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Abstract

Quality control is a fundamental component of many manufacturing processes, especially those 

involving casting or welding. However, manual quality control procedures are often time-

consuming and error-prone. In order to meet the growing demand for high-quality products, the 

use of intelligent visual inspection systems is becoming essential in production lines. Recently, 

Convolutional Neural Networks (CNNs) have shown outstanding performance in both image 

classification and localization tasks. In this article, a system is proposed for the identification of 

casting defects in X-ray images, based on the Mask Region-based CNN architecture. The 

proposed defect detection system simultaneously performs defect detection and segmentation on 

input images, making it suitable for a range of defect detection tasks. It is shown that training the 

network to simultaneously perform defect detection and defect instance segmentation, results in a 

higher defect detection accuracy than training on defect detection alone. Transfer learning is 

leveraged to reduce the training data demands and increase the prediction accuracy of the trained 

model. More specifically, the model is first trained with two large openly-available image datasets 

before finetuning on a relatively small metal casting X-ray dataset. The accuracy of the trained 

model exceeds state-of-the art performance on the GRIMA database of X-ray images (GDXray) 

Castings dataset and is fast enough to be used in a production setting. The system also performs 

well on the GDXray Welds dataset. A number of in-depth studies are conducted to explore how 

transfer learning, multi-task learning, and multi-class learning influence the performance of the 

trained system.
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Introduction

Quality management is a fundamental component of a manufacturing process [1]. To meet 

growth targets, manufacturers must increase their production rate while maintaining 

stringent quality control limits. In a recent report, the development of better quality 

management systems was described as the most important technology advancement for 

manufacturing business performance [2]. In order to meet the growing demand for high-
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quality products, the use of intelligent visual inspection systems is becoming essential in 

production lines.

Processes such as casting and welding can introduce defects in the product which are 

detrimental to the final product quality [3]. Common casting defects include air holes, 

foreign-particle inclusions, shrinkage cavities, cracks, wrinkles, and casting fins [4]. If 

undetected, these casting defects can lead to catastrophic failure of critical mechanical 

components, such as turbine blades, brake calipers, or vehicle driveshafts. Early detection of 

these defects can allow faulty products to be identified early in the manufacturing process, 

leading to time and cost savings [5]. Automated quality control can be used to facilitate 

consistent and cost-effective inspection. The primary drivers for automated inspection 

systems include faster inspection rates, higher quality demands, and the need for more 

quantitative product evaluation that is not hampered by the effects of human fatigue.

Nondestructive examination techniques allow a product to be tested during the 

manufacturing process without jeopardizing the quality of the product. There are a number 

of nondestructive examination techniques available for producing two-dimensional and 

three-dimensional images of an object. Real-time X-ray imaging technology is widely used 

in defect detection systems in industry, such as on-line weld defect inspection [5]. Ultrasonic 

inspection and magnetic particle inspection can also be used to measure the size and position 

of casting defects in cast components [6,7]. X-ray Computed Tomography (CT) can be used 

to visualize the internal structure of materials. Recent developments in high resolution X-ray 

computed tomography have made it possible to gain a three-dimensional characterization of 

porosity [8]. However, automatically identifying casting defects in X-ray images still 

remains a challenging task in the automated inspection and computer vision domains.

The defect detection process can be framed as either an object detection task or an instance 

segmentation task. In the object detection approach, the goal is to place a tight-fitting 

bounding box around each defect in the image. In the image segmentation approach, the 

problem is essentially one of pixel classification, where the goal is to classify each image 

pixel as a defect or not. Instance segmentation is a more difficult variant of image 

segmentation, where each segmented pixel must be assigned to a particular casting defect. A 

comparison of these computer vision tasks is provided in Figure 1. In general, object 

detection and instance segmentation are difficult tasks, as each object can cast an infinite 

number of different 2-D images onto the retina [9]. Additionally, the number of instances in 

a particular image is unknown and often unbounded. Variations of the object's position, 

pose, lighting, and background represent additional challenges to this task.

Many state-of-the-art object detection systems have been developed using the region-based 

convolutional neural network (R-CNN) architecture [10]. R-CNN creates bounding boxes, or 

region proposals, using a process called selective search. At a high level, selective search 

looks at the image through windows of different sizes and, for each size, tries to group 

together adjacent pixels by texture, color, or intensity to identify objects. Once the proposals 

are created, R-CNN warps the region to a standard square size and passes it through a 

feature extractor. A support vector machine (SVM) classifier is then used to predict what 

object is present in the image, if any. In more recent object detection architectures, such as 
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region-based fully convolutional networks (R-FCN), each component of the object detection 

network is replaced by a deep neural network [11].

In this work, a fast and accurate defect detection system is developed by leveraging recent 

advances in computer vision. The proposed defect detection system is based on the mask 

region-based CNN (Mask R-CNN) architecture [12]. This architecture simultaneously 

performs object detection and instance segmentation, making it useful for a range of 

automated inspection tasks. The proposed system is trained and evaluated on the GRIMA 

database of X-ray images (GDXray) dataset, published by Grupo de Inteligencia de Máquina 

(GRIMA) [13]. Some examples from the GDXray dataset are shown in Figure 2.

The remainder of this article is organized as follows: The first section provides an overview 

of related works, and the second section provides a brief introduction to CNNs. A detailed 

description of the proposed defect detection system is provided in the “Defect Detection 

System” section. The “Implementation Details and Experimental Results” section explains 

how the system is trained to detect casting defects, and provides the main experimental 

results, as well as a comparison with similar systems in the literature. The article is 

concluded with a number of in-depth studies, a thorough discussion of the results, and a 

brief conclusion.

