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Abstract

Machine learning (ML) (a subset of artificial intelligence that focuses on autonomous computer 

knowledge gain) is actively being used across many domains, such as entertainment, commerce, 

and increasingly in industrial settings. The wide applicability and low barriers for development of 

these algorithms are allowing for innovations, once thought unattainable, to be realized in an ever 

more digital world. As these innovations continue across industries, the manufacturing industry 

has also begun to gain benefits. With the current push for Smart Manufacturing and Industrie 4.0, 

ML for manufacturing is experiencing unprecedented levels of interest; but how much is industry 

actually using these highly-publicized techniques? This paper sorts through a decade of 

manufacturing publications to quantify the amount of effort being put towards advancing ML in 

manufacturing. This work identifies both prominent areas of ML use, and popular algorithms. This 

also allows us to highlight any gaps, or areas where ML could play a vital role. To maximize the 

search space utilization of this investigation, ML based Natural Language Processing (NLP) 

techniques were employed to rapidly sort through a vast corpus of engineering documents to 

identify key areas of research and application, as well as uncover documents most pertinent to this 

survey. The salient outcome of this research is the presentation of current focus areas and gaps in 

ML applications to the manufacturing industry, with particular emphasis on cross domain 

knowledge utilization. A full detailing of methods and findings is presented.
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1. Introduction

Machine learning (ML) has seen increased usage in manufacturing over the past 20 years. 

Two surges in the use of ML occurred in manufacturing; the first in the 1980s, with the 

second currently underway. While ML saw significant attention in the 1980s, industrial 
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adoption was not high because the methods were difficult to implement and ahead of the 

technology available at the time [1, 2]. Many companies and researchers in industry are 

revisiting past work, focusing primarily on domain-specific models. We postulate there has 

been very little focus on cross-domain models for connecting information across the product 

life cycle. ML has remained “siloed” in each phase of the product life cycle: conception, 

design, manufacture, quality, and sustainment. With increased adoption of the Industrial 

Internet of Things (IIoT), Industrie 4.0, and Smart Manufacturing, even more data is being 

generated. Therefore, how does one effectively and efficiently take advantage of all that 

data?

Applications such as Total Design theory [3], Design for Six Sigma [4], and Design for 

Manufacturing [5, 6] require knowledge of the various phases of the product life cycle. In a 

sampling of 35 defense-acquisition programs [7], development-cost growth averaged 57 

percent and procurement-cost growth averaged 75 percent. Decision making dominated both 

types of cost growth. It follows that mitigating the negative effects of decisions earlier in the 

lifecycle could be advantageous to both the cost and the quality of a production program. 

Such mitigation requires knowledge of the full lifecycle and an understanding of how a 

decision in one phase of the lifecycle affects other phases of the lifecycle.

How does one gain such knowledge? Hedberg Jr et al. [8] proposed three research directions 

to enable using knowledge earlier in the product life cycle: (1) dynamically generate 

knowledge bases, (2) determine minimum information requirements, and (3) data-

interoperability support. ML are poised to greatly assist with the first two of these, dynamic 

knowledge generation and minimum information requirements. Synthesizing the work of 

Hedberg Jr et al. [8] with other literature [9, 10, 11, 12, 13] identifies a need for automated 

methods to collect, transmit, analyze, and act on the most appropriate data. This sets the goal 

of using ML tools that can “observe” data, apply context, and generate knowledge – these 

tools must be cross-domain (cross-phase) observatories.

This paper provides a literature survey on the application of ML to mutli-disciplinary, cross-

domain focus areas that make up the product life cycle using manufacturing data in support 

of developing a life-cycle-wide “data observatory” [14]. The motivation of this work is to 

survey and enable the integration of previous domain-specific works, such as those described 

by Jennings et al. [15], Li et al. [16], Wang et al. [17], into the systems and enterprise level 

of the life cycle. For example, Figure 1 presents the scope and hierarchy of the ISA-95 [18] 

framework and identified hypothesized current application areas and opportunities for 

applying ML in manufacturing and beyond. The survey was conducted with the hypothesis 

that most applications of machine learning are applied to low-level manufacturing problems 

(ISA-95 Level 0, 1, 2) and little to no application of machine learning has been applied to 

systems level (ISA-95 Level 3), enterprise level (ISA-95 Level 4), and other phases / 

domains of the product lifecycle (e.g., systems engineering, design, quality).

To accomplish extending the application of ML to cross-domain focus areas, the gaps (e.g., 

what questions remain) must be identified so that they may be closed through research and 

development. Also, to ensure successful adoption of ML solutions, the real-life applications 

that exist and their benefits must be determined. To accomplish this, the literature survey 
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was conducted with two aims. i) investigate the current state-of-the-art for ML methods; and 

ii) investigate any cross-domain applications of ML in the product lifecycle.

Three survey questions were asked:

• What types of algorithms are used and with what frequency?

• Are certain applications of machine learning frequently occurring? If so, which 

applications and at what level of the manufacturing systems?

• Is further research needed to capture the opportunities of applying machine 

learning to cross-domain focus areas of the product life cycle? If so, where and 

what?

The scope of the survey was limited to the integration of the design, fabrication, and quality 

domains / functions of the product life cycle. Sustainment, or customer and product support, 

was considered out of scope for this survey. While sustainment is important, the initial focus 

was on knowledge development to support design and manufacturing decisions.

