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Abstract
Objective
To identify prediagnostic plasma metabolomic biomarkers associated with amyotrophic lateral
sclerosis (ALS).

Methods
We conducted a global metabolomic study using a nested case-control study design within 5
prospective cohorts and identified 275 individuals who developed ALS during follow-up. We
profiled plasma metabolites using liquid chromatography–mass spectrometry and identified
404 known metabolites. We used conditional logistic regression to evaluate the associations
between metabolites and ALS risk. Further, we used machine learning analyses to determine
whether the prediagnostic metabolomic profile could discriminate ALS cases from controls.

Results
A total of 31 out of 404 identified metabolites were associated with ALS risk (p < 0.05). We
observed inverse associations (n = 27) with plasma levels of diacylglycerides and tri-
acylglycerides, urate, purine nucleosides, and some organic acids and derivatives, while we
found positive associations for a cholesteryl ester, 2 phosphatidylcholines, and a sphingomyelin.
The number of significant associations increased to 67 (63 inverse) in analyses restricted to
cases with blood samples collected within 5 years of onset. None of these associations remained
significant after multiple comparison adjustment. Further, we were not able to reliably dis-
tinguish individuals who became cases from controls based on their metabolomic profile using
partial least squares discriminant analysis, elastic net regression, random forest, support vector
machine, or weighted correlation network analyses.

Conclusions
Although the metabolomic profile in blood samples collected years before ALS diagnosis did
not reliably separate presymptomatic ALS cases from controls, our results suggest that ALS is
preceded by a broad, but poorly defined, metabolic dysregulation years before the disease onset.
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Amyotrophic lateral sclerosis (ALS) is a progressive adult-
onset neurodegenerative disease.1 Its etiology is poorly un-
derstood, and reliable diagnostic tests and effective treatments
are currently unavailable. Plasma metabolomic profiles reflect
the interactions among lifestyle, environmental, and genetic
factors, and may provide insights into the etiology and path-
ogenesis of ALS, as well as biomarkers for diagnosing the
disease at a preclinical stage when it may be more amenable to
treatment.

Several investigations have been conducted on metabolomic
differences between patients with ALS and healthy or other
diseases controls, but most studies had small sample sizes,
and results have been inconsistent.2–11 In the largest in-
vestigation, plasma from 172 people recently diagnosed with
ALS, 50 healthy controls, and 73 people with other neuro-
logic diseases were compared, and a subset of 32 metabolites
identified patients with ALS with high specificity.6 It remains
unknown, however, whether the reported alterations pre-
ceded the diagnosis of ALS or instead reflected the con-
sequences of muscle atrophy and changes in behavior
occurring after diagnosis. To our knowledge, there are cur-
rently no studies examining the association of the pre-
diagnostic metabolomic profile with ALS. To address this,

we conducted a matched case–control study nested in 5 large
prospective US cohorts to determine whether the plasma
metabolomic profile in apparently healthy individuals con-
tributes to or can provide an indicator of their future risk of
developing ALS.

Methods
Study populations
The source population for the present study includes partic-
ipants from 5 large cohort studies: The Nurses’ Health Study
(NHS), the Health Professionals Follow-up Study (HPFS),
the Cancer Prevention Study II Nutrition Cohort (CPS-II
Nutrition), the Multiethnic Cohort Study (MEC), and the
Women’s Health Initiative (WHI). Detailed descriptions of
the individual cohorts have been published previously.12–16

We have provided a summary of the participants in each
cohort in table 1.

Standard protocol approvals, registrations,
and patient consents
All of the studies included were reviewed and approved by the
institutional review board representing the institution where
each study was conducted.

Table 1 Study populations

NHS HPFS CPS-II Nutrition MEC WHI

Year established 1976 1986 1992 1993 1993

End of follow-upa Dec. 2010 Dec. 2010 Dec. 2010 Dec. 2012 Sep. 2012

No. of participants

All, n 121,700 51,529 184,194 215,251 161,809

With blood samples, n 32,826 18,018 39,380 67,594 161,809

ALS cases with blood samples, n 39 26 58 31 121

Sex

Women, n (%) 121,700 (100) 0 (0) 97,788 (53.1) 118,441 (55.0) 161,809 (100)

Men, n (%) 0 (0) 51,529 (100) 86,406 (46.9) 96,810 (45.0) 0 (0)

Age at baseline, y, range 30–55 40–75 50–74 45–75 50–79

Abbreviations: ALS = amyotrophic lateral sclerosis; CPS-II Nutrition = Cancer Prevention Study II Nutrition Cohort; HPFS = Health Professionals Follow-up
Study; MEC = Multiethnic Cohort Study; NHS = Nurses’ Health Study; WHI = Women’s Health Initiative.
a End of follow-up for the current study, not for the cohort studies.