Related Works

The detection and segmentation of casting defects using traditional computer vision 

techniques has been relatively well-studied. One popular method is background subtraction, 

where an estimated background image (which does not contain the defects) is subtracted 

from the preprocessed image to leave a residual image containing the defects and random 

noise [14,15]. Background subtraction has also been applied to the welding defect detection 

task, with varying levels of success [16–18]. However, background subtraction tends to be 

very sensitive to the positioning of the image, as well as random image noise [14]. A range 

of matched filtering techniques have also been proposed, with modified median (MODAN) 

filtering being a popular choice [19]. The MODAN–Filter is a median filter with adapted 

filter masks, that is designed to differentiate structural contours of the casting piece from 

casting defects [20]. A number of researchers have proposed wavelet-based techniques with 

varying levels of success [4,21]. In wavelet-based and frequency-based approaches, defects 

are commonly identified as high-frequency regions of the image, when compared to the 

comparatively lower frequency background [22]. Many of these approaches fail to combine 

local and global information from the image when classifying defects, making them unable 

to separate design features like holes and edges from casting defects.

In many traditional computer vision approaches, it is common to manually identify a 

number of features which can be used to classify individual pixels. Each image pixel is 

classified as a defect or treated as not being a defect, depending on the features that are 

computed from a local neighborhood around the pixel. Common features include statistical 

descriptors (mean, standard deviation, skewness, kurtosis) and localized wavelet 

decomposition [4]. Several fuzzy logic approaches have also been proposed, but these 

Ferguson et al. Page 3

Smart Sustain Manuf Syst. Author manuscript; available in PMC 2019 May 13.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



techniques have been largely superseded by modern CNN-based computer vision techniques 

[23].

The related task of automated surface inspection (ASI) is also well-documented in the 

literature. In ASI, surface defects are generally described as local anomalies in 

homogeneous textures. Depending on the properties of surface texture, ASI methods can be 

divided into four approaches [24]. One approach is structural methods that model the texture 

primitives and displacements. Popular structural approaches include primitive measurement 

[25], edge features [26], and morphological operations [27]. The second approach is the 

statistical methods which measure the distribution of pixel values. The statistical approach is 

efficient for stochastic textures, such as ceramic tiles, castings, and wood. Popular statistical 

methods include histogram-based method [28], local binary pattern (LBP) [29], and co-

occurrence matrix [30]. The third approach is filter-based methods that apply filter banks on 

texture images. The filter-based methods can be divided into spatial-domain [31], frequency-

domain [32], and spatial-frequency domain [33]. Finally, model-based approaches construct 

representations of images by modeling multiple properties of defects [34].

The research community, including this work, is greatly benefited from well-archived 

experimental datasets, such as the GDXray dataset [13]. The performance of several simple 

methods for defect segmentation are compared in [37] using the GDXray Welds series, but 

each method is only evaluated qualitatively. A comprehensive study of casting defect 

detection using various computer vision techniques is provided in [38], where patches of 

size 32 × 32 pixels are cropped from GDXray Castings series and used to train and test a 

number of different classifiers. The best performance is achieved by a simple LBP descriptor 

with a linear SVM classifier [38]. Several deep learning approaches are also evaluated, 

obtaining up to 86.4 % patch classification accuracy. When applying the deep learning 

techniques, the authors resize the 32 × 32 × 3 pixel patches to a size of 244 × 244 × 3 pixels 

so that they can be feed into pretrained neural networks [38,39]. A deep CNN is used for 

weld defect segmentation in [40] obtaining 90.5 % accuracy on the binary classification of 

25 × 25 pixel patches.

Convolutional Neural Networks

There has been significant progress in the field of computer vision, particularly in image 

classification, object detection and image segmentation. The development of deep CNNs has 

led to vast improvements in many image processing tasks. This section provides a brief 

overview of CNNs. For a more comprehensive description, the reader is referred to [41].

In a CNN, pixels from each image are converted to a featurized representation through series 

of mathematical operations. Images can be represented as an order 3 tensor I ∈ ℝH × W × D

with height H, width W, and D color channels [41]. The input sequentially goes through a 

number of processing steps, commonly referred to as layers. Each layer i, can be viewed as 

an arbitrary transformation xi+1 = f(xi; θi) with inputs xi, outputs xi+1, and parameters θi. 

The outputs of a layer are often referred to as a feature map. By combining multiple layers it 

is possible to develop a complex nonlinear function which can map high-dimensional data 
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(such as images) to useful outputs (such as classification labels) [41]. More formally, a CNN 

can be thought of as the composition of number of functions:

f (x) = f N( . . . f 2( f 1(x1; θ1); θ2) . . . ); θN), (1)

where x1 is the input to the CNN and f(x) is the output. There are several layer types which 

are common to most modern CNNs, including convolution layers, pooling layers and batch 

normalization layers. A convolution layer is a function fi(xi; θi) that convolves one or more 

parameterized kernels with the input tensor, xi. Suppose the input xi is an order 3 tensor with 

size Hi × Wi × Di. A convolution kernel is also an order 3 tensor with size H × W × Di. The 

kernel is convolved with the input by taking the dot product of the kernel with the input at 

each spatial location in the input. The convolution of a H × W × 1 kernel with an image is 

shown diagrammatically in Figure 3. By convolving certain types of kernels with the input 

image, it is possible to obtain meaningful outputs, such as the image gradients. In most 

modern CNN architectures, the first few convolutional layers extract features like edges and 

textures. Convolutional layers deeper in the network can extract features that span a greater 

spatial area of the image, such as object shapes.

Deep neural networks are, by design, parameterized nonlinear functions [41]. An activation 

function is applied to the output of a neural network layer to introduce this nonlinearity. 

Traditionally, the sigmoid function was used as the nonlinear activation function in neural 

networks. In modern architectures, the Rectified Linear Unit (ReLU) is more commonly 

used as the neuron activation function, as it performs best with respect to runtime and 

generalization error [43]. The nonlinear ReLU function follows the formulation f(z) = 

max(0,z) for each value, z, in the input tensor xi. Unless otherwise specified, the ReLU 

activation function is used as the activation function in the defect detection system described 

in this article.