2. Motivation and Background

The goal of this paper is to estimate the level of interest and actual effort being put towards 

the incorporation of ML technologies to the modern manufacturing industry by quantifying 

the presence of these concepts in the current literature. Further, this work seeks to ascertain 

prominent areas of the use of these technologies with both general and specific examples of 

applications in the literature by isolating sub populations of coordinated literature as well as 

targeting specific works on the subject. Last, any relevant gaps in the current level of 

deployment or development will be identified and presented as areas of future research.

With the availability of digital publications, it is now possible via automated techniques [20, 

21] to search a wider breadth and depth of literature within an area than is feasible with 

manual methods. Search engines and online repositories of technical documents can quickly 

provide a host of information based on queries of a few simple phrases. However, these 

searches are mostly word matching techniques and do not match the underlying concept or 

contextual content to a document. Most often in the English language, a collection of words 

or phrases presented in a particular order is required to convey a concept or idea instead of 

any single word. Thus, analyzing collections of words is the basis of many forms of 

linguistic analysis, and as related to this methodology, is what partially drove the motivation 

to move beyond simple key word matching as a basis for document comparison. Towards 

that end, key NLP techniques were identified and applied to a large corpus of technical 

publication abstracts in addition to simple word matching analytics. These techniques 

included Bag of Words/Features, and Latent Semantic Analysis (LSA) to develop a measure 

of ’similarity’ between the documents and concepts to identify key trends [22]. This places 

more emphasis on not just simple word matching as with traditional searches, but core 

concept matching.

In this work, a large collection of digital technical abstracts is mined via ML and NLP 

techniques to better understand emerging trends within both industry and academia. This 
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base corpus is created using the word matching techniques native to many online 

repositories, and will be the space that all the automated information mining techniques will 

be applied to. Beyond automated techniques, several key papers were manually identified for 

a more in-depth review based on the concept searching criteria developed in this paper. For 

this more in-depth review, both knowledge assimilation and dissemination relies on 

traditional human efforts. A more complete description of the development and use of the 

base corpus is presented in the following section. The results from both the automated and 

manual information gathering efforts are presented below.

3. Methodology

A corpus of technical documents was reviewed using computer aided searching and NLP 

methodologies to assess AI and ML applications in manufacturing. A list of over 4000 

unique articles pulled from a variety of digital resources (Primarily Engineering Village and 

Google Scholar) formed the search space and basis for the automated techniques used in this 

survey. The publication date of articles within is limited between 2005 and 2017. This 

section outlines the digitally assisted methodology for gathering these articles, identifying 

those most focused to the interests of this survey, and the general assessment of key concepts 

throughout the survey search space.

3.1. Initial Construction / Key Word Search

The initial creation of the article list began with the largely common place key term search 

capability familiar to many document repositories. Various combinations of the terms shown 

in Table 1 identified potential articles that could be of interest. Only those terms listed in the 

table are used to populate the base corpus. Note that some words were used as exclusion 

parameters, listed under the ’Does NOT Contain’ section of the table. These terms were 

selected to create a broad scope of papers that encompasses the primary focus of this paper.

This resulted in over 4000 articles that met the key word qualifications. It would be 

unpractical to manually sort through each article and rate it on pertinence to the subject 

matter of interest. This effort would be particularly wasteful noting that a tagged document 

may simply contain one or more of the searched phrases, but not actually deal with the target 

subject matter. To overcome such difficulties, an automated NLP driven approach was taken 

to characterize the corpus and expedite identification of those article that are of the most 

interest to ML in manufacturing.

3.2. Corpus Characterization

In this survey, document characterization is performed in two broad categories: total search 

space characterization, and relative similarity to a focus subject document. Both analyses 

take the consolidated vector of semantic features and their associated values from the LSA 

algorithm and compare them to other established vectors using the cosign distance metric. In 

the case of the search space characterization, this comparison is made between each distinct 

article, whereas for the focused search the comparison is made to a single predefined key or 

“prime vector”. A semantic feature of a document can be thought of as a combined 

magnitude of related words and phrases.
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To prepare the corpus for analysis, each document was cleaned by removing punctuation and 

trivial “stop words” (e.g., ’also’, ’just’, ’that’, etc.) [23]. Token phrases were constructed to 

have between one and three words, using the N gram approach, parsing each into a 

document/frequency matrix. These were then condensed into a lower dimensional feature 

space with Term Frequency – Inverse Document Frequency (TF-IDF) weighting and LSA. 

This helps to ensure that words and phrases used with similar context contribute similarly to 

the “semantic location” or position in the feature space. Combining elemental ideas or 

similar word concepts is a convenient way to think of this process in regard to this work.

Once the document feature set is established for each article, it is a simple matter to 

calculate the angle between two documents to determine their similarity. It is important to 

note that when calculating the similarity between documents for the total search space 

characterization, feature phrases that appear in one document but not another are assumed as 

zeros for comparative calculations. However, in the case of the prime document comparison 

(a directed subject search), any feature phrases not in the prime document are simply 

omitted from the cosign similarity calculation. This is to help place more focus on the prime 

documents topics, and mitigate exclusion of searched documents that may contain additional 

topics other than the topics of interest.

Using these methods, a value of similarity between any two documents within the search 

space, or the prime document can be made. However, simple document to document 

similarity is not the most informative in terms of characterizing the total search space. By 

identifying similar patterns within documents and grouping them, trends within the overall 

search space can be characterized; from these, conclusions about the state of the art in both 

application and research can be made.

