n, 

sometimes referred to as the vertebrate telomeric sequence, is the predominant terminal 

repeat sequence for fungi, animals and amoebozoa (Fulneckova et al. 2013). Yet even among 

the unikonts the DNA sequence at chromosome ends is not completely uniform. While most 

filamentous fungi use (TTAGGG)n at their chromosome ends, yeasts in the classes 

Saccharomycetes and Schizosaccharomycetes use a short repeat that varies from one copy to 

the next along a single telomere (McEachern and Blackburn 1994). Among animals, the 

(TTAGGG)n repeat in deuterostomes is stable (Gomes et al. 2011), while the canonical 

repeat varies somewhat from one phylum to the next in protostomes (Mason et al. 2011). 

Thus, for example, the (TTAGGC)n terminal repeat has been found in Nematoda, 

(TGTGGG)n in Rotifera, and (TTAGGG)n in Onychophora, Mollusca and Annelida. 

Extensive studies of telomere sequence composition in arthropods revealed that the 

predominant telomeric repeat in this phylum is (TTAGG)n, but there is some variation, 

especially in insects. (TTAGG)n has been lost at least 15 times during insect evolution 

(Frydrychova et al. 2004), including eight times in Coleoptera (Frydrychova and Marec 

2002).
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The (TTAGG)n telomeric sequence has been detected using Southern hybridization and 

fluorescence in situ hybridization, which may not provide the resolution necessary to show 

that the (TTAGG)n sequence in the tested species is the true, canonical telomeric sequence. 

It could be speculated that the (TTAGG)n sequence found at chromosome ends might be, in 

fact, only a non-functional relict of the original (TTAGG)n or a part of more complex 

sequence, such as satellite sequence, or even of subtelomeric sequence. Such suspicion, 

however, has been refuted recently by Korandova et al. (2014), who demonstrated TTAGG-

specific telomerase activity in phylogenetically distant insect species. Nevertheless, one 

problem that still persists is that in many cases a single species has been tested for the 

canonical repeat and telomerase, and this species is assumed to be representative of the order 

or the family in which it is found. More tests are required to verify this assumption.

Telomeres without terminal repeat sequences

Loss of canonical telomeric sequence may not necessarily lead to the death of the organism 

or even the cell in which it occurred. The typical telomeric sequence in the plant kingdom is 

(TTTAGGG)n, the so-called Arabidopsis-type motif (Riha and Shippen 2003). Two groups 

of flowering plants are known in which a replacement of the plant telomere sequence has 

occurred. The first is the family Solanaceae, in which the telomeric motif (TTTTTTAGGG)n 

maintained by telomerase, was discovered (Peška et al. 2015). The other group is the order 

Asparagales, where two switch-points in the evolution of telomeres were documented. 

During the first switch-point, the Arabidopsis-type telomeric motif was replaced with the 

vertebrate-type sequence; at the second switch-point, the canonical telomeric sequence in an 

ancestor to Allium was lost and substituted by a so far undiscovered sequence proposed to 

be elongated independently of telomerase (Fajkus et al. 2005). It has been suggested that 

telomeres in Allium and some related liliaceous species might have been replaced by a 

satellite sequence, ribosomal DNA, Ty1-copia retroelements or an En/Spm-transposable 

element-like sequence (Pearce et al. 1996; Pich et al. 1996; Pich and Schubert 1998).

The proposed sequences in Allium are reminiscent of telomeric repeats found in some flies. 

Nematocera species, the so-called lower Diptera, have repeated sequences at their 

chromosome ends that may elongate telomeres by gene conversion (Nielsen and Edstrom 

1993), while Drosophila species carry non-long terminal repeat (LTR) retrotransposons that 

elongate telomeres by transposition specifically to chromosome termini. More than 40 

dipteran genomes have been sequenced, and none of them shows evidence of a telomerase 

reverse transcriptase gene (TAR and JMM unpublished data). However, a reverse 

transcriptase-related protein of unknown function has been detected by 

immunohistochemistry in telomere regions of salivary gland polytene chromosomes in 

Chironomus and Rhynchosciara species (López et al. 1999; Gorab 2003). A chronogram for 

Diptera (Wiegmann et al. 2011) shows that Rhynchosciara (Bibionomorpha, Sciaridae) 

diverged from Drosophila (Schizophora, Drosophilidae) some 230 million years ago (Mya). 