Pooling layers are also common in most modern CNN architectures [41,44]. The primary 

function of pooling layers is to progressively reduce the spatial size of the representation to 

reduce the number of parameters in the network, and hence control overfitting. Pooling 

layers typically apply a max or average operation over the spatial dimensions of the input 

tensor. The pooling operation is typically performed over a 2 × 2 or 3 × 3 area of the input 

tensor. By stacking pooling and convolutional layers, it is possible to build a network that 

allows a hierarchical and evolutionary development of raw pixel data towards powerful 

feature representations.

Training a neural network is performed by minimizing a loss function [41]. The loss 

function is normally a measure of the difference between the output of the neural network 

and the ground truth. As long as each layer of the neural network is differentiable, it is 

possible to calculate the gradient of the loss function with respect to the parameters. The 

backpropagation algorithm allows the numerical gradients to be calculated efficiently [45]. 

A gradient-based optimization algorithm such as stochastic gradient descent (SGD) can be 

used to find the parameters that minimize the loss function.
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Recently, a number of techniques based on CNNs have been successfully applied to the 

object detection task. Two notable neural network approaches are Faster Region-Based CNN 

(Faster R-CNN) [46] and Single Shot Multibox Detector (SSD) [47]. These approaches 

share many similarities, but the latter is designed to prioritize evaluation speed over 

accuracy. Both approaches are often used with a Visual Geometry Group (VGG) or Residual 

Network (ResNet) backbone for feature extraction. A comparison of different object 

detection networks is provided in [48]. Mask R-CNN is an extension of Faster R-CNN that 

simultaneously performs object detection and instance segmentation [12]. In previous 

research, it has been demonstrated that Faster R-CNN can be used as the basis for a fast and 

accurate defect detection system [49]. This work builds on that progress by developing a 

defect detection system that simultaneously performs object detection and instance 

segmentation.

RESIDUAL NETWORKS

The properties of a neural network are characterized by choice and arrangement of the 

layers, often referred to as the architecture. Deeper networks generally allow more complex 

features to be computed from the input image. However, increasing the depth of a neural 

network often makes it more difficult to train, due to the vanishing gradient problem [44]. 

The residual network (ResNet) architecture was designed to avoid many of the issues that 

plagued very deep neural networks. Most predominately, the use of residual connections 

helps to overcome the vanishing gradient problem [44]. A cell from the ResNet architecture 

is shown in Figure 4. There are a number of standard variants of the ResNet architecture, 

containing between 18 and 152 layers. In this work, the relatively large ResNet-101 variant 

with 101 trainable layers is used as the neural network backbone [44].

While ResNet was designed primarily to solve the image classification problem, it can also 

be used for a wider range of image processing tasks. More specifically, the outputs from the 

intermediate layers can be used as high-level representations of the image. When used this 

way, ResNet is referred to as a feature extractor, rather than a classification network.

Defect Detection System

In this section, a defect detection system is proposed to identify casting defects in X-ray 

images. The proposed system simultaneously performs defect detection and defect 

segmentation, making it useful for a range of automated inspection applications. The design 

of the defect detection system is based on the Mask R-CNN architecture [12]. As depicted in 

Figure 5, the defect detection system is composed of four modules. The first module is a 

feature extraction module that generates a high-level featurized representation of the input 

image. The second module is a CNN that proposes regions of interest (RoIs) in the image, 

based on the featurized image. The third module is a CNN that attempts to classify the 

objects in each RoI [46]. The fourth module performs image segmentation, with the goal of 

generating a binary mask for each region. Each module is described in detail throughout the 

remainder of this section.
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FEATURE EXTRACTION

The first module in the proposed defect detection system transforms the image pixels into a 

high-level featurized representation. Many CNN-based object detection systems use the 

VGG-16 architecture to extract features from the input image [10,46,50]. However, recent 

work has demonstrated that better results can be obtained with more modern feature 

extractors [48]. In a related work, we have shown that an object detection network with the 

ResNet-101 feature extractor results in a higher bounding-box prediction accuracy on the 

GDXray Castings dataset, than the same object detection network with a VGG-16 feature 

extractor [49]. Therefore, the ResNet-101 architecture is chosen as the backbone for the 

feature extraction module. The neural-network architecture of the feature extraction module 

is shown in Figure 5. Some feature maps from the feature extraction module are shown in 

Figure 6.

The ResNet-101 feature extractor is a very deep convolutional neural network with 101 

trainable layers and approximately 27 million parameters. Hence, it is unlikely that the 

network can be trained to extract meaningful features from input images, using the relatively 

small GDXray dataset. One interesting property of CNN-based feature extractors is that the 

features they generate often transfer well across different image processing tasks. This 

property is leveraged when training the proposed casting defect detection system, by first 

training the feature extractor on the large ImageNet dataset [51]. Throughout the training 

process the feature extractor learns to extract many different types of features, only some of 

which are useful on the comparatively simpler casting defect detection task. When training 

the object detection network on the GDXray Castings dataset, the system learns which 

features correlate well with casting defects and discards unneeded features. This process 

tends to work well, as it is much easier to discard unneeded features than it is to learn 

entirely new features.

REGION PROPOSAL NETWORK

The second module in the proposed defect detection system is the region proposal network 

(RPN). The RPN takes a feature map of any size as input and outputs a set of rectangular 

object proposals, each with a score describing the likelihood that the region contains an 

object. To generate region proposals, a small CNN is convolved with the output of the 

ResNet-101 feature extractor. The input to this small CNN is an n × n spatial window of the 

ResNet-101 feature map. At a high-level, the output of the RPN is a vector describing the 

bounding box coordinates and likeliness of objects at the current sliding position. An 

example output containing 50 region proposals is shown in Figure 7.