3.3. Document Grouping

As a method of further characterizing both the overall search space and the broad scale 

trends relating to the prime document, a form of fuzzy k-means clustering was chosen to 

help group the documents. This additional layer of analysis allows for the informed selection 

of a broader spectrum of documents to deeply analyze for the purposes of the survey. By 

selecting papers that are the most like the prime document within each group, the survey will 

better be able to characterize a broad scope of the state of the art without over-focusing on 

any one sub-section artificially or miss a prominent area by accident.

To characterize each group, the most frequently appearing words and phrases are identified 

to help identify the central ideas and topics of the group. The topic analysis is performed 

both with the absolute overall most frequent phrases and those that are exclusive of the top 

phrases across all groups. Lastly, each group is characterized by its average similar similarity 

to the prime document to quantify how relevant it is to the central topic of the survey. The 

results of the grouping as well as the similarity and characterization analysis are presented in 

the results section of this survey.
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4. Results

4.1. Search Space Characterization

A pool of nearly 4000 papers was created and used to evaluate of the state of the art of 

manufacturing cross-domain (design-manufacture-quality) use of ML. To help confirm that 

the constructed corpus of articles is centered in the field of manufacturing, Figure 2 shows 

that words such as “Manufacturing,” “Process,” and “Design” comprise the most frequent 

words.

The analysis of density-based clusters within the corpus feature space provides further 

characterization of the total search space. The top 10 clusters are analyzed, each one 

reflecting a different region of density within the data. As shown in Figure 3, the clusters are 

labeled from 1 to 10 based on the total number of documents held within them. The upper 

chart compares the number of documents contained in each group, while the lower chart 

shows the proximity of each group center within the search space. Groups represented in the 

lower left of the chart are both close to the center of the search space and close to other 

groups, those in the upper right are far from center and have no near neighbors. Those in the 

far right are considered near the edges of the search space.

To better understand some of core the concepts that each group centers around, phrases that 

represent strong contributors to that point in the feature space are extracted and reported 

below. This can provide a broad understanding of the overall focus as well as areas of 

concentration of the corpus. The most frequent phrases overall in the search space have 

already been noted in Figure 2, therefore it is more informative to look at the most frequent 

phrases of each group exclusive of those common to all groups (See Table 2).

From this information, we can conclude that there is a large portion (approximately 28%) of 

the search space focused on the development of new algorithms, particularly inclined 

towards ML in manufacturing. Similarly, we see that approximately 34% is interested in 

production control and management. Even in this loose characterization of the search space, 

the interest in smart manufacturing and data utilization is apparent.

Following from this characterization, two explicit ML algorithms that have dedicated areas 

of density towards them are Neural Networks (NNs) and Support Vector Machines (SVM), 

implying a growing popularity of them within manufacturing. With approximately 11% and 

4% of the corpus focused around these generically applicable ML algorithms respectively, 

indications are strong that they are being applied to a broad range of problems or 

applications in the manufacturing domain. This is most likely due to the low barrier of entry 

for use of the algorithms, both in understanding to create and physical resources required. 

Open source, pre-made implementations of these tools are widely available on the internet, 

further promoting adoption. This is not meant to imply that these are the only algorithms in 

use in the manufacturing domain, only that there is a prominence of both NNs, SVMs and 

related algorithms.

Note that, evidenced by the key phrases of Group 10, approximately 2% of the articles found 

seem to be related to the manufacturing of elements and isotopes through radioactive 
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production methods. This is not a focus set of our survey, and can be marked as a trivial 

matching; another weakness of a simplistic key word search algorithm which created the 

overall corpus. As this is a suitably low percentage of the overall search space, these articles 

are not removed from the analysis. However, these and other outlying trivial, or incidental 

matches exist within the search space and are expected to have contributions to the low end 

of the similarity distribution for any manufacturing industry related search.

After establishing the search space as an acceptable representative sampling of recent 

publications regarding the manufacturing industry, two key documents were used to help 

infer and characterize the overall thrust and trends of focus areas as pertaining to the digital 

thread and process design in these publications. The individual similarity of each publication 

was evaluated and recorded for each key document separately. By knowing the focus and 

intent of each of the key documents, a sense of how prevalent these topics are within the 

search space can be gained. The first key document is the introduction section of this paper, 

the second is a directed set of select phrases designed to highlight important concepts.

Additionally, to establish a baseline, a short article unrelated to the field of manufacturing is 

also used to create a key document. In this case, the reference document selected is the 

abstract of an article related to peach farming that contains many of the key phases used to 

construct the total survey search space, but is expected to only have incidental similarity at 

best. This serves to aid in distinguishing random matching within the similarity algorithm.

As the technique for document comparison is designed to capture similarities beyond simple 

word matching, the reference key document is expected to be better constructed from natural 

language. Towards that end, the introduction section of this paper is used (prior to minor 

editorial changes) as a key document (Prime String) to compare the search space similarity 

to the core concepts of this survey. Figure 4 shows the distribution of the search space 

similarity to the introduction section of this paper.