As Rhynchosciara americana has a complex repeat with a unit length of 14, 16, and 22 bp 

(Rossato et al. 2007; Madalena et al. 2010; Fernandes et al. 2012), and all tested Drosophila 

species carry retrotransposons at their chromosome ends, it appears that these telomere-

specific retrotransposons arose between 65 and 230 Mya. Thus, the lineage leading to 

Drosophila may have existed for some 40–200 million years with neither telomerase nor 
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telomeric retrotransposons to maintain telomere-specific DNA. Further, Siphonaptera and 

Mecoptera, sister orders to Diptera (Fig. 1), also seem to lack (TTAGG)n repeats at their 

chromosome ends, which suggests that telomerase and the terminal sequence generated by 

telomerase were lost around 270 Mya, before the divergence of Diptera and Siphonaptera 

and after the separation of the lineages leading to Diptera and Lepidoptera (Fig. 1). Despite 

the loss of short canonical telomeric repeats and telomerase, Diptera, which includes 

152,000 species, is a highly successful order, even for insects, suggesting that loss of 

telomerase together with canonical telomeric repeats is not strongly deleterious.

While the evidence for replacement of canonical telomeric repeats with alternative telomeric 

sequences is not as strong in Coleoptera as it is in Diptera, there are some indications that it 

might have happened here as well. The arthropod (TTAGG)n telomeric repeats have not been 

found in 8 of 19 tested coleopteran families (Fig. 2). In three closely related families within 

the superfamily Tenebrionoidea the (TTAGG)n sequence has been replaced by another, 

similar sequence, (TCAGG)n (Mravinac et al. 2011). In three families, Chrysomelidae, 

Cucujidae and Curculionidae, the results were mixed, with some species showing evidence 

for canonical telomeres and others not (Okazaki et al. 1993; Sahara et al. 1999; Frydrychova 

and Marec 2002). Several other variations of the telomeric sequence were tested in these 

families, but a substitue for the (TTAGG)n or (TCAGG)n sequence could not be found (Fig. 

2; RCF unpublished data). The phylogenetic tree of Curculionidae provided by Hunt et al. 

(2007) suggests a single event of telomere sequence loss involving 33,000 species, while a 

more recent tree (McKenna et al. 2009) suggests two loss events, together involving 26,000 

species. The number of species in each family does not seem to be related to the presence or 

absence of identifiable (TTAGG)n or a related substitute.

The situation in Hemiptera (Fig. 3a) is simpler than in Coleoptera. The phylogenetic tree 

suggests that a single event occurred that resulted in the loss of (TTAGG)n from 

chromosome ends sometime before the divergence of Cimicomorpha and Pentatomomorpha 

and after the separation of these taxa from Nepomorpha. Nine genera have been tested in the 

former two infraorders with consistent results, suggesting that 37,000 heteropteran species 

lack the canonical arthropod telomeric repeat. It also appears that heteropteran species 

without the (TTAGG)n terminal repeat are more successful, or at least more diverse as 

defined by the species number, than those that have this sequence on their chromosome 

ends, even though Cimicomorpha and Pentatomomorpha have arisen relatively recently.

A survey of sequenced insect genomes identified a candidate telomerase (TERT) gene, 

where TERT is defined as a protein containing a ribonucleotide binding domain that is N-

terminal to a reverse transcriptase domain, suggests that there may have been two separate 

events, one in Cimicomorpha and one in Pentatomomorpha. Telomerases in Cimex lectularis 
and Rhodnius prolixus (Cimicomorpha) have a truncated version of the T domain, which is a 

solvent exposed portion of the telomerase thought to be involved in binding the single 

stranded RNA template (Mitchell et al. 2010), while telomerase in Oncopeltus fasciatus 
(Pentatomomorpha) has lost much of motifs B and C (Fig. 3b). Telomeric DNA sequence 

was not assayed in the latter two species, but the TERT sequence results are consistent with 

the possible loss of canonical repeats.
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As stated above, there is good evidence that 156,000 species of Diptera, Siphonaptera and 

Mecoptera lack both telomerase and the associated telomeric repeats; there is some evidence 

- the inability to find any of several possible telomeric repeats that resemble the canonical 

sequence - that 33,000 coleopterans lack canonical telomeric sequence; and there is a 

suggestion, based on FISH and/or Southern blot assays using (TTAGG)n as a probe, that as 

many as 75,000 coleopterans, 37,000 hemipterans and 17,000 other insects may also lack the 

arthropod telomeric repeat. Based on a comparison of the number of known insect species 

(Fig 1) with the number of other animal species (www.globalchange.umich.edu), insects 

comprise 77% of known animal species, while Diptera comprises 11%. Considering the 

insects enumerated here, possibly as many as a quarter of animal species use a DNA 

sequence on their chromosome ends that is unrelated to sequences normally maintained by 

telomerase, although these unusual terminal sequences may be added by an as yet 

undiscovered divergent telomerase protein in some cases.