Anchor Boxes—Casting defects come in a range of different scales and aspect ratios. To 

accurately identify casting defects, it is necessary to evaluate the proposed bounding boxes 

with a range of box shapes, at every location in the image. These boxes are commonly 

referred to as anchor boxes. Anchors vary in aspect-ratio and scale, so as to contain any 

potential object in the image. At each sliding location, the RPN estimates the likelihood that 

each anchor box contains an object. The anchor boxes for one position in the feature map are 

shown in Figure 8. In this work, anchor boxes with 3 scales and 5 aspect ratios are used, 

yielding 15 anchors at each sliding position. The total number of anchors in each image 
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depends on the size of the image. For a convolutional feature map of a size W × H (typically 

~2,400), there are 15WH anchors in total.

The size and scale of the anchor boxes are chosen to match the size and scale of objects in 

the dataset. It is common to use anchor boxes with areas of 1282, 2562, and 5122 pixels and 

aspect ratios of 1:1, 1:2, and 2:1, for detection of common objects like people and cars [46]. 

However, many of the casting defects in the GDXray dataset are on the scale of 20 × 20 

pixels. Therefore, the smallest anchor box is chosen to be 16 × 16 pixels. Aspect ratios 1:1, 

1:2, and 2:1 are used. Scale factors of 1, 2, 4, 8, and 16 are used. Most defects in the dataset 

are smaller than 64 × 64 pixels, so using scales 1, 2, and 4 could be considered sufficient for 

the defect detection task. However, the object detection network is pretrained on a dataset 

with many large objects, so the larger scales are included to avoid restricting the system 

during the pretraining phase.

Region Proposal Network Architecture—The RPN predicts the bounding box 

coordinates and probability that the box contains an object, for all k anchor boxes at each 

sliding position. The n × n input from the feature extractor is first mapped to a lower-

dimensional feature vector (512-d) using a fully connected neural network layer. This 

feature vector is fed into two sibling fully-connected layers: a box-regression layer (loc) and 

a box-classification layer (cls). The class layer outputs 2k scores that estimate the probability 

of object and not object for each anchor box. The loc layer has 4k outputs, which encode the 

coordinate adjustments for each of the k boxes. The reader is referred to [46] for a detailed 

description of the neural network architecture. The probability that an anchor box contains 

an object is referred to as the objectness score of the anchor box. This objectness score can 

be thought of as a way to distinguish objects in the image from the background. At the end 

of the region proposal stage, the top n anchor boxes are selected by objectness score as the 

region proposals.

Training—Training the RPN involves minimizing a combined classification and regression 

loss, that is now described. For each anchor, a, the best matching defect bounding box b is 

selected using the intersection over union (IoU) metric. If such a match is found, then a is 

assumed to contain a defect and it is assigned a ground-truth class label pa
∗ = 1. In this case, 

a vector encoding of box b with respect to anchor a is created, and denoted ϕ(b; a). If no 

match is found, then a does not contain a defect and the class label is set pa
∗ = 0. At training 

time, the location loss function Lloc captures the distance between the true location of a 

bounding box and the location of the region proposal [46]. The location-based loss for a is 

expressed as a function of the predicted box encoding floc(I; a, Θ) and ground truth ϕ(ba; a):

Lloc(a, I; θ) = pa
∗ ⋅ LSmoothL1 ϕ(ba; a) − f loc(I; a, θ) , (2)

where I is the image, θ is the model parameters, and LsmoothL1 is the smooth L1 loss 

function, as defined in [50]. The box encoding of box b with respect to a is a vector:
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ϕ(b; a) =
xc
wa

,
yc
ha

, log w, log h
T

, (3)

where xc and yc are the center coordinates of the box, w is the box width, and h is the box 

height. wa and ha are the width and height of the anchor a. The geometry of an anchor, a 

predicted bounding box, and a ground truth box is shown diagrammatically in Figure 9. The 

classification loss is expressed as a function of the predicted class fcls(I; a, θ) and pa
∗:

Lcls(a, I; θ) = LCE pa
∗, f cls(I; a, θ) , (4)

where LCE is the cross-entropy loss function. The total loss for a is expressed as the 

weighted sum of the location-based loss and the classification loss [48]:

LRPN(a, I; θ) = α ⋅ Lloc(a, I; θ) + β ⋅ Lcls(a, I; θ), (5)

where α, β are weights chosen to balance localization and classification losses [48]. To train 

the object detection model, (5) is averaged over the set of anchors and minimized with 

respect to parameters θ.

Region Proposal Network Transfer Learning—The RPN is an ideal candidate for the 

application of transfer learning, as it identifies regions of interest (RoIs) in images, rather 

than identifying particular types of objects. Transfer learning is a machine learning 

technique where information that is learned in one setting is exploited to improve 

generalization in another setting. It has been shown that transfer learning is particularly 

applicable for domain-specific tasks with limited training data [52,53]. When training an 

object detection network on a large dataset with many classes, the RPN learns to identify 

subsections of the image that likely contain an object, without discriminating by object class. 

This property is leveraged by first pretraining the object detection system on a large dataset 

with many classes of objects, namely the Microsoft Common Objects in Context (COCO) 

dataset [54]. Interestingly, when the RPN from the trained object detection system is applied 

to an X-ray image, it immediately identifies casting defects amongst other interesting 

regions of the image. The output of the RPN after training solely on the COCO dataset is 

shown in Figure 10.

REGION-BASED DETECTOR

Thus far the defect detection system is able to select a fixed number of region proposals 

from the original image. This section describes how a region-based detector (RBD) is used 

to classify the casting defects in each region, and fine-tune the bounding box coordinates. 

The RBD is based on the Faster R-CNN object detection network [46].