In comparison to the baseline chance similarity developed from the corpus similarity to the 

peach farming article (dotted line in Figure 4), there is a significant increase in the overall 

similarity distribution (approx. 0.02 mean shift). This clear visual and statistical shift 

strongly implies that the core concepts described within the introduction of this paper 

(Section 1) are of overall interest in manufacturing. However, the fact that the peak 

significance seems mostly normal without a strong secondary peak suggests that few (if any) 

of the articles address all the concepts within this survey. Were a significant number the 

articles to address all or most of the themes in the survey, those articles would be expected to 

produce a second, significant peak centered at a value higher than the bulk similarity of the 

corpus. As is, there may be some articles addressing a large portion of the themes, but not a 

significant enough number of these articles to fall outside the normal corpus similarity 

distribution. These facts together lend credence to the suggestion that this an area in need of 

further development.

To further corroborate this hypothesis, a vector of weighted and directed key words was also 

analyzed as a key document for comparison with the search space of manufacturing related 

articles. This vector was constructed to capture many key concepts within the areas of 
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machine learning to help evaluate the extent of research on novel utilizations of automated 

and rapid analysis methods in the manufacturing search space. As a base line reference for 

this vector, a similar sized vector was constructed from the top occurring phrases in the 

Peach Farming abstract mentioned before. This new set baseline is necessary due to the 

increased chance of randomly matching a vector with lower total phrases, either in part or 

total. The base phrases used to construct the machine learning query vector of phrases are 

provided in Table 3. All subsequent substrings of phrases are also added to the query vector 

to aid in capturing core concept similarity.

Figure 5 shows the similarity distributions for both the directed search vector of phrases and 

the reference vector constructed from the random document. From this, it is evident that the 

targeted search vector again has a significant overall increase in similarity to the reference 

distribution; confirming interest in ML throughout the search space. As an aside, the 

seeming multi-modal nature of the Reference distribution is due to the comparatively lower 

number of possible feature phrases to match. This means that the jump between near zero 

matches and at least one match becomes much more significant. Additionally, another 

intuitive reason for this jump is that if one match exists, the probability of multiple matches 

increases as well.

Further insight into the state of the art can be gained by looking at the convolution of 

similarity distributions (Figure 6) for both the prime document and the directed search 

vector. This provides a sense of how many articles in the search space are targeting smart 

manufacturing processes with an emphasis on ML algorithms.

Once again, overall the similarity distribution is low, implying few or zero exact matches 

exist in the search space, but the marked increase over the reference distribution implies 

strong interest in the general concepts. A summary of the relative increases for each 

similarity query is provided in Table 4 below.

It is convenient and intuitive to use these percentages of relative similarity as metrics 

indicating interest in the concepts they represent within the search space. This would seem 

to imply a marked interest in ML within the field of manufacturing with regards to product 

life-cycle management (PLM). A final testimony for the supposition that the field of 

manufacturing is becoming increasingly interested in ML and associated techniques can be 

seen in the visualization below. Figure 7 shows how many publications relate key phrases by 

year, indicating a growing interest over time.

Notice that many common concepts and algorithms within machine learning are increasingly 

being the subject of publication. Similarly, interest in life-cycle management can be seen to 

have an increasing presence. With this information in mind, the remainder of this document 

reviews a selection of articles within the workspace that are selected to both be like the 

prime document as well as be a representative selection from across the different regions of 

density within the search space. Documents for review were chosen by the authors both for 

their calculated similarity to the prime document and for special interest to the survey 

themes as judged by the authors.
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4.2. Survey Results

A brief survey was performed consisting of papers targeted by the NLP methodology 

described in previous section to further expand upon the ideas characterizing the current 

state of knowledge-based usage and ML across all stages of the manufacturing process. This 

also serves to further validate the assertions and conclusions formed from the NLP 

algorithms while also adding a degree of context to those results. The following section 

collects and summarizes notable uses or potential uses of machine learning within industry, 

seeking to answer questions such as:

• How is machine learning currently being applied in manufacturing?

• How is machine learning enabling better information management and decision 

support?

• What digital knowledge bases exist and how are they being utilized and 

maintained?

• What are the current approaches to total Product Life-Cycle Management 

(PLM)?

• What gaps exist in these areas that must be filled to provide a fully realized 

digital production environment that maximally utilizes available resources across 

all stages of production?

4.3. Current Application of ML in Manufacturing

The first of these questions is possibly the most generic, yet with the most potential impact 

upon the others. Machine learning is broadly defined by the concept of having a computer 

update a model or response based upon new data or experiences through its learning 

lifetime. Self-updating algorithms have the potential to greatly benefit the manufacturing 

industry at all stages and levels of operations management.

4.3.1. Decision Support—Perhaps the most intuitive uses of machine learning occur at 

some of the more basic and fundamental levels of the manufacturing process. Even before 

the first part is made, manufacturers need to have an accurate estimation of the production 

cost to not only set pricing, but on a more fundamental level, to determine if the proposed 

product is financially viable or feasible for the company. Many factors go into the 

determination of cost, such as materials, process and tool costs, batch sizes, scheduling, 

outsourcing, etc. There is often heavy interplay within these variables, thus making it 

difficult for any single person to make fully informed and accurate estimations. This is 

particularly true in instances where the product is largely novel or dissimilar to the 

companys typical products. Deng and Yeh [24] propose a solution involving a Least Squares 

approach utilizing Support Vector Machines (SVM) to characterize the cost space and find a 

unique optimal cost estimation for a product. The use of SVM lends itself to rapid 

incorporation of new or updated cost estimations that can easily added to the model after the 

actual cost of a job is determined, either strengthening or, where needed, superseding areas 

of the model with better information. This work was later extended upon comparing two 

machine learning methods – back-propagation neural networks (BPNs) and least squares 
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support vector machines (LS-SVMs) to the life-cycle cost estimation problem [25]. Authors 

combine LS-SVMs with a data transformation – the log-sigmoid transfer function, and 

conclude that such data preparations play an important role in obtaining more accurate, 

available, and generalizable cost estimation model can be provided by this novel combining 

mechanism. Data preprocessing where practitioners clean, filter and transform data is a 

common and important step to solve outliers, missing data or scaling issues. This step also 

includes data reduction, which is selection and extraction of both features (input variables) 

and samples in a database [26].