Glossary
ALS = amyotrophic lateral sclerosis; AUC = area under the curve; BMI = body mass index; CI = confidence interval; CPS-II =
Cancer Prevention Study II; HILIC = hydrophilic interaction liquid chromatography; HILIC-neg = hydrophilic interaction
liquid chromatography–negative ionization mode; HILIC-pos = hydrophilic interaction liquid chromatography–positive
ionizationmode;HPFS =Health Professionals Follow-up Study; ICC = intraclass correlation coefficient; ICD-9 = International
Classification of Diseases, ninth revision; LC-MS = liquid chromatography–mass spectrometry; MEC = Multiethnic Cohort
Study; NHS = Nurses’ Health Study; OR = odds ratio; PLS-DA = partial least square discrimination analysis; ROC = receiver
operating characteristic; WCNA = weighted correlation network analysis; WHI = Women’s Health Initiative.
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Endpoint definition
In the NHS and HPFS, patients with ALS were identified by
self-report on the biennial questionnaire. For participants who
reported a diagnosis of ALS, we requested permission from
the participant (or a family member if the participant was
deceased at the time of writing) to contact the treating neu-
rologist and to obtain a copy of his or her medical records. We
asked the treating neurologist to complete a questionnaire on
the certainty of the diagnosis (definite, probable, or possible)
and the clinical history. The final confirmation of the di-
agnosis was made after reviewing medical records by a neu-
rologist with experience in ALS diagnosis. Only patients
defined as definite or probable cases were included in the
study. If we were unable to obtain a copy of the medical record
or the neurologist’s questionnaire to confirm the diagnosis of
self-reported ALS, only the patients with ALS specifically
listed on the death certificate were included.

In the CPS-II Nutrition,MEC, andWHI studies, we identified
patients with ALS through a search of the National Death
Index. All individuals with code 335.2 (motor neuron disease)
according to the ICD-9 listed as the underlying or contrib-
uting cause of death were considered to have had ALS. ALS
was the primary diagnosis in 90% of the individuals for whom
code 335.2 was listed as the cause or contributory cause of
death in a validation study.17 The date of onset was assigned
to 3 years before the date of death, based on median survival
among patients with ALS.18

Overall, we identified 275 incident ALS cases. For each ALS
case, we randomly selected 2 controls who were alive at the
time of the case diagnosis and matched on cohort, birth year
(±1 year), sex, ethnicity, fasting status, and time of blood
draw. We excluded one matched control from the final anal-
yses because of failure of the metabolomic profiling.

Assessment of metabolites
Triplets of plasma samples (from 1 case and its 2 matched
controls) were handled identically and assayed in the same
batch. The order of the samples within each case–control
triplet was arranged at random to ensure that all assays were
conducted without knowledge of the case–control status.

The metabolites were profiled at the Broad Institute (Cam-
bridge, MA), as previously described.19 In short, 2 distinct
hydrophilic interaction liquid chromatography (HILIC)
methods were used to profile water-soluble metabolites:
positive ionization mode (HILIC-pos) and negative ioniza-
tion mode (HILIC-neg). For HILIC-pos, the analyses were
conducted using a liquid chromatography–mass spectrome-
try (LC-MS) system composed of a Shimadzu (Kyoto Pre-
fecture, Japan) Nexera X2 U-HPLC coupled to a Q Exactive
hybrid quadrupole-orbitrap mass spectrometer (Thermo
Fisher Scientific, Waltham, MA) using 10 μL of plasma from
each participant. For HILIC-neg, the analyses were conducted
using an LC-MS system composed of an AQUITY UPLC
system (Waters, Milford, MA) coupled to 5,500 QTRAP

mass spectrometry (SCIEX, Framingham, MA) using 30 μL
of plasma from each participant. A third method was used to
profile lipids: positive ion mode analyses of polar and non-
polar plasma lipids (C8-pos). These analyses were conducted
using an LC-MS system composed of a Shimadzu Nexera X2
U-HPLC coupled to an Exactive Plus orbitrap mass spec-
trometer (Thermo Fisher Scientific) using 10 μL of plasma
from each participant. Raw data from Q Exactive/Exactive
Plus instruments were processed using TraceFinder software
(Thermo Fisher Scientific) and Progenesis QI (Nonlinear
Dynamics, Newcastle upon Tyne, UK), while MultiQuant
(SCIEX) was used to process 5,500 QTRAP data. Metabolite
identities were confirmed using authentic reference standards.
Metabolite signals were analyzed in relation to ALS risk as LC-
MS peak areas, which are proportional to metabolite
concentrations.