Ferguson et al. Page 9

Smart Sustain Manuf Syst. Author manuscript; available in PMC 2019 May 13.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



The input to the RBD is cropped from the output of ResNet-101 feature extractor, according 

to the shape of the regressed bounding box. Unfortunately, the size of the input is dependent 

on the size of the bounding box. To address this issue, an RoIAlign layer is used to convert 

the input to a fixed-length feature vector [12]. RoIAlign works by dividing the h × w RoI 

window into an H × W grid of sub-windows of size h/H × w/W. Bilinear interpolation [55] 

is used to compute the exact values of the input features at four regularly sampled locations 

in each sub-window. The reader is referred to [50] for a more detailed description of the 

RoIAlign layer. The resulting feature vector has spatial dimensions H × W, regardless of the 

input size.

Each feature vector from the RoIAlign layer is fed into a sequence of convolutional and fully 

connected layers. In the proposed defect detection system, the RBD contains two 

convolutional layers and two fully connected layers. The last fully connected layer produces 

two output vectors: The first vector contains probability estimates for each of the K object 

classes plus a catch-all “background” class. The second vector encodes refined bounding-

box positions for one of the K classes.

The RBD is trained by minimizing a joint regression and classification loss function, similar 

to the one used for the RPN. The reader is referred to [50] for a detailed description of the 

loss function and training process.

Defect Segmentation—Instance segmentation is performed by predicting a segmentation 

mask for each RoI. The prediction of segmentation masks is performed using another CNN, 

referred to as the instance segmentation network. The input to the segmentation network is a 

block of features cropped from the output of the feature extractor. The instance segmentation 

network has a 28×28×K dimensional output for each RoI, which encodes K binary masks of 

resolution 28×28, one for each of the K classes. The instance segmentation network is 

shown alongside the RBD in Figure 12.

During training, a per-pixel sigmoid function is applied to the output of the instance 

segmentation network. The loss function Lmask is defined as the average binary cross-

entropy loss. For an RoI associated with ground-truth class i, Lmask is only defined on the i-
th mask (other mask outputs do not contribute to the loss). This definition of Lmask allows 

the network to generate masks for every class without competition among classes. It follows 

that the instance segmentation network can be trained by minimizing the joint RBD and 

mask loss. At test time, one mask is predicted for each class (K masks in total). However, 

only the i-th mask is used, where i is the predicted class by the classification branch of the 

RBD. The 28 × 28 floating-number mask output is then resized to the RoI size, and 

binarized at a threshold of 0.5. Some example masks are shown in Figure 13.

Implementation Details and Experimental Results

This section describes the implementation of the casting defect detection system described 

in the previous section. The model is primarily trained and evaluated using images from the 

GDXray dataset. [13]. The Castings series of this dataset contains 2727 X-ray images 

mainly from automotive parts, including aluminum wheels and knuckles. The casting 
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defects in each image are labelled with tight fitting bounding-boxes. The size of the images 

in the dataset ranges from 256 × 256 pixels to 768 × 572 pixels. To ensure the results are 

consistent with previous work, the training and testing data is divided in the same way as 

described in [49].

TRAINING

The model is trained in a manner similar to many other modern object detection networks, 

such as Faster R-CNN and Mask R-CNN [12,46]. However, several adjustments are made to 

account for the small size of casting defects, and the limited number of images in the 

GDXray dataset. Images are scaled so that the longest edge is no larger than 768 pixels. 

Images are then padded with black pixels to a size of 768 × 768 pixels. Additionally, the 

images are randomly flipped horizontally and vertically at training time. No other form of 

preprocessing is applied to the images at training or testing time.

Transfer learning is used to reduce the total training time and improve the accuracy of the 

trained models, as depicted in Figure 13. The ResNet-101 feature extractor is initialized 

using weights from a ResNet-101 network that was trained on the ImageNet dataset. The 

defect detection system is then pre-trained on the COCO dataset [54]. When pretraining the 

model, the learning rates are adjusted to the schedule outlined in [48]. Training on the 

relatively large COCO dataset ensures that each model is initialized to localize common 

objects before it is trained to localize defects. Training on the COCO dataset is conducted 

using 8 NVIDIA K80 GPUs. Each mini-batch has 2 images per GPU and each image has 

100 sampled RoIs, with a ratio of 1:3 of positive to negatives. As in Faster R-CNN, an RoI is 

considered positive if it has IoU with a ground-truth box of at least 0.5 and negative 

otherwise.

The defect detection system is further fine-tuned on the GDXray dataset as follows: The 

output layers of the RBD and instance segmentation layers are resized, as they return 

predictions for the 80 object classes in the COCO dataset. More specifically, the output 

shape of these layers is resized to accommodate for two output classes, namely “Casting 

Defect” and “Background”. The weights of the resized layers are initialized randomly using 

a Gaussian distribution with zero mean and a 0.01 standard deviation. The defect detection 

system is trained on the GDXray dataset for 80 epochs, holding all parameters fixed except 

those of the output layers. The defect detection system is then trained further for an 

additional 80 epochs, without holding any weights fixed.

INFERENCE

The defect detection system is evaluated on a 3.6 GHz Intel Xeon E5 desktop computer 

machine with 8 CPU cores, 32 GB RAM, and a single NVIDIA GTX 1080 Ti Graphics 

Processing Unit (GPU). The models are evaluated with the GPU being enabled and disabled. 

For each image, the top 600 region proposals are selected by objectness score from the RPN 

and evaluated using the RBD. Masks are only predicted for the top 100 bounding boxes 

from the RBD. The proposed defect detection system is trained with and without the 

instance segmentation module, to investigate whether the inclusion of the instance 

segmentation module changes bounding box prediction accuracy. The accuracy of the 
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system is evaluated using the GDXray Castings dataset. Every image in the testing data set 

is processed individually (no batching). The accuracy of each model is evaluated using the 

mean of average precision (mAP) as a metric [56]. The IoU metric is used to determine 

whether a bounding box prediction is to be considered correct. To be considered a correct 

detection, the area of overlap ao between the predicted bounding box Bp and ground truth 

bounding box Bgt must exceed 0.5 according to the formula:

aO =
𝖺𝗋𝖾𝖺(Bp ∩ Bgt)
𝖺𝗋𝖾𝖺(Bp ∪ Bgt)

, (6)

where Bp ∩ Bgt denotes the intersection of the predicted and ground truth bounding boxes 

and Bp ∪ Bgt denotes their union. The average precision is reported for both the bounding 

box prediction (mAPbbox) and segmentation mask prediction (mAPmask).