Telomeres of Bombyx mori and Giardia lamblia

The telomeres in Bombyx mori provide an interesting counterpoint to the apparent loss of 

canonical telomeric repeats in other insects. The TERT gene has an unusual promoter and is 

expressed very little in this species; most of the expressed message is too short to produce an 

active protein, and no TERT activity could be found in any tissue (Osanai et al. 2006). In 

spite of this, (TTAGG)n is found on chromosome ends (Sahara et al. 1999; Sasaki and 

Fujiwara 2000; Fujiwara et al. 2005; Osanai et al. 2006). To explain the (TTAGG) n presence 

at B. mori telomeres, based on the questionable telomerase activity, we can hypothesize that 

either the level of telomerase activity is still able to replenish the telomere length when 

necessary, or the (TTAGG)n telomeric repeat is maintained by a mechanism other than 

telomerase. More than 1000 copies of non-LTR retrotransposons, TRAS and SART, are also 

found near chromosome ends in this species, although these transposable elements target the 

(TTAGG)n sequence and insert into the middle of the array, not at the actual chromosome 

end (Okazaki et al. 1995; Kubo et al. 2001; Fujiwara et al. 2005). The canonical telomeric 

sequence in B. mori extends to the actual chromosome end, with an average 6–8 kb of 

(TTAGG)n distal to the most distal retrotransposon. Although, these retrotransposons should 

be considered subtelomeric (Edward and Becker 2014), rather than telomeric in nature, the 

insertions of the retroelements into telomere regions might resemble a putative evolutionary 

intermediate between canonical and retrotransposon based telomeres.

Some similarities to telomeres in B. mori can be seen in one of the earliest branching 

eukaryotes, the protozoan Giardia lamblia, where terminal arrays of (TAGGG)n maintained 

by telomerase are adjacent to arrays of two families of non-LTR retroelements (Arkhipova 

and Morrison 2001). In agreement with the suggestion that asexual organisms cannot 

maintain deleterious transposable elements, in the genome of G. lamblia, which is not 

known to reproduce sexually, only retrotransposons that are either subtelomeric, or 

completely nonfunctional have been identified. This suggests that subtelomeric 

retroelements in G. lamblia may benefit their host either by buffering the zone between the 

chromosome terminus and protein coding genes, or by another unknown telomeric function 

(Pardue et al. 2001).
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The role of the telomere capping complex

Telomeres are critical for cell viability; therefore if species lose canonical telomeric DNA 

sequences the question arises, what keeps them viable? We speculate that a crucial player is 

a capping complex that binds to chromosome ends and distinguishes them from double 

stranded chromosome breaks (de Lange 2009; Fulcher et al. 2014). As long as the capping 

complex is stringent in its DNA sequence binding preference, the telomeric sequence would 

not be allowed to vary, regardless of the maintenance mechanism. This might explain why 

B. mori still retains the canonical telomeric sequence, even in the apparent absence of strong 

telomerase activity. On the other hand, if the capping complex loses strict sequence 

specificity, the terminal DNA sequence may be allowed to vary - possibly with some 

constraints - even when telomerase is active. This may be an explanation for the observed 

plasticity of canonical telomeric DNA sequence among Chromalveolata (Mason et al. 2011) 

and green algae (Fulneckova et al. 2012) or the unusual terminal sequence in yeast 

(McEachern and Blackburn 1994). It is also possible that the capping complex may lose all 

sequence specificity, as seen for Drosophila (Raffa et al. 2011; Capkova Frydrychova and 

Mason 2013). Loss of sequence specificity, however, does not necessarily mean that binding 

of broken chromosome ends by the capping complex becomes frequent. Even in Drosophila 
capping of broken chromosome ends is rare (Muller 1938; Muller and Herskowitz 1954) but 

may occur in the presence of a specific mutant gene (Mason et al. 1984), or when 

chromosome breaks occur very close to previous telomeres (Levis 1989; Tower et al. 1993).