In a pilot study on use of LC-MS in NHS and HPFS, 92% of
the metabolites had an acceptable interassay reproducibility
(coefficient of variation <20%), while 75% of the metabolites
had good to high reproducibility after a processing delay of 24
hours (Spearman correlation or intraclass correlation co-
efficient [ICC] ≥0.75).20 Further, 90% of the metabolites had
Spearman correlations or ICCs ≥0.40 when comparing 2
samples collected in the same individuals 0.8–2.3 years apart,
indicating that for the majority of the metabolites, a single
measurement may reasonably reflect longer-term levels. Fi-
nally, for most of the metabolites, only small differences in
measured peak areas between samples from individuals fasting
≥8 hours, 6–7 hours, and 4–5 hours were observed.

Assessment of covariates
Information on covariates of interest, including height,
weight, and diabetes status, was collected at baseline for all
cohorts, and every 2 years since baseline in HPFS and NHS.
Participants self-reported diagnosis of type 1 or type 2 di-
abetes mellitus. We used the nearest covariate data collected
before or at the time of blood draw.

Statistical analyses
We identified 457 known metabolites in the samples. After
excluding metabolites that had an overall missing rate of more
than 20% in all participants or more than 50% in participants
in any individual cohort, a total of 404 metabolites were in-
cluded in the final analyses. Forty-four of these had missing
values, which were imputed with half of the minimum ob-
served value for each metabolite. Metabolite levels were log-
transformed and standardized (mean 0, SD 1) based on the
distribution among the controls of the same cohort and sex to
account for possible differences that may have been in-
troduced as samples across cohorts were processed at differ-
ent times and locations.

We used conditional logistic regression to estimate odds ratios
(ORs) and 95% confidence intervals (CIs) for the association
between individual metabolites and ALS. As controls in our
study were selected using risk-set sampling, the ORs estimate
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incidence rate ratios.21 The metabolites were modeled as
continuous variables (per 1 SD increase). In addition to
matching factors, the models were adjusted for body mass in-
dex (BMI; continuous), as higher BMI has been associated with
lower ALS risk.22 To determine whether the profiled metab-
olites could discriminate cases from controls, we conducted
partial least square discrimination analysis (PLS-DA). We used
separation distance as the test statistics and plotted the scores of
the first 5 partial least square components to inspect the sep-
aration of cases from controls visually. We followed this with
1,000 permutation tests to assess the significance of discrimi-
nation of cases from controls. In each permutation test, we built
a PLS-DA model between the metabolomics measurements
and case–control status labels and computed a separation dis-
tance. We then computed a permutation p value as the pro-
portion of permutation tests that generated separation
distances greater than or equal to the observed separation
distance. To verify the PLS-DA results, we conducted random
forest and support vector machine analyses.

To evaluate whether a subset of metabolites could discrimi-
nate those who later developed ALS from the controls, we
conducted penalized conditional logistic regression analyses.
In these analyses, we included all metabolites that were
nominally significantly associated with ALS (p < 0.05) in the
same model, penalized by LASSO or elastic net penalty terms.
We then computed the area under the curve (AUC) in re-
ceiver operating characteristic (ROC) analyses using un-
conditional logistic regression analyses including the
metabolites that were simultaneously retained in LASSO or
elastic net analyses. This was done using 10-fold cross-
validation. We further used weighted correlation network
analysis (WCNA) to conduct network analysis and to identify
groups of highly correlated metabolites (modules) that were
associated with ALS. In the context of metabolomics, WCNA
uses metabolites’ pairwise correlations to construct networks
and find clusters of metabolites (modules) that are highly
correlated. Subsequently, WCNA runs principal component
analysis within each module, and the corresponding first
principal component is regarded as the Eigen-metabolite.
WCNA assigns all metabolites that do not display a high
correlation with other metabolites to a separate module. This
module was excluded from further analysis. We included
Eigen-metabolites in separate conditional logistic regression
analyses to assess whether any of the modules was associated
with ALS risk.

All analyses were first conducted including all participants and
then repeated in groups categorized by time from blood
collection to disease onset (<5 years and ≥5 years). In addi-
tion, we conducted sensitivity analyses to assess the robust-
ness of our findings. First, to evaluate the effect of outliers on
our results, we used a rank-based inverse normal trans-
formation instead of the log-transformation used in the main
analyses. Second, to assess whether diabetes, which has been
associated with alteration in the metabolome,23 influenced the
results, we excluded all individuals with diabetes at the time of

blood collection. Further, we conducted partial correlation-
based network and corresponding network-guided regression
analyses restricted to lipids only.

We corrected for multiple comparisons using the Benjamini-
Yekutieli false discovery rate approach. Q values less than 0.2
were considered statistically significant after multiple com-
parison correction. All analyses were conducted using SAS
9.4 software (SAS Institute, Cary, NC) and R 3.4.3 (cran.r-
project.org). p Values were considered significant at val-
ues <0.05.