MAIN RESULTS

As shown in Table 2, the speed and accuracy of the defect detection system is compared to 

similar systems from previous research [49]. The proposed defect detection system exceeds 

the previous state-of-the-art performance on casting defect detection reaching an mAPbbox 

of 0.957. Some example outputs from the trained defect detection system are shown in 

Figure 14. The proposed defect detection system exceeds the Faster R-CNN model from 

[49] in terms of accuracy and evaluation time. The improvement in accuracy is thought to be 

largely due to benefits arising from joint prediction of bounding boxes and segmentation 

masks. Both systems take a similar amount of time to evaluate on the CPU, but the proposed 

system is faster than the Faster R-CNN system when evaluated on a GPU. This difference 

arises probably because our implementation of Mask R-CNN is more efficient at leveraging 

the parallel processing capabilities of the GPU than the Faster R-CNN implementation used 

in [49]. It should be noted that single stage detection systems such as the SSD ResNet-101 

system proposed in [49] have a significantly faster evaluation time than the defect detection 

system proposed in this article.

When the proposed defect detection system is trained without the segmentation module, the 

system only reaches an mAPbbox of 0.931. That is, the bounding-box prediction accuracy of 

the proposed defect detection system is higher when the system is trained simultaneously on 

casting defect detection and casting defect instance segmentation tasks. This is a common 

benefit of multi-task learning which is well-documented in the literature [12,46,50]. The 

accuracy is improved when both tasks are learned in parallel, as the bounding box and 

segmentation modules use a shared representation of the input image (from the feature 

extractor) [57]. However, it should be noted that the proposed system is approximately 12% 

slower when simultaneously performing object detection and image segmentation. The 

memory requirements at training and testing time are also higher, when object detection and 

instance segmentation are performed simultaneously compared to pure object detection. For 

inference, the GPU memory requirement for simultaneous object detection and instance 

segmentation is 9.72 Gigabytes, which is 9 % higher than that for object detection alone.
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ERROR ANALYSIS

The proposed system makes very few misclassifications on GDXray Castings test dataset. In 

this section two example misclassifications are presented and discussed. Figure 15 provides 

an example where the defect detection system produces a false positive detection. In this 

case, the proposed defect detection system identifies a region of the X-ray image which 

appears to be a defect in the X-ray machine itself. This defect is not included GDXray 

castings dataset, and hence is labelled as a misclassification. Similar errors could be avoided 

in future systems by removing bounding box predictions which lie outside the object being 

imaged. Figure 16 provides an example where the bounding box coordinates are incorrectly 

predicted, resulting in a misclassification according to the IoU metric. However, it should be 

noted that the label in this case is particularly subjective; the ground truth could alternatively 

be labelled as two small defects rather than one large one.

Discussion

During the development of the proposed casting defect detection system, a number of 

experiments were conducted to better understand the system. This section presents the 

results of these experiments, and discusses the properties of the proposed system.

SPEED / ACCURACY TRADEOFF

There is an inherent tradeoff between speed and accuracy in most modern object detection 

systems [48]. The number of region proposals selected for the RBD is known to affect the 

speed and accuracy of object detection networks based on the Faster R-CNN framework 

[12,46,50]. Increasing the number of region proposals decreases the chance that an object 

will be missed, but it increases the computational demand when evaluating the network. 

Researchers typically achieve good results on complex object detection tasks using 3000 

region proposals. A number of tests were conducted to find a suitable number of region 

proposals for the defect detection task. Figure 17 shows the relationship between accuracy, 

evaluation time and the number of region proposals. Based on these results, the use of 600 

region proposals is considered to provide a good balance between speed and accuracy.

DATA REQUIREMENTS

As with many deep learning tasks, it takes a large amount of labelled data to train an 

accurate classifier. To evaluate how the size of the training dataset influences the model 

accuracy, the defect detection system is trained several times, each time with a different 

amount of training data. The mAPbbox and mAPmask performance of each trained system is 

observed. Figure 18 shows how the amount of training data affects the accuracy of the 

trained defect detection system. The object detection accuracy (mAPbbox) and segmentation 

accuracy (mAPmask) improve significantly when the size of the training dataset is increased 

from ~1100 to 2308 images. It also appears that a large amount of training data is required to 

obtain satisfactory instance segmentation performance compared to defect detection 

performance. Extrapolating from Figure 18 suggests that a higher mAP could be achieved 

with a larger training dataset.
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TRAINING SET AUGMENTATION

It is well-documented that training data augmentation can be used to artificially increase the 

size of training datasets with the purpose of increasing the test prediction accuracy [12,50]. 

The effect of several common image augmentation techniques on testing accuracy is 

evaluated in this section. Randomly horizontally flipping images is a technique where 

images are horizontally flipped at training time. This technique tends to be beneficial when 

training CNNs, as the label of an object is agnostic to horizontal flipping. On the other hand, 

vertical flipping is less common as many objects, such as cars and trains, seldomly appear 

upside-down. Gaussian blur is a common technique in image processing as it helps to reduce 

random noise that may have been introduced by the camera or image compression algorithm 

[58]. In this study, the Gaussian blur augmentation technique involved convolving each 

training image with a Gaussian kernel using a standard deviation of 1.0 pixels. Adding 

Gaussian noise to the training images is also a common technique for improving the 

robustness of the trained model to noise in the input images [59]. In this study, zero-mean 

Gaussian noise with a standard deviation equal to 0.05 of the image dynamic range, is added 

to each image. In this context, the dynamic range of the image is defined as the range 

between the darkest pixel and the lightest pixel in the image. The augmentation techniques 

are applied during the training phase only, with the original images being used at test time.