Another prime example of machine learning aiding in manufacturing decisions is proposed 

by Woodward and Gindy [27]. They briefly describe a decision support system that utilizes 

Genetic Algorithms (GAs) to explore and optimize some collected set of elemental 

heuristics as guided by some predefined set of hyper-heuristics for finding solutions to 

difficult questions with often “softly defined” criteria. Within the paper, the application is 

proposed to aid in determination of decisions affecting ecological impact of the process, but 

the idea can easily be adapted to other important decisions where many factors interplay and 

have far reaching effect that may not be instantly apparent. The authors of this paper go on 

to assert that the library of elemental heuristics should be drawn from a diverse set of 

experts, each from different relevant areas of the issue in question. This library should be 

able to grow and update over time, making it as collaborative and integrated as possible, 

creating a framework for collecting valuable experience and knowledge from both people 

and machines. This symbiotic and archival approach leverages the ability of humans to 

create highly accurate approximate rules without the distortion often associated with “tribal 

knowledge”, or information passed from person to person, while also allowing the computer 

to rapidly manage and apply more of that information than any single person could 

reasonably be expected to. Beyond simple solution optimization, bootstrapping and 

clustering can be applied to obtain and present the end user with groups of similar solutions 

from which a decision maker can choose one that best suits the companys needs.

Managing scheduling of machine time for operations on a production line is rarely a trivial 

task with flexible manufacturing systems (FMS). Like many other production line decisions, 

optimal scheduling is a function of many interplaying variables that are difficult to 

completely manage and totally account for by a human decision maker. Yusof et al. [28] 

addresses the flexible manufacturing systems (FMS) and considering a machine-loading 

problem in FMS environment. The machine loading problem can be defined as the 

allocation of part operations and required tools to the machines, to optimize some 

objective(s) subject to some technological constraints. The problem covers many objectives 

such as maximization of the utilization of resources, minimization of processing and tooling 

costs and maximization of throughput. The authors point out that purely heuristics-based 

algorithms will often oversimplify a problem or be too specific to generalize across multiple 

projects. Conversely, many more mathematically rigorous methods can become bogged 

down with expanded complexity or dimensionality of many problem formulations, in terms 

of both computation and configuration time. They propose the idea of utilizing harmony 

search (HS) algorithm based on the musical harmony [29], to aid in creating an optimal 

schedule. The algorithm suggested by the authors seeks to strike a balance between those 

two extremes by using rough heuristics to determine the feasibility of a solution, then 
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applying machine learning algorithms to optimize the problem within the, now, more limited 

scope. Methods such as this could greatly reduce the time needed to design and implement 

process work flow plans, while still providing strong justification and a high level of 

confidence in the management decisions that were made.

Maintenance scheduling is another area often performed sub-optimally (if at all) in many 

smaller and sometimes even larger industrial companies. Reactive maintenance, repairing an 

item or process only after a failure has been identified, is largely considered the least optimal 

method of maintaining a system, incurring large amounts of unplanned downtime and often 

allowing cascading failures that need not have occurred if preventative maintenance had 

been properly performed. Most preventative maintenance can broadly be classified into three 

categories; cycle based, current condition based, and predicted condition based. Cycle-based 

plans schedule maintenance after a set number of operational/calendar hours or duty cycles, 

such as miles driven on a tire. Current condition-based plans assess the current state of the 

system and perform maintenance when it is within a predefined limit or when a triggering 

event occurs, such as the growth of a fault frequency beyond a set threshold. The last 

category looks at the current and past states of the system as well as its expected future 

operational load to predict when a fault will likely occur, or how much Remaining Useful 

Life (RUL) a system has. Wu et al. [30] uses ML and NNs to predict the percentage of 

remaining useful life in rotating equipment. The authors propose an intelligent decision 

support system based on this technology to promote optimal maintenance strategies. Further, 

by reducing unnecessary maintenance, a production plant can maximize equipment 

utilization and availability while also reducing costs of repairs.

4.3.2. Digital Knowledge Management: Plant and Operations Health 
Management—For a fully developed maintenance regime, diagnostic and prognostic 

information exists for a multitude of individual units that interact within a manufacturing 

process production line. Although information regarding individual units can be incredibly 

useful for identifying and scheduling maintenance plans, there is much more information to 

be gained from the analysis of the total system. As an example, this form of analysis could 

help in identifying the interplay between linked units, each possessing non-terminal or even 

seemingly trivial amounts of degradation, causing an overall cumulative deleterious effect on 

the product. Choo et al. [31] introduces a hierarchical Markov Decision Process known as 

Adaptive Multi-Scale Prognostics and Health Management (AM-PHM) to help manage 

produced diagnostic and prognostic knowledge at all levels of the manufacturing system. 