Data availability
The datasets analyzed in the current study are not publicly
available because of restricted access, but further information
about the datasets is available from the corresponding author
on reasonable request.

Results
The baseline characteristics of the participants are shown in
table 2. Our study included a higher number of women than
men. Further, BMI was significantly higher in controls com-
pared to those who became cases, as previously reported.24

The other baseline characteristics were similarly distributed.
The final number of metabolites included in the analyses
represent all metabolites that were identified using LC-MS (n
= 457) that also passed our quality control (n = 404; see
Methods for details).

Analyses of individual metabolites

Analyses including all cases and controls
Overall, we identified 31 metabolites that were significantly
different between ALS cases and their matched controls
(p < 0.05); 27 of these metabolites had lower concen-
trations among the ALS cases and were thus associated with
lower ALS risk. The metabolites with inverse associations
included diacylglycerols and triacylglycerols, urate, purine
nucleosides, and some organic acids and derivatives (figures
1 and 2). We observed positive associations for a cholesteryl
ester and 2 phosphatidylcholines. However, none of the
metabolites identified in these analyses remained signifi-
cantly associated with ALS after accounting for multiple
comparisons.

Analyses stratified by time from blood draw to ALS
onset
A total of 144 patients with ALS had blood collected within 5
years of disease onset, while the remaining 131 cases had
blood collected 5 years or more before onset. The number of
metabolites with significantly different concentrations be-
tween cases and controls was higher in analyses among
case–control pairs in which blood was drawn closer to ALS
onset than in those with blood collected several years before
onset. Specifically, in plasma samples collected less than 5
years before ALS onset, 63 metabolites were significantly
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associated with lower ALS risk, and 4 with higher ALS risk.
The 63 metabolites with inverse associations included mainly
lipids (diacylglycerols and triacylglycerols, acylcarnitines,
phosphatidylcholines, and other lipids; figure 2B, table e-1,
links.lww.com/WNL/A866), whereas positive associations
were found for a cholesteryl ester, a phosphosphingolipid, and
2 lysophospholipids. A total of 18 of these metabolites were
also nominally significantly associated with ALS in the overall
analyses. Among those case–control pairs with blood drawn at
least 5 years before ALS onset, we identified 41 metabolites
that were significantly associated with ALS risk (figure 2C,
table e-1). A total of 5 of these metabolites were also nomi-
nally significantly associated with ALS in the overall analyses.
None of the metabolites in the stratified analyses remained
significantly associated with ALS after accounting for multiple
comparisons.

Simultaneous analyses including all
known metabolites
When plotting the first 2 PLS components from the PLS-DA,
there was no clear separation between cases and controls
(figure 3A), suggesting that the overall preclinical metab-
olomic profile is not markedly different in ALS and controls.
The permutation tests based on separation distance yielded
a p value of 0.1. There was no clear separation in analyses
restricted to those with the shortest interval between blood
draw and ALS onset (figure 3B), while there was only
a moderate separation between future ALS cases and controls
in analyses restricted to those with the longest interval (figure
3C). The p values from the permutation tests did not reach
statistical significance in either of the subgroups (p = 0.766
and p = 0.075 for <5 years and ≥5 years, respectively). In
random forest and support vector machine analyses, error
rates were as high as ;33%, indicating that the metabolites
could not distinguish individuals later developing ALS from
their matched controls in our study population.

Using penalized conditional regression analyses with LASSO,
we identified 14 metabolites that were retained in the model
(table 3). Of these, 3 were associated with a higher risk of ALS,
while the remaining 11 were associated with a lower ALS risk.
In the ROC analysis, the AUC of these metabolites was 0.63.
We observed similar results using elastic net penalty at an
alpha level of 0.5, with 17 metabolites selected to be retained
in the model. Of these, 3 were associated with a higher ALS
risk, while 14 metabolites were associated with a lower ALS
risk. The AUC for these metabolites was 0.63. We repeated
the analyses in groups categorized by the interval between
blood draw and ALS onset and observed similar results
(table 3).

In the WCNA analysis, 249 (61.6%) of the metabolites were
assigned into 9 modules (tables 4 and 5), while the
remaining could not be assigned to any module due to weak
correlation with other metabolites. The largest module
(1) included 99 metabolites and consisted primarily of lipids.