As shown in Table 3, data augmentation techniques significantly impact the accuracy of the 

trained system. The best accuracy is obtained using a combination of horizontal and vertical 

flipping. Additional techniques, such as Gaussian blur, Gaussian noise, and random 

cropping negatively impact accuracy. Due to the small size of most casting defects in the 

GDXray Castings dataset, blurring or adding noise to the images likely makes defect 

detection more difficult, counteracting the benefits of these data augmentation techniques.

TRANSFER LEARNING

This study hypothesized that transfer learning is largely responsible for the high prediction 

accuracy obtained by the proposed defect detection system. The system is able to generate 

meaningful image features and good region proposals for GDXray casting images, before it 

is trained on the GDXray Casting dataset. This is made possible by initializing the ResNet 

feature extractor using weights pretrained on the ImageNet dataset and subsequently training 

the defect detection system on the COCO dataset. To test the influence of transfer learning, 

three training schemes are tested: In training scheme (a) the proposed defect detection 

system is trained on the GDXray Castings dataset without pretraining on the ImageNet or 

COCO datasets. Xavier initialization [60] is used to randomly assign the initial weights to 

the feature extraction layers. In training scheme (b) the same training process is repeated but 

the feature extractor weights are initialized using weights pretrained on the ImageNet 

dataset. Training scheme (c) uses pretrained ImageNet weights COCO pretraining, as 

described in the “Defect Detection System” section.

In Table 4, each trained system is evaluated on the GDXray Castings test dataset. Training 

scheme (a) does not leverage transfer learning, and hence the resulting system obtains a low 

mAPbbox of 0.651 on the GDXray Castings test dataset. In training scheme (b), the feature 

extractor is initialized using pretrained ImageNet, and hence the system obtains a higher 
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mAPbbox of 0.874 on the same dataset. By fully leveraging transfer learning, training 

scheme (c) leads to a system that obtains a mAPbbox of 0.957, as described earlier. In Table 

4, the mAP of the trained systems is also reported on the GDXray Castings training dataset. 

In all cases, the model fits the training data closely, demonstrating that transfer learning 

affects the system’s ability to generalize predictions to unseen images rather than its ability 

to fit to the training dataset.

WELD DEFECT SEGMENTATION WITH MULTI-CLASS LEARNING

The ability to generalize a model to multiple tasks is highly beneficial in a number of 

applications. The proposed defect detection system was retrained on both the GDXray 

Castings dataset and the GDXray Welds dataset. The GDXray Welds dataset contains 88 

annotated high-resolution X-ray images of welds, ranging from 3176 to 4998 pixels wide. 

Each high-resolution image is divided horizontally into 8 smaller images for testing and 

training, yielding a total of 704 images. 80 % of the images are randomly assigned to the 

training set, with the remaining 20 % assigned to the testing set. Unlike the GDXray 

Castings dataset, the GDXray Welds dataset is only annotated with segmentation masks. 

Bounding boxes are fitted to the segmentation masks by identifying closed shapes in the 

mask using a binary border following algorithm [61], and wrapping each shape in a tightly 

fitting bounding box. The defect detection system is simultaneously trained on images from 

the Castings and Welds training sets. The defect detection system is able to simultaneously 

identify casting defects and welding defects, reaching a segmentation accuracy (mAPmask) 

of 0.850 on the GDXray Welds test dataset.

Some example predictions are shown in Figure 19. The detection and segmentation of 

welding defects can be considered very accurate, especially given the small size of the 

GDXray Welds dataset with only 88 high-resolution images. Unfortunately, there is no 

measurable improvement on the accuracy of casting defect detection when jointly training 

on both datasets.

DEFECT DETECTION ON OTHER DATASETS USING ZERO-SHOT TRANSFER

A good defect detection system should be able to classify defects for a wide range of 

different objects. The defect detection system can be said to generalize well if it is able to 

detect defects in objects that do not appear in the training dataset. In the field of machine 

learning, zero-shot transfer is the process of taking a trained model, and using it, without 

retraining, to make predictions on an entirely different dataset. To test the generalization 

properties of the proposed defect detection system, the trained system is tested on a range of 

X-ray images from other sources. The system correctly identifies a number of defects in a 

previously unseen X-ray image of a jet turbine blade, as shown in Figure 20. The jet turbine 

blade contains five casting defects, of which four are identified correctly. It is unsurprising 

that the system fails to identify one of the casting defects in the image, as there are no jet 

engine turbine blades in the GDXray dataset. Nonetheless, the fact that the system can 

identify defects in images from different datasets demonstrates its potential for 

generalizability and robustness.
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Summary and Conclusion

This work presents a defect detection system for simultaneous detection and segmentation of 

defects in metal castings. This ability to simultaneously perform defect detection and 

segmentation makes the proposed system suitable for a range of automated quality control 

applications. The proposed defect detection system exceeds state-of-the-art performance for 

defect detection on the GDXray Castings dataset obtaining a mean average precision 

(mAPbbox) of 0.957, and establishes a new benchmark for instance segmentation on the 

same dataset. This high-accuracy system is developed by leveraging a number of powerful 

paradigms in machine learning, including transfer learning, dataset augmentation, and multi-

task learning. The benefit of the application of each of these paradigms was evaluated 

quantitively through extensive ablation testing.

The defect detection system described in this work is able to detect casting and welding 

defects with very high accuracy. Future work could involve training the same network to 

detect defects in other materials such as wood or glass. The proposed defect detection 

system was designed for multi-class detection, so the system could naturally be extended 

detect a range of different defect types in multiple materials. The defect detection system 

described in this work could also be trained to detect defects in additive manufacturing 

applications.