This approach helps to overcome the problems of exponential complexity as information is 

aggregated up the manufacturing system starting at individual components, and moving to 

work cell and assembly line levels. After information is pulled to and managed at the high 

level, decisions made can then be translated back down to the lower levels, informing 

specific tasks to undertake to ensure reliability of the production line as well as the quality 

and integrity of the product produced.

Another application towards extending the life of manufacturing equipment, specifically 

robotic arms, focuses on incorporating Linear Temporal Logic (LTL) in to their monitoring 

and control scheme [32]. This technology adds intelligent autonomous diagnostic systems 

that can connect continuous and discrete prognostics. Having monitoring systems tolerant of 
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connected systems is imperative and invaluable in the interconnected world of modern 

manufacturing work cells. The authors envision that this LTL-monitor system could be 

extended to selectively guide robotic motion sets towards those that produce the most even 

wear on joints to even further extend the life of these systems.

4.3.3. Digital Knowledge Management: Data Management—The volume of data 

produced by manufacturing systems is rapidly growing beyond the capabilities of traditional 

algorithms, especially for users who want the most useful information from their data. High 

sample volume as well as huge numbers of dissimilar data sources are creating a need for 

both information consolidation and isolation algorithms that can be implemented in a 

distributed parallel fashion to meet the computational speed requirements necessary for 

prompt knowledge utilization. Collected information that is not able to be correctly 

interpreted or made useful in a timely manner is rarely even so much as marginally better 

than having not collected the data. Kumar et al. [33] propose utilizing tools such as the 

Hadoop framework and cloud computing to help overcome this problem. Working with 

map-reduce algorithms, the authors go on to propose a method for dealing with data 

imbalance issues (having a large discrepancy between the number of exemplar cases for 

different categories of data). Specifically, they highlight an algorithm for overcoming data 

imbalance for the goal of fault detection or identification through traditional machine 

learning classification algorithms. Automating large scale diagnostic data alarming could 

produce much more informed decisions about maintenance scheduling, workload, and 

demand cycles to maximize out and reliability of the system.

The concept of cloud computing, the delivery of computing services over the internet (the 

cloud), was born to address the administration and storage of big data, and the scalability of 

services challenges, and to increase efficiency. Having the potential to be the next major 

driver of business innovation, cloud services could be part of a business strategy for 

manufacturing companies. One benefit of moving towards cloud manufacturing is the ability 

to store large amounts of critical data in the cloud, and access to resources in real-time. A 

detailed work on ”cloud manufacturing”, and what parts of a company can easily and 

quickly adopt cloud-based solutions has been prepared by Xu [34]. In this work, Xu 

analyzes the benefits of integrating cloud technology into a typical manufacturing company 

after discussing the essential requirements of a cloud computing system. IIoT and cloud 

services are two key paradigms for the construction of virtual manufacturing. In this context, 

the author describes MTconnect [35], STEP (Standard for the Exchange of Product Model 

Data) [36] and STEP-NC (STEP-Compliant Data Interface for Numeric Controls) [37]. 

MTconnect is a manufacturing communication protocol used for data integration, and STEP 

provides a way to share product data over the entire life cycle of a product. STEP aims to 

accurately capture product definition and provide data interoperability between native 

systems, such as: Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), 

Analysis (CAE), and Inspection (CMM) software. Healthy adoption of cloud solutions must 

include effective integration of the existing data-exchange standards and/or protocols.

Brodsky et al. [38] have developed a system for managing a repository and conducting 

analysis and optimization on manufacturing models in Brodsky et al. [39] and Brodsky et al. 

[38], respectively. The former work proposes an architectural design and framework for fast 
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development of software solutions for descriptive, diagnostic, predictive, and prescriptive 

analytics of dynamic production processes. The uniqueness and novelty of the proposed 

architectural design and framework is its middleware layer, which is based on a reusable, 

modular, and extensible Knowledge Base (KB) of process performance models. However, 

this related effort lacked a systematic design of the unit manufacturing process (UMP) 

repository and possible ecosystems around the repository, as well as a specific architecture 

for such a repository. Furthermore, it did not address an implementation of a reusable 

repository and support for populating it with dynamic production processes. The authors 

address these gaps in their following work. They first propose the concept of a reusable KB 

of manufacturing process models, its functionality and high-level system architecture 

capable of supporting future ecosystems around it. Then, they implement an initial 

collection of performance models for milling and drilling as well as a composite 

performance model for machining. They also develop a system for managing a repository 

and conducting analysis and optimization on manufacturing models where the initial scope 

of the system includes (1) an Integrated Development Environment (IDE) and its interface 

through the use of Atom Studio [40], (2) simulation and deterministic optimization of 

performance models through the use of Unity Decision Guidance Management System 

(DGMS), and (3) model management and version control through the use of the standard 

interface of GitLab [41].