Table 2 Selected age-standardized characteristics

Characteristic
Cases
(n = 275)

Controls
(n = 549) p Value

Ag, y, mean (SD)a 64.6 (7.2) 64.6 (7.2) —

Sex, n (%)a

Male 75 (27.3) 150 (27.3) —

Female 200 (72.7) 399 (72.7)

Fasting status, h, n (%)a

<4 73 (26.6) 155 (28.2) —

≥4 202 (73.5) 394 (71.8)

Interval from blood
draw to ALS onset, y,
median (IQR)a

4.8 (1.9–7.8) — —

Body mass index,
mean (SD)

26.2 (4.4) 26.9 (5.2) 0.034

Smoking status, n (%)a

Never smoker 123 (44.7) 264 (48.1) 0.82

Past smoker 128 (46.6) 239 (43.5)

Current smoker 18 (6.6) 36 (6.6)

Unknown 6 (2.2) 10 (1.8)

Ethnicity, n (%)a

White 225 (81.8) 448 (81.6) 0.98

African American 21 (7.6) 39 (7.1)

Hispanic 8 (2.9) 17 (3.1)

Asian 10 (3.6) 20 (3.6)

Other 6 (2.2) 17 (3.1)

Not reported 5 (1.8) 8 (1.5)

Education, n (%)a

< High school 13 (4.8) 20 (3.7) 0.50

High school 48 (17.7) 84 (15.4)

> High school 211 (77.6) 442 (81.0)

Physical activity,
n (%)a

Low levels 87 (32.8) 175 (33.0) 0.99

Medium level 79 (29.8) 157 (29.6)

High level 99 (37.4) 199 (37.5)

Diabetes, n (%)a

Yes 14 (5.1) 35 (6.4) 0.46

No 261 (94.9) 514 (93.6)

Values are standardized to the age distribution of the study population.
Values of polytomous variables may not sum to 100% due to rounding.
p Values are not given for matching factors (age, sex, and fasting status), as
these are similar in the 2 groups by design.
a Value is not age-adjusted.
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When the Eigen-metabolite within each module was in-
cluded as a covariate in the conditional logistic regression
model, none of them was significantly associated with ALS.
The results were similar in analyses restricted to groups
categorized by the interval between blood draw and ALS
onset (data not shown).

In sensitivity analyses using a rank-based inverse normal
transformation instead of log-transformation, we observed
similar results, indicating that extreme outliers in individual
metabolites were either absent or noninfluential (data not

shown). Similarly, the results did not materially change when
we excluded individuals diagnosed with diabetes (data not
shown). When we restricted the analyses to lipids alone, none
of the metabolite modules was significantly associated with
ALS in partial correlation-based network approach followed
by network-guided regression analyses (data not shown).
Further, we restricted the analyses to individuals with blood
samples provided within 2 years (72 ALS cases) and within 1
year (51 ALS cases) from ALS onset but observed similar
results (data not shown). Finally, the results remained similar
when we assigned the date of onset to 5 instead of 3 years

Figure 1 The risk ratio (RR) of amyotrophic lateral sclerosis (ALS) according to levels of individual metabolites

Adjusted for body mass index and
matching factors (cohort, birth year, sex,
ethnicity, fasting status, and time of
blood draw). CI = confidence interval.
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before the date of death for the participants identified by
death certificate (data not shown).

Discussion
In this study, we conducted a broad search for prediagnostic
plasma biomarkers for ALS using a high-throughput, ag-
nostic metabolomics approach. We identified 31 metabolites
that were associated with ALS risk in the overall analyses,
and 67 metabolites that were associated with ALS risk
among those with blood draws taken 5 years or less from
ALS onset. Most of these metabolites had lower concen-
trations in ALS cases than in their matched controls, a find-
ing that suggests a broad, but still poorly defined metabolic
dysregulation. These results should be interpreted cautiously
because none of the metabolites retained significance after
we accounted for multiple comparisons, and we could not
discriminate individuals later developing ALS from their

matched controls using PLS-DA and penalized regression
methods.

The results from our study are not consistent with most of the
findings in previous ALS metabolomics studies. Among the
metabolites suggested to be important in the largest previous
study comparing the metabolome in patients with ALS with
controls,6 only urate was significantly associated with ALS risk
in our study. The association was similar in analyses stratified
on time to ALS onset, which suggests that low urate precedes
and possibly contributes to the development of the disease.
This result is in line with prior studies demonstrating that
higher levels of urate are associated with a lower risk25 and
slower progression in ALS.26,27 None of the metabolites in the
16 pathways most commonly reported to be altered in pre-
vious studies, which included the metabolism of several amino
acids, caffeine metabolism, aminoacyl RNA biosynthesis, and
pantothenate and CoA biosynthesis,2 were associated with

Figure 2 Metabolomics volcano plots

The figure illustrates risk ratios and p values from conditional logistic regression analyses. The p values are plotted on the log-scale. In each panel, the dashed
line indicates a p value of 0.05.
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ALS risk after we accounted for multiple comparisons. The
inconsistent results are likely because of the different study
designs, where our study evaluated the association between
the prediagnostic metabolomic profile and ALS risk, while all
of the previous studies compared the metabolome in patients
with ALS with controls. As ALS is a fast-progressing disease
with marked dysregulation in energy metabolism,28 metab-
olomic alterations observed after the disease onset could

reflect consequences of the disease. This makes it difficult to
compare our findings with those of previous studies. Further,
while our study is the most comprehensive metabolomic
study to date, including 404 metabolites, we did not have data
on all of the metabolites suggested to be important in previous
studies, and it is possible that metabolites that we did not
measure could be important for ALS.