According to our hypothesis telomerase provides an effective mechanism for maintaining a 

capping complex-preferred DNA sequence but becomes superfluous when capping complex 

sequence specificity breaks down, as we speculate happened in the lineage leading to 

Diptera. The model proposes that disruption of sequence specificity precedes the loss or 

modification of the canonical telomeric sequence, because changes in telomeric DNA 

sequence in the presence of strong sequence specificity of the capping complex would be 

lethal events. Thus, the relative stability of canonical telomeric repeats in deuterostomes may 

be due to stronger sequence specificity of the capping complex in this lineage than in 

protostomes.

Although telomeres play the same vital roles in chromosome length regulation and end 

protection, the canonical telomeric DNA sequence is stable in most unikonts, including 

amoebozoa, fungi and the Deuterostome branch of Metazoa, and the TERT gene is well 

conserved across eukaryotes, telomere capping proteins show less conservation than might 

be expected (Linger and Price 2009). In mammals the telomere-specific protein complex 

shelterin contains six proteins, three of which bind specifically to telomeric repeats, where 

they serve as a platform for dynamic binding of numerous telomere-associated factors 

participating in biological processes, such as DNA damage repair, chromosome cohesion, 

chromatin remodeling, cell cycle and transcription regulation (Giannone et al. 2010). Based 

on the involvement of shelterin proteins in numerous vital functions, it is surprising that the 

shelterin complex is very fast evolving in mammals and has not been found in some 

organisms, such as Saccharomyces cerevisiae (Nandakumar and Cech 2013) or any tested 

arthropod genomes (Mandrioli et al. 2014). While telomeric DNA sequences among 

protostomes are more variable, an examination of co-evolution of these sequences with their 
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protective protein cap is not possible, because these proteins have only been identified in 

Drosophila species (Fulcher et al. 2014).

Summary

Although our simple calculation indicating that canonical telomeric DNA sequences and 

possibly the telomerase system may have been lost in a substantial number of animal 

species, telomerase is still the most wide-spread mechanism to elongate telomeres. Given its 

wide distribution, telomerase obviously arose very early in the evolution of eukaryotes; it 

may also provide greater stringency or efficiency in the maintenance of the canonical 

sequence required by a sequence-specific capping complex than alternatives, such as 

recombination. These alternative mechanisms may occur readily, as seen in yeast (Teng and 

Zakian 1999) and human tumors (Cesare and Reddel 2010) even in the presence of 

telomerase (Dlaska et al. 2013). In addition, short telomeres or loss of telomerase from 

human cancer cells may stimulate alternative lengthening of telomeres (ALT) mechanisms 

(Morrish and Greider 2009; Queisser et al. 2013). Thus, it is perhaps not surprising that over 

evolutionary time telomerase may occasionally have been lost. One example, Diptera, is 

well documented, comprising more than 10% of animal species, and several others are 

suspected. With this in mind, the conservation of canonical telomeric sequence may provide 

a clue as to the stringency of sequence specificity of the capping complex.
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Fig. 1. 
Chronogram of insect evolution. The chronogram is adapted from Misof et al. (2014) with 

the following modifications: Mantodea, Blattodea and Isoptera have been combined as 

Dictyoptera, according to Barnard (2011); and Zoraptera, Mantophasmodea, 

Grylloblattodea, Embioptera, and Strepsiptera have been omitted, because they are very 

small and have not been tested for the presence of telomeric repeats. Gray arrowheads 

indicate points at which a possible loss of terminal (TTAGG)n repeats occurred. α The 

numbers of insect species are taken from Barnard (2011), except that the number of 

coleopteran species is from Hunt et al. (2007), and the number of lepidopteran species is 

from the Lepidoptera Taxome Project (http://www.ucl.ac.uk/taxome/lepnos.html). All 

species numbers are in thousands. β When several species from a single genus have been 

tested all the results have been consistent. Therefore, the numbers in these two columns 

represent the number of genera tested. Test data are taken from Frydrychova et al. (2004), 

except where otherwise noted. γ Results from Frydrychova et al. (2004), Vitturi et al. 