Manufacturing standards provide the means for industries to effectively and consistently 

deploy the necessary measurement science to assess process performance. These 

assessments ultimately set the stage for controlling the manufacturing systems and processes 

and enabling continuous improvement within the enterprise. Several evolving 

manufacturing-related standards lay foundations for modeling and integrating manufacturing 

systems and related services. Bloomfield et al. [42] proposed a framework to standardize the 

data exchange between manufacturing applications throughout the product life cycle. By 

implementing the Core Manufacturing Simulation Data Information Model (CMSDIM) 

developed by researchers at NIST [43], and chartered by the Simulation Interoperability 

Standards Organization (SISO), they aim to enhance interoperability between manufacturing 

applications at multiple stages of the product life cycle. The Core Manufacturing Simulation 

Data (CMSD) standard specifies the information entities common to manufacturing 

simulations to facilitate simulation model construction and data exchange between 

simulation and other manufacturing applications within a shop floor. Authors [42] discuss 

information gaps between the lean design engineering software and discrete event 

simulation. With their developed software, called “UA translator”, the authors report that 

they decreased the time to develop manufacturing applications, could eliminate of human 

error and introduce of process time variation. Another data interoperability standard for 

manufacturing quality data is Quality Information Framework (QIF) [44]. QIF is an XML-

based standard that was created and managed by the Dimensional Metrology Standards 

Consortium (DMSC). It supports Digital Thread concepts in engineering applications 

ranging from product design through manufacturing to quality inspection [44].

4.3.4. Lifecycle Management—To facilitate the total integration a manufacturing system 

such that it can fully utilize the volumes of information being produced about it, there needs 
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to be clear system of communication. The concept of the “Internet of Things (IoT) is exactly 

this, with both components and controllers directly communicating with each other as well 

as system coordinators and decision makers. An interesting extension of this is presented in 

the work of Aruväli et al. [45], detailing the notion of Digital Object Memory (DOMe). With 

this notion, information relating to each unit on a production line such as g-code, 

diagnostics, quality information, and even a complete list of machine interactions could 

follow a product through its entire lifetime from initiation of production to consumer 

purchase. As an example, the authors suggest that the manufacturing machines could stream 

real time information regarding surface roughness to the product item giving it the ability to 

self-assess its quality after production. Unfortunately, as is also explained in their work, this 

goal is currently not practical due to the difficulties of developing communications with 

largely dissimilar pieces of equipment, components, parts, and etc. The DOMe 

implementation could be both hardware and software driven to ensure high fidelity and 

storage of production information, but would need some open source communications 

standard that universally applies to all the relevant constituents in manufacturing systems.

Building upon the idea of cyber physical systems, Barthelmey et al. [46] describe a system 

to use both hardware and software to track changes in a manufacturing facility 

automatically. The goal of this work is to create an up to date set of documentation detailing 

the capabilities and status of a facility. This “self-organized creation of technical documents” 

could create a general cost savings by eliminating or reducing the costly upkeep of technical 

documentation as it quick goes out of date due to the ever-changing manufacturing systems. 

Much of this change tracking can, and should (as explained by the authors) be automated; 

keyed to some initiating event. Events that could trigger autonomous updates of the 

documentation include some physical change of the system as reported by various sensors 

and monitoring equipment, or the passage of some preset amount of duty cycles or calendar 

hours. Additionally, a prompt for document updates could occur after any soft change to the 

system, such as maintenance. This logging scheme could promote not only well-maintained 

documentation in a context sensitive database, but also well-informed decisions regarding 

process planning.

4.4. Identified Gaps and Needs

With the popularity of smart-phones and similar tablet devices, the practicality of 

implementing a standardized modular application-driven environment in industrial settings 

is gaining support. Gröger et al. [47] discusses the idea of a “App”-based manufacturing 

tool-set. With a unified platform for application development users could develop specific 

tools that aid in every level of production manufacturing. These tools could be task specific 

for a single company, or more broad reaching, such as an interactive diagnostic maintenance 

tool that helps a user trouble shoot equipment on the production floor. Apps linked with 

online information repositories could have access to and provide contextually pertinent 

information at times and situations where it can have the most impact. For this to be 

maximally utilized, some unified platform for the Apps to be built within needs to be 

developed, further some repository should exist where end users from diverse companies 

could acquire or submit applications like the Google Play Store [48]. Standards regarding 

input/output protocols of the applications would need to be implemented as well as security 
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and user interfacing. While the idea of contextualized, “right place right time” digital tools 

has the potential to greatly speed up maintenance, production, and development tasks in 

manufacturing, the lack of a standard or unified platform currently prevents this from being 

realized.

Dekkers et al. [49] performed a survey regarding the linking of multiple stages of the 

product life-cycle development, where they arrived at some notable conclusions about 

improving production. The need for a link between product design and engineering stages of 

the life-cycle and the implemented manufacturing plan has been known but not properly 

addressed since the early 1990s, although some strides have been made. One of the major 

hold ups is the lack of appropriate standardized software that can help create and manage a 

consistent repository of the knowledge. The knowledge base should contain contextualized 

knowledge for all stages of the life-cycle. Such a knowledge base can aid not only in 

production decisions within a company, but also with concurrent engineering and design or 

fabrication sourcing. Although the large amounts of data associated with this may slow 

down the process, specialized software could aid in tracking and management of the 

repository. As of now, no standardized repository or method for constructing such a 

repository exists, but the need and growing interest in one is highly apparent and is expected 

to create a shift in manufacturing practices when it eventually enters the industry.

Generic solutions for applying ML to cross-domain focus areas in the product life cycle are 

absent in the literature. The majority of previous work has been focused on specific use 

cases and domains. In addition, there is little-to-no use of cross-domain data and application 

of ML. Hedberg Jr et al. [8] identifies several research directions for using manufacturing 

knowledge earlier in the product life-cycle. They suggest dynamic knowledge bases could be 

generated by applying ML to data from several domains / phases of the life-cycle. 