While we did not observe any marked associations between
individual metabolites and ALS risk, most of the metabolite
levels were lower in those who later developed ALS compared
to the controls. This could reflect a broad, but poorly defined,
dysregulation in metabolism, which may precede the first
symptoms of the disease by several years. We observed that
the levels of many lipids were lower in incident ALS cases,
which could suggest that alterations in lipid metabolism are
associated with the earliest events in the disease. In animal
models, there is a switch towards a preference for lipids as
a fuel source that happens during the asymptomatic stage,29

while higher levels of ketone bodies, which are released by the
breakdown of fatty acids, have been observed in patients with
ALS. 4,11 Use of lipids as the fuel source is associated with
increased oxidative stress30 that can lead to neuroinflammation,
mitochondrial dysfunction, and excitotoxicity,31 which are
mechanisms likely to contribute to the selective motor neuron
death in ALS.1

In our study, we could not discriminate between those who
later developed ALS from their matched controls, which
could suggest that marked metabolomic alterations do not
precede ALS in the years before clinical disease onset. Ap-
proximately half of those who developed ALS in our study had
disease onset within 5 years of blood draw, but we did not
observe any significant metabolomic alterations among these
individuals. This could indicate that ALS is not preceded by
a long prodromal phase, in contrast to other neurodegener-
ative diseases like Parkinson disease.32 However, our results
could also suggest that the preclinical phase of ALS is asso-
ciated with a number of less marked metabolomic alterations.
In this scenario, our study may have lacked statistical power to
detect such differences. Further, it is also possible that the
preclinical phase of ALS is not associated with metabolomic
alterations in the plasma. Finally, the lack of a specific pre-
clinical metabolomic signature of ALS in our study may reflect
the heterogeneous nature of ALS1 or the analyses of blood
samples collected at different stages of a multistep process in
the development of the disease.33,34 In future studies, it may
be useful to include cases of familial ALS and to integrate
genetic with metabolomic data in order to detect alterations
that can be specific to ALS subtypes. Repeated metabolomic
measurements in studies following healthy carriers of known
mutations over time could be especially informative for this
purpose.

Our study has several strengths. We included participants
nested from 5 large cohort studies, which not only minimizes
the risk of selection bias when selecting the controls, but also

Figure 3 Partial least square (PLS) discrimination analysis
plots

(A) Including all participants. p Value from the permutation test: 0.1. (B)
Restricted to participants with blood samples collected within 5 years of
onset. p Value from the permutation test: 0.766. (C) Restricted to partic-
ipants with blood samples collected 5 years or longer before disease onset.
p Value from the permutation test: 0.075.

e2096 Neurology | Volume 92, Number 18 | April 30, 2019 Neurology.org/N

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


guarantees that there are no systematic differences between
cases and their matched controls in the procedures of blood
collection and processing, or in the circumstances of blood

collection, such as season, time of day, time since last meal, or
place of blood collection. Furthermore, samples from cases
and matched controls were analyzed at the same time, blindly,

Table 3 Metabolites associated with amyotrophic lateral sclerosis (ALS) that were selected in penalized regression
models

Direction of
change in ALS

Penalty term

LASSO Elastic net

All participants Increased C38:4 PC, C40:7 PC plasmalogen, C18:2 SM C38:4 PC, C40:7 PC plasmalogen, C18:2 SM

Decreased 1-methylguanosine, 21-deoxycortisol, butyrobetaine
isomer, C36:2 PC, C5-DC carnitine, C51:1 TAG, C9
carnitine, indoxylsulfate, N-acetylaspartic acid,
isocitrate, N-acetyltryptophan

1-methylguanosine, 21-deoxycortisol, butyrobetaine
isomer, C36:2 DAG, C36:2 PC, C52:1 TAG, C5-DC
carnitine, C51:1 TAG, C9 carnitine, guanine,
indoxylsulfate, isocitrate, N-acetylaspartic acid, N-
acetyltryptophan

AUC: 0.63 AUC: 0.63

Blood draw <5 y of
ALS onset

Increased None C18:1 SM, C20:4 LPC, C20:4 LPE

Decreased C51:1 TAG, C26 Carnitine, butyrobetaine isomer 3-hydroxyanthranilic acid, butyrobetaine isomer,
C14:0 CE, C26 carnitine, C36:0 PC, C36:2 PC, C38:2 PC,
C45:3 TAG, C5-DC carnitine, C51:1 TAG, C7 carnitine,
C9 Carnitine, cytidine, glutamate, lactose, sucrose,
xanthurenate

