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Abstract

Motivation: Canonical forms of the antibody complementarity-determining regions (CDRs) were

first described in 1987 and have been redefined on multiple occasions since. The canonical forms

are often used to approximate the antibody binding site shape as they can be predicted from se-

quence. A rapid predictor would facilitate the annotation of CDR structures in the large amounts of

repertoire data now becoming available from next generation sequencing experiments.

Results: SCALOP annotates CDR canonical forms for antibody sequences, supported by an auto-

updating database to capture the latest cluster information. Its accuracy is comparable to that of a

standard structural predictor but it is 800 times faster. The auto-updating nature of SCALOP

ensures that it always attains the best possible coverage.

Availability and implementation: SCALOP is available as a web application and for download

under a GPLv3 license at opig.stats.ox.ac.uk/webapps/scalop.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antibodies are proteins of the immune system that bind to foreign

molecules. The binding site is largely formed of six complementar-

ity-determining regions (CDRs): three on each of the heavy and light

chains. Conformational clusters, known as ‘canonical forms’, have

been observed in five of the six CDRs (e.g. Chothia and Lesk, 1987;

North et al., 2011; Nowak et al., 2016). Canonical forms have been

redefined in the literature many times, but each update has been a

static snapshot of the available data. These constant renewals illus-

trate how the growth of structural data continuously modifies our

understanding of CDR loop structures, with 10 canonical forms in

1987 (Chothia and Lesk, 1987) and 26 by 2016 (Nowak et al.,

2016).

Several sequence-based canonical form prediction methods have

been developed (e.g. Chothia and Lesk, 1987; Long et al., 2018;

North et al., 2011; Nowak et al., 2016). Chothia and Lesk (1987)

suggested structurally-determining residues for canonical form assign-

ment. Using a similar approach, Swindells et al. (2017) published a

freely available web server that can handle bulk canonical form as-

signment, but some clusters lack a representative structure. Hidden

Markov models have also been built for cluster assignment (North

et al., 2011; Nowak et al., 2016). The most recently published method

used a Gradient Boosting Machine to annotate CDR backbone con-

formations with up to 85.1% accuracy (Long et al., 2018). However,

none of these tools uses an auto-updating database, and none provides

both a web interface and a freely available software package for large-

scale sequence analysis.
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Here we present SCALOP, which both clusters the H1, H2, L1,

L2 and L3 CDRs in an auto-updating database, and creates a canon-

ical form predictor. SCALOP can be used to rapidly approximate an

antibody binding site shape from sequence alone (Krawczyk et al.,

2018) with a minimum accuracy of 89.47% (Table 1)

(Supplementary Material). The tool is available as a web server and

as a Python package for bulk processing.

2 Algorithm

SCALOP takes one or a set of amino acid sequences of full antibody

chains as input. It then numbers the sequence with ANARCI

(Dunbar and Deane, 2016), and scores the extracted CDR sequences

against PSSMs of the appropriate clusters. The cluster nomenclature

follows that of Nowak et al. (2016) (Supplementary Material). The

input CDR sequence is then assigned to the cluster with the max-

imum score above a scoring threshold (Supplementary Material).

SCALOP returns the name of the assigned cluster, and the PDB code

and chain identifier of the assigned cluster’s median structure as the

result. SCALOP can return a structural model if a structure of the

framework is given alongside the CDR sequence (Supplementary

Material). The database is updated monthly, previous databases are

available from the website.

2.1 Building the PSSM
We adopted the length-independent CDR clustering method devel-

oped by Nowak et al. (2016). Structures in SAbDab (Dunbar et al.,

2014) available as of July 10, 2017 were used (Supplementary

Material). We built PSSMs for each cluster using their unique

sequences only:

Mk;j ¼ log
pk;j

bk

� �

where Mk;j is the element score, pk;j is the probability of observing

an amino acid k at the ANARCI-numbered position j within the

cluster and bk is the background probability of k (Supplementary

Material).

2.2 Cluster assignment
To make a cluster prediction, we only consider the target sequence

against clusters of the respective CDR types (i.e. H1 or H2). The

PSSM score for a target sequence, sc for cluster c is:

sc ¼
XJ

j¼J0

Mk;j

where J is the set of positions in the target sequence. Since L2 loop

structures are often invariant, we assign L2 loops of the dominant

sequence length to a single canonical form; otherwise, it is not

clustered.

3 Benchmark

We evaluated the performance of SCALOP on our training set using a

leave-one-out cross-validation protocol (Table 1) and on a blind test

set (Supplementary Material). It achieved similar results on both. We

also compared to an adapted version of FREAD, an accurate

database-search method for loop structure prediction (Deane and

Blundell, 2001; Krawczyk et al., 2018) (Supplementary Material).

This version does not generate a structural model, but returns the

PDB code of its prediction. The prediction coverage and precision of

the methods are comparable (Table 1) (Supplementary Material).

To assess the speed and the portion of consistent predictions

made by SCALOP and FREAD, we ran both predictors on a next

generation sequencing dataset, with �8 million light chain and �5

million heavy chain sequences (Krawczyk et al., 2018). About 98%

of the predictions are consistent between the two methods

(Supplementary Material). On a single core, predicting 100 sequen-

ces requires 227s using FREAD, but 0.29s using SCALOP. This

rapid prediction suggests the possibility of running SCALOP as a

fast and reliable first-screen.

In order to ensure that SCALOP always offers the best possible

prediction coverage, it uses an auto-updating database. Figure 1

demonstrates the advantage of this auto-updating approach using

L3 as an example. We selected the representative years based on pre-

vious publication dates of canonical forms definitions (Al-Lazikani

et al., 1997; North et al., 2011; Nowak et al., 2016). Data until the