(2008), Warchalowska-Sliwa et al. (2009), Jetybayev et al. (2012), Grzywacz et al. (2014), 

and Warchalowska-Sliva et al. (2013). δ See Figure 3 for references. ε Results from 
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Frydrychova et al. (2004), Lorite et al. (2002), and Wurm et al.(2011). ζ Data from 

Gokhmant et al. (2014) and Menezes et al. (2013). η See Figure 2 for references. θ Results 

from Frydrychova et al. (2004) and Madelena et al. (2010).
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Fig. 2. 
Phylogenetic tree for Coleoptera. The phylogenetic tree and species numbers in families are 

from Hunt et al. (2007). Gray arrowheads indicate points at which a possible loss of terminal 

(TTAGG)n repeats occurred. Arrow indicates the point at which (TTAGG)n terminal repeats 

were replaced by (TCAGG)n terminal repeats. α Species numbers are in thousands. To save 

space only larger families and families tested for the presence of canonical telomeric DNA 

sequences are shown. Together, these comprise 290,000 species or 77% of known beetle 

species. Data on the presence of canonical telomeric repeats are taken from Frydrychova et 

al. (2004) unless specified otherwise. β The numbers of tests in the two columns for 

canonical repeats indicate the number of genera tested. γ The canonical arthropod 

(TTAGG)n has been replaced in the superfamily Tenebrionoidea (families Mycetophagidae, 

Tenebrionidae and Meloidae) by (TCAGG)n (Mravinac et al. 2011). δ Species in the families 

Cucujidae, Chrysomelidae and Curculionidae that did not show evidence for (TTAGG)n at 

chromosome ends were also tested for the presence of (TCAGG)n, (TTAGGG)n, (CTGGG), 
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(TTGGG)n, and (CTAGG)n repeats, all with negative results, suggesting that these species 

may have unconventional telomeres (Mravinac et al. 2011). ε Results from Frydrychova et 

al. (2004) and Mravinac et al. (2011).
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Fig. 3. 
Phylogenetic tree for Hemiptera. a The phylogenetic tree is taken from tolweb.com. Gray 

arrowheads indicate points at which a possible loss of terminal (TTAGG)n repeats occurred. 

α Species numbers are in thousands. β The numbers of tests in the two columns for 

canonical repeats indicate the numbers of genera tested. γ Results from Frydrychova et al. 

(2004), Mandrioli et al. (2011), Mohan et al. (2011), Monti et al. (2011a), and Monti et al. 

(2011b). δ Results from Novotná et al. (2011). ε Results from Frydrychova et al. (2004) and 

Maryanska-Nadachowska et al. (2013). ζ Results from Kuznetsova et al. (2012). η Results 

from Grozeva et al. (2011). θ Results from Frydrychova et al. (2004); Grozeva et al. (2011). 

b Motif T and motifs B and C of the telomerase (TERT) gene are shown from several insect 

species. Homo sapiens is an outgroup. Apis mellifera (Hymenoptera), Tribolium castaneum 
(Coleoptera) and Bombyx mandarina (Lepidoptera) are distantly related insects with 

terminal (TTAGG)n repeats, and thus thought to have an active telomerase gene. 
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Acyrthosiphon pisum (Hemiptera; Sternorrhyncha), Homalodisca vitripennis (Hemiptera: 

Auchenorrhyncha) and Gerris buenoi (Hemiptera; Heteroptera; Gerromorpha) are in taxa 

shown to have canonical (TTAGG)n repeats and are thus thought to have an active 

telomerase gene. Cimex lectularis (Hemiptera; Heteroptera; Cimicomorpha), Rhodnius 
prolixus (Hemiptera; Heteroptera; Cimicomorpha) and Oncopeltus fasciatus (Hemiptera; 

Heteroptera; Pentatomomorpha) are in infraorders with members that appear to lack terminal 

(TTAGG)n repeats and are inferred to have defective TERT activity. The positions of three 

relevant motifs as defined in the TERT alignment from http://telomerase.asu.edu/

alignments.html are shown. Motif T, with highly conserved residues shown in green, 

contains a conserved β sheet (location of the beta sheet from H. sapiens is shown below the 

alignment). Motif B is shown with highly conserved residues in red. In motif C, highly 

conserved residues are shown in blue. Asterisks denote important residues discussed in the 

text. The multiple sequence alignment of the predicted TERT proteins was done with 

MAFFT 6.849 (Katoh et al. 2002). A β sheet in motif T, followed by an a helix, is predicted 

in all of the proteins except C. lectularius and R. prolixus suggesting that the deletion of the 

T domain seen in each could result in a loss of function of TERT. In contrast, O. fasciatus 
has a well conserved T domain but has a large deletion spanning most of the B and C 

domains. Motif B interacts with the template strand and the glutamine (bold with asterisk) is 

thought to be involved in substrate specificity (motif B). In motif C, the two asparagines (*) 

are invariant and the preceding valine is very highly conserved. Alanine mutagenesis has 

shown these asparagines to be essential for TERT activity.
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