AUC: 0.58 AUC: 0.71

Blood draw ≥5 y of
ALS onset

Increased C38:5 PE, C36:2 PE plasmalogen, C40:7 PC
plasmalogen, lactose

Lactose, sucrose, homoarginine, C34:3 PC, C36:0 PC,
C38:4 PC, C36:3 PC, C38:2 PC, C36:2 PE, C34:1 PC, C36:
3 PC, C40:7 plasmalogen, C40:7 PC

Decreased Glycodeoxycholate, N-acetylaspartic acid, N-
acetyltryptophan

Cystathionine, guanidoacetic acid,
glycodeoxycholate, glutamine, N-acetylaspartic acid,
C18:0 SM, indole-3 propionate, N-acetylornithine,
C36:0 DAG, C18:1 carnitine, N-acetyltryptophan,
trimethylbenzene isomer

AUC: 0.60 AUC: 0.74

Abbreviation: AUC = area under the curve.

Table 4 Groups of correlated metabolites and their association with amyotrophic lateral sclerosis (ALS) risk in weighted
correlation network analysis

Module No. of metabolites Hub metabolite Eigen-metabolite β2 estimate p Value

1 99 C46:1 TAG ME1 −3.09 0.16

2 32 C56:9 TAG ME2 2.03 0.36

3 23 C18:1 LPC ME3 −0.32 0.89

4 18 C12 carnitine ME4 −2.61 0.24

5 16 leucine ME5 −3.01 0.20

6 16 C36:3 DAG ME6 −2.05 0.33

7 16 C22:0 SM ME7 0.86 0.70

8 15 C36:2 PC plasmalogen ME8 3.62 0.12

9 14 C34:3 PE plasmalogen ME9 −0.39 0.86

Abbreviations: DAG = diacylglycerols; hub metabolite = metabolite within a module with highest intramodular connectivity; LPC = lysophospholipid; ME =
module eigenvector (first principal component of the module) ; PC = phosphatidylcholines; PE = phosphatidylethanolamine; SM = sphingomyelin; TAG =
triacylglycerols.
Modules 1–9 consist of metabolites that are highly correlated with each other. Conditional logistic regression models were conducted to examine the
association of individual modules and ALS risk.
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and in random order, thus virtually eliminating any artefactual
difference in metabolite concentrations. We included a large
number of metabolites that have not been previously in-
vestigated; we used prospectively collected information on
several possible confounders that may be relevant in ALS,
including BMI and diabetes; and we used blood samples
collected before disease onset, which minimizes the risk of
reverse causation. Finally, we conducted thorough sensitivity
analyses to assess the robustness of our findings.

Our study also has limitations, some of which are inherent to
the difficulty of conducting a prospective study of a relatively
rare disease such as ALS. The moderate sample size may have
limited the statistical power for an agnostic study with over
400 metabolites. Further, we did not have clinical or genetic
information on the ALS cases to distinguish ALS subtypes.
We evaluated the association between metabolites and ALS
using plasma measurements assessed at one time point, which
may not reflect long-term concentrations of the metabolites.
Still, in a validation study in NHS and HPFS, the majority of
the metabolites were reproducible within individuals when
comparing samples collected 1–2 years apart,20 suggesting
that a single measurement may reasonably reflect longer-term
levels. Furthermore, apart from penalized regression methods
(elastic net and LASSO), machine learning methods such as
PLS-DA and WCNA do not account for the matched case–
control study design, which may affect the statistical power for

these tests. For future studies, statistical methods particularly
designed for high dimensional data from matched case–
control studies can be applied to more appropriately evaluate
the association between the plasma metabolome and ALS
risk. Finally, as is inherent to any observational study, we
cannot exclude the possibility that the results may be affected
by residual or unmeasured confounding that we cannot ac-
count for.

In this study, we found that plasma levels of several metabolites
appear to be altered, in most cases reduced, before the onset of
ALS symptoms. These associations, however, were no longer
statistically significant after multiple comparison corrections.
We were not able to identify a metabolomics signature that
could reliably discriminate those who later developedALS from
their matched controls. The findings on individual metabolites
should, therefore, be interpreted cautiously and in the context
of their potential biological significance.

Acknowledgment
The authors thank the participants and staff of the NHS, HPFS,
MEC, CPS-II, and WHI for their contributions. Short list of
WHI Investigators: Program Office (National Heart, Lung, and
Blood Institute, Bethesda, Maryland): Jacques Rossouw, Shari
Ludlam, JoanMcGowan, Leslie Ford, andNancyGeller. Clinical
Coordinating Center (Fred Hutchinson Cancer Research
Center, Seattle, WA): Garnet Anderson, Ross Prentice,

Table 5 Overview of the statistical analyses

Type of analysis Results Interpretation

Conditional logistic
regression

Number of metabolites with significantly different levels
in ALS cases compared to matched controls:

The levels of most of these metabolites were lower in ALS
cases, suggesting that ALS is preceded by a broad, but poorly
defined, metabolic dysregulation y before the disease onset.
The results should be interpreted cautiously because none of
the metabolites retained significance after we accounted for
multiple comparisons.

