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Abstract

Motivation: Synergistic drug combinations are a promising approach to achieve a desirable thera-

peutic effect in complex diseases through the multi-target mechanism. However, in vivo screening

of all possible multi-drug combinations remains cost-prohibitive. An effective and robust computa-

tional model to predict drug synergy in silico will greatly facilitate this process.

Results: We developed DIGREM (Drug-Induced Genomic Response models for identification of

Effective Multi-drug combinations), an online tool kit that can effectively predict drug synergy. DIGREM

integrates DIGRE, IUPUI_CCBB, gene set-based and correlation-based models for users to predict syn-

ergistic drug combinations with dose–response information and drug-treated gene expression profiles.

Availability and implementation: http://lce.biohpc.swmed.edu/drugcombination

Contact: Yang.Xie@UTSouthwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past decade, many promising anticancer drug candidates

have failed in clinical trials for various reasons, mostly related to a

lack of efficacy and drug resistance (Holohan et al., 2013; Huang

et al., 2014b; Printz, 2015). Because of these challenges, therapeutic

discovery has been gradually shifting from a traditional ‘one gene,

one drug, one disease’ paradigm to looking for synergistic multi-

drug combinations (Al-Lazikani et al., 2012), which can potentially

overcome the limitations of monotherapy by modulating multiple

cellular processes simultaneously (Jia et al., 2009). Traditional high

throughput screening is impractical for searching for effective multi-

drug therapies because of the huge volume of possible combinations.

It is much more efficient to predict drug synergism using an in silico

approach and only validate the most promising combinations.

Ordinary differential equation-based methods simulate the dy-

namic effect of drug combinations by modeling the responses or ac-

tivity levels of components in a pathway, and they have been

successfully applied to certain pathways to explain kinase inhibitor

cooperativity, e.g. the eGFR pathway (Araujo et al., 2005).

However, an explicit description of the kinetics of a complex cellu-

lar network is usually unfeasible, which limits its broader applica-

tion. Recently, drug synergism prediction has improved through the

use of new computational models that incorporate massive next gen-

eration sequencing and protein–protein interaction data (Huang

et al., 2014a; Zhao et al., 2011).

In order to facilitate the development of computational models

for in silico drug screening, in 2012, the DREAM Challenge initia-

tive in collaboration with the National Cancer Institute launched a

community-based challenge for predicting compound pair syner-

gism. The transcriptomic and dose–response data of 14 individual

drugs were generated to predict the synergistic effect of all 91 pos-

sible drug pair combinations (Bansal et al., 2014). Prediction per-

formances were evaluated by the experimentally derived synergistic

effects and quantified using a probabilistic concordance index (PC-

index). The PC-index of the submissions ranged from 0.61 to 0.42
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(random guess has a PC-index of 0.5). The two best-performing

methods, the Drug-Induced Genomic Residual Effect (DIGRE)

model developed by our team and the IUPUI_CCBB model, have sig-

nificantly higher PC-indexes (0.613 and 0.605, respectively) and

much higher consistency compared to the other methods (Bansal

et al., 2014). In this study, we further improved our DIGRE model

by implementing a context-specific gene network.

Recently, several other new strategies have been proposed and

applied to the DREAM dataset. Zhao et al. (2014) presented a

correlation-based method using transcriptomic profiles; Sun et al.

(2015) developed a new model named RACS that employed semi-

supervised learning techniques. Hsu et al. (2016) proposed a gene

set-based scoring algorithm. Nonetheless, open source implementa-

tion is still largely unavailable, which restricts the translation of

computational predictions to real experimental discovery. To meet

this growing demand, we developed the user-friendly online tool

DIGREM (Drug-Induced Genomic REsponse Models), which inte-

grates four models, DIGRE, IUPUI_CCBB and the abovementioned

gene-set based method and correlation-based method (Fig. 1), for

researchers to predict drug synergistic effects using their own data

(details in Supplementary Note 1 and on website).