The proposed defect detection system is accurate and performant enough to be useful in a 

real manufacturing setting. However, the training process for the system is complex and 

computationally expensive. Future work could focus on developing a standardized method 

of representing these models, making it easier to distribute the trained models.
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Figure 1. 
Examples of different computer vision tasks for casting defect detection.
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Figure 2. 
Examples of X-ray images in the GDXray Castings dataset. The colored boxes show the 

ground-truth labels for casting defects.
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Figure 3. 
Convolution of an image with a kernel to produce a feature map. Zero-padding is used to 

ensure that the spatial dimensions of the input layer are preserved [42].
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Figure 4. 
A cell from the Residual Network architecture.
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Figure 5. 
The neural network architecture of the proposed defect detection system. The system 

consists of four convolutional neural networks, namely the ResNet-101 feature extractor, 

region proposal network, region-based detector and the mask prediction network.
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Figure 6. 
Feature maps from the last layer of the "conv 4" ResNet feature extractor. Clockwise from 

the top left image: (a) the resized and padded X-ray image, (b) a feature map which appears 

to capture horizontal gradients (c) a feature map which appears to capture long straight 

vertical edges, (d) a feature map which appears to capture hole-shaped objects.
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Figure 7. 
Ground truth casting defect locations (left). The top 50 region proposals from the RPN for 

the same X-Ray image (right).
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Figure 8. 
Anchor Boxes at a certain position in the feature map.
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Figure 9. 
The geometry of an anchor, a predicted bounding box, and a ground truth box.
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Figure 10. 
The top 50 regions of interest, as predicted by a region proposal network trained on the 

Microsoft Common Objects in Context dataset. The predicted regions of interest are shown 

in blue, and the ground-truth casting defect locations are shown in red.
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Figure 11. 
Head architecture of the proposed defect detection network. Numbers denote spatial 

resolution and channels. Arrows denote either convolution, deconvolution, or fully 

connected layers as can be inferred from context (convolution preserves spatial dimension 

while deconvolution increases it). All convolution layers are 3×3, except the output 

convolution layer which is 1×1. Deconvolution layers are 2×2 with stride 2.
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Figure 12. 
Examples of floating point masks. The top row shows predicted bounding boxes, and the 

bottom row shows the corresponding predicted segmentation masks. Masks are shown here 

at 28 × 28 pixel resolution, as predicted by the instance segmentation module.
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Figure 13. 
Training the proposed defect detection system with GDXray and transfer learning.
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Figure 14. 
Example detections of casting defects from the proposed defect detection system
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Figure 15. 
An example of a false positive casting defect label, where a casting defect is incorrectly 

detected in the X-ray machine itself. This label is considered a false positive as ground-truth 

defects should only be labeled on the object being scanned.
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Figure 16. 
Casting defect misclassification due to bounding box regression error. In this instance, the 

defect detection system failed to regress the correct bounding box coordinates resulting in a 

misclassification according to the IoU metric.
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Figure 17. 
Relationship between casting defect detection accuracy, evaluation speed, and the number of 

region proposals.
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Figure 18. 
Mean average precision (mAP) on the test set, given different sized training sets. The object 

detection accuracy (mAPbbox) and segmentation accuracy (mAPmask) are both shown.
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Figure 19. 
Comparison of weld defect detections to ground truth data, using one image from the 

GDXray Welds series. The task is primarily an instance segmentation task, so the ground 

truth bounding boxes are not shown.
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Figure 20. 
Defect detection and segmentation results on an X-ray image of a jet turbine blade. The 

defect detection system correctly identifies four out of the 5 five defects in the image. The 

top right defect is incorrectly classified as both a “Casting Defect” and a “Welding Defect”.
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Table 1.

The neural network architecture used for feature extraction. The architecture is based on the ResNet-101 

architecture, but excludes the “conv5_x” block which is primarily designed for image classification [44]. The 

term stride refers to the step size of the convolution operation.

Layer name Filter Size
(width × height, number filters)

Output Size
(width × height × depth)

conv1 7 × 7, 64, stride 2 112 × 112 × 64

conv2_x

3 × 3, max pool, stride 2

56 × 56 × 256
1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3

conv3_x

1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4 28 × 28 × 512

conv4_x

1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 23 14 × 14 × 1024
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Table 2.

Comparison of the accuracy and performance of each model on the defect detection task. Results are 

compared to the previous state-of-the-art results, presented in [49].

Method Evaluation time /
image using CPU [s]

Evaluation time /
image using GPU [s]

mAP bbox mAP mask

Defect detection system (Object detection only) 5.340 0.145 0.931 -

Defect detection system (Detection & segmentation) 6.240 0.165 0.957 0.930

Faster R-CNN [49] 6.319 0.512 0.921 -

SSD ResNet-101 [49] 0.141 0.051 0.762 -
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Table 3.

Influence of data augmentation techniques on test accuracy. The bounding box prediction accuracy (mAPbbox) 

and instance segmentation accuracy (mAPmask) are reported on the GDXray Castings test set.

Horizontal flip Vertical flip Gaussian Blur Gaussian Noise Random
Cropping

mAPbbox mAP mask

- - - - - 0.907 0.889

Yes - - - - 0.936 0.920

Yes Yes - - - 0.957 0.930

Yes Yes Yes - - 0.854 0.832

Yes Yes - Yes - 0.897 0.883

Yes Yes - - Yes 0.950 0.931
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Table 4.

Quantitative results indicating the influence of transfer learning on the accuracy of the trained defect detection 

system. The bounding box prediction accuracy (mAPbbox) and instance segmentation accuracy (mAPmask) are 

reported on the GDXray Castings training dataset and GDXray Castings test dataset.

GDXRay Castings
Training Set

GDXRay Castings Test
Set

Training
Scheme

Feature Extractor
Initialization

Pretraining on
MS COCO

Dataset
mAPbbox mAP mask mAPbbox mAP mask

a Xavier Initialization [63] (Random) No 0.970 0.960 0.651 0.420

b Pretrained ImageNet Weights No 1.00 0.981 0.874 0.721

c Pretrained ImageNet Weights Yes 1.00 0.991 0.957 0.930
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