Overall: 31 (27 lower in ALS)

<5 y of onset: 67 (64 lower in ALS)

≥5 y of onset: 41 (15 lower in ALS)

None of these metabolites retained significance after
multiple comparison adjustments.

Partial least square
discrimination analysis

There was no clear separation between ALS cases and
controls based on their metabolomic profile. The results
were similar in analyses stratified on time to ALS onset.

The overall preclinical metabolomic profile may not be
markedly different in ALS and controls.

LASSO A total of 14metabolites were retained in the finalmodel.
The AUC of these metabolites was 0.63. The results were
similar in analyses stratified on time to ALS onset.

The subset of metabolites identified in the LASSO model
could only modestly predict ALS.

Elastic net A total of 17metabolites were retained in the finalmodel.
The AUC of these metabolites was 0.63. The results were
similar in analyses stratified on time to ALS onset.

The subset of metabolites identified in the Elastic net model
could only modestly predict ALS.

Weighted correlation
network analysis

None of the 9 modules, which included a total of 249
metabolites, were significantly associated with ALS. The
results were similar in analyses stratified on time to ALS
onset.

We could not identify any groups of correlated metabolites
that were significantly associated with ALS.

Abbreviations: ALS = amyotrophic lateral sclerosis; AUC = area under the curve.

e2098 Neurology | Volume 92, Number 18 | April 30, 2019 Neurology.org/N

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


Andrea LaCroix, and Charles Kooperberg. Investigators and
Academic Centers: Brigham and Women’s Hospital, Harvard
Medical School, Boston: JoAnn E. Manson; MedStar Health
Research Institute/Howard University, Washington, DC:
Barbara V. Howard; Stanford Prevention Research Center,
California: Marcia L. Stefanick; The Ohio State University,
Columbus: Rebecca Jackson; University of Arizona, Tucson/
Phoenix: Cynthia A. Thomson; University at Buffalo, New
York: Jean Wactawski-Wende; University of Florida,
Gainesville/Jacksonville: Marian Limacher; University of
Iowa, Iowa City/Davenport: Jennifer Robinson; University
of Pittsburgh: Lewis Kuller; Wake Forest University School of
Medicine, Winston-Salem, North Carolina: Sally Shumaker;
University of Nevada, Reno: Robert Brunner. Women’s
Health Initiative Memory Study (Wake Forest University
School of Medicine): Mark Espeland.

Study funding
Study funded by a grant from the National Institute of Neu-
rologic Diseases and Stroke (R01 NS045893) awarded to
Alberto Ascherio. The NHS is funded by the NIH through
grants UM1 CA186107 and R01 CA49449. The HPFS cohort
is funded by the NIH through grant UM1 CA167552. The
American Cancer Society funds the creation, maintenance,
and updating of the CPS-II cohorts. TheMEC cohort is funded
by the NIH through U01 CA164973. The WHI program is
funded by the National Heart, Lung, and Blood Institute, NIH,
US Department of Health and Human Services, through
contracts HHSN268201600018C, HHSN268201600001C,
HHSN268201600002C, HHSN268201600003C, and
HHSN268201600004C.

Disclosure
K. Bjornevik, Z. Zhang, E. O’Reilly, J. Berry, C. Clish, A. Deik,
S. Jeanfavre, I. Kato, R. Kelly, L. Kolonel, L. Liang, L. Le
Marchand, M. McCullough, S. Paganoni, and K. Pierce report
no disclosures relevant to the manuscript. M. Schwarzschild
reports funding from Target ALS. A. Shadyab, J. Wactawski-
Wende, D. Wang, Y. Wang, J. Manson, and A. Ascherio report
no disclosures relevant to the manuscript. Go to Neurology.
org/N for full disclosures.

Publication history
Received by Neurology September 28, 2018. Accepted in final form
February 11, 2019.

Appendix Authors

Name Location Role Contribution

Kjetil
Bjornevik, MD,
PhD

Harvard T.H. Chan
School of Public
Health, Boston

Author Drafting/revising the
manuscript for
content, analysis or
interpretation of data,
statistical analysis

Zhongli Zhang,
PhD

Harvard T.H. Chan
School of Public
Health, Boston

Author Drafting/revising the
manuscript for
content, analysis or
interpretationof data

Appendix (continued)

Name Location Role Contribution
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