2 Materials and methods

The DIGRE model is built on the assumption that when cells are

treated by two drugs A and B sequentially, the transcriptomic

change (genomic residual effect) induced by the first drug A will

further contribute to the effect of the second drug B. The effect of

drug combination can be simulated by the average effect of drug A

followed by drug B, and vice versa. The implementation of DIGRE

consists of three main steps: (i) Comparison of the differential gene

expression induced by each individual drug in eight KEGG path-

ways related to cell growth (focused view, CGP), and neighboring

genes in 32 cancer-relevant pathways (global view, GP), in order to

generate the similarity score r. (ii) Estimation of the marginal cell

survival rate reduction induced by drug B given the existence of drug

A by integrating the similarity score r into the dose–response curves

of both drug A and B. (iii) Estimation of the synergistic score by

aggregating the effect of drug A and the marginal effect of drug B.

For details about the DIGRE model, readers can refer to

Supplementary Note 1 and Yang et al. (2015).

A more comprehensive and accurate gene network is a key compo-

nent for the DIGRE model to better estimate r. DIGRE uses the

KEGG pathway by default. User can also upload a self-constructed

network if a context-specific gene network is available. We removed

the dependency on dose–response data in the DIGRE model in order

to make the model more generalizable to different scenarios. When

dose–response data are not provided, the compound similarity scores

are calculated and used as the synergistic scores to rank the drug pairs.

The IUPUI_CCBB model, gene-set-based model and correlation-

based model are motivated by a similar idea as the DIGRE model:

that a synergistic drug pair should perturb functionally similar genes,

biological pathways or cellular processes. The IUPUI_CCBB model

has a similar workflow as the DIGRE model except that it does not

consider up-stream genes or the dose–response curve. A statistical test

was applied to identify commonly disturbed genes in a core gene set

by two drugs respectively, so replicates are required to ensure statistic-

al power (Goswami et al., 2015). Rather than looking at individual

genes or a defined gene set, the gene-set-based model calculates a

gene-set enrichment score across all gene ontology and oncogenic sig-

nature gene-sets, and ranks drug pairs by an average percentage of

commonly disturbed genes within the co-enriched gene sets (Hsu

et al., 2016). The correlation-based method takes another approach. It

calculates the correlation between the expression profiles of common

differentially expressed genes induced by each drug in a drug pair.

3 Results

The original KEGG pathway DIGRE used in the challenge was first

retrieved almost 4 years ago. It has now been updated with the most

recent KEGG pathway information. As a result the accuracy of the

DIGRE model in DREAM data has increased from 0.613 to 0.618.

In addition, we have introduced a lymphoma-specific gene network

constructed by a partial correlation based method (Peng et al.,

2009), and the PC-index has further increased to 0.627

(Supplementary Table S1). When dose–response data are not pro-

vided, DIGRE model still maintains comparable predictive power,

with a PC-index of 0.612. A more complete comparison of the dif-

ferent methods on the DREAM dataset can be found in

Supplementary Figures S1–S3 and Supplementary Table S2.

4 Implementation

The DIGREM combo kit is implemented in R. By default, it will

automatically run four models and report the predicted synergistic

scores for each individual method. The drug pairs are ranked based

on the synergistic score predicted by the DIGRE model, with the

most synergistic pairs on the top. Replicates are required for

IUPUI_CCBB, the gene-set-based and correlation-based models to

Fig. 1. (a) DIGRE model workflow: (1) Drug-treated gene expression and

gene–gene interaction network are used to generate similarity scores (r);

(2) combine r and dose–response curve to compute the genomic residual ef-

fect; (3) then the synergistic score is calculated and visualized. (b) DIGREM

website analysis page interface
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run statistical tests and normalization (if replicates are not found,

these methods will be skipped). A heat map and a bar plot will be

displayed in the website to visualize the predicted drug synergy

results by DIGRE model once the analysis is completed. The R

package (DIGREsyn, https://github.com/Minzhe/DIGREsyn) and

command line tool are also available on the website for analyzing

large datasets on a local machine.

5 Conclusion

We introduced a user-friendly web-server, DIGREM, which is the

first publicly accessible free software to prioritize synergistic drug

pairs using transcriptomic and dose–response data. It will facilitate

the discovery of synergistic drug combinations in large compound

screening and lead to a better understanding of drug interaction.
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