Additionally, industry needs guidance on the minimum information requirements for the 

product life-cycle because of the different data requirements for each phase of the life-cycle 

[8]. However, when data and information is passed between the phases, information is lost, 

which requires iterations of communicating to ensure all the requirements for each phase are 

met. Our review described in this paper supports most of the findings from Hedberg Jr et al. 

[8]. ML applied to cross-domain use cases is an untapped area of research that would bring 

significant benefit to industry.

5. Conclusions

In this work, we developed and analyzed a corpus of approximately 4000 abstracts from 

technical documents centered in the field of manufacturing using a series of NLP techniques. 

Going beyond simple key term matching, this work endeavored to provide concept 

matching, with a clear methodology and justification for characterizing general trends within 

the corpus as well as directed searches for concepts of interest in the realm of ML. From 

this, clear trends indicating the increasing prevalence of digital automation and ML appear 

throughout the manufacturing industry. Notably, generically applicable algorithms such as 

NNs and SVMs are gaining popularity. Algorithms such as these can produce compelling 

results with a low investment of time and resources to setup and maintain, making them very 

appealing for a wide array of problems.
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During the characterization of the total corpus, several key papers were identified for a more 

complete, in-depth review. The results of the in-depth manual survey confirmed many of the 

characterizations and suppositions about the total corpus developed by the NLP information 

mining. Survey results show that there is a growing interest in lifecycle management, as well 

as in applications of ML in manufacturing. Areas of knowledge management, decision 

support, and lifecycle management are increasingly becoming augmented by automated 

technologies. Despite this, there are still significant gaps that could benefit from further 

development and adoption of some of these state-of-the-art technologies.

As the manufacturing industry moves toward “automated manufacturing”, the role of data 

management and processing becomes more prominent. With the availability of data in each 

phase of product life-cycle, and advances in algorithms and software tools, ML is emerging 

as an appropriate and promising tool for more agile, lean, and energy-efficient 

manufacturing systems. This trend and others necessitate pushing towards the right 

combination of human resources, automation and data, PLM, as well as the link between 

ML and IIoT.

Retrieval from information silos and single-domain data re-use is the generally accepted 

practice currently applied with ML. A holistic view of ML applications across life-cycle is 

still a challenge. We recommend that academia and practitioners shift ML research and 

applications towards more of a lifecycle or enterprise-wide focus to take advantage of the 

ever growing mass of data. This would enable cross-domain data usage and could benefit 

industry with improved knowledge generation in each phase of the product life-cycle.
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Figure 1. 
Hypothesized current application areas and opportunities for applying machine learning in 

manufacturing and beyond (adapted from [19])
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Figure 2. 
Search space characterization
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Figure 3. 
Cluster characterization
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Figure 4. 
Search space similarity to the introduction of this paper
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Figure 5. 
Directed vector similarity distribution
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Figure 6. 
Convolution of similarity distributions
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Figure 7. 
Visualization of interest in ML by year
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Table 1

Initial keyword search terms

Contains Does NOT Contain

Manufacture Food

Machine Learning Bio

Artificial Intelligence Social Media

Quality Control

Inspection

Manufacturing Design
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Table 2

Most frequent phrases for each group

Select Characterizing Phrases Search Space Coverage

Group 1 CONTROL 17.80%

MANUFACTURING SYSTEM

PRODUCTION

INTELLIGENT

MLTA

Group 2 ENERGY 16.60%

INDUSTRY

DEVELOPMENT

MANAGEMENT

Group 3 SMART 14.20%

ENERGY

GRID

APPLICATION

Group 4 MLTA 12.20%

MACHINE LEARNING

ALGORITHM

TECHNIQUE

Group 5 ALGORITHM 11.20%

PROPOSED

NEURAL NETWORK

RESULT

Group 6 MANUFACTURING PROCESS 11%

CONTROL

PRODUCTION

MLTA

QUALITY

Group 7 STUDENT 7.80%

ENGINEERING

PROJECT

COURSE

Group 8 SUPPORT VECTOR MACHINE 4.30%

ALGORITHM

MLTA

RESULT

Group 9 SUPPLY CHAIN 2.50%

PRODUCT

PERFORMANCE

NETWORK

AGILITY
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Select Characterizing Phrases Search Space Coverage

Group 10 PHOTOCATALYTIC 2.20%

VISIBLE LIGHT

ACTIVITY

DEGRAMLTION

IRRADIATION
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Table 3

Machine learning base phrases

Including Excluding

Machine Learning Social

Neural Networks Food

Reinforcement Learning Oil

Smart Manufacturing Gas

Intelligent Manufacturing Smart Grid

Flexible Manufacturing Finance

Agile Manufacturing Young Firms

Reconfigurable Manufacturing Radioactive Decay

Data Driven Irradiation

Product Life Cycle

Cross-Domain

Data Analytics

J Manuf Syst. Author manuscript; available in PMC 2019 May 13.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Sharp et al. Page 30

Table 4

Average similarity summary

Reference Query % Difference

Prime Document 0.0373 0.0575 54.15

ML Targeted Vector 0.0498 0.1076 116.06

Convolution 0.0027 0.007 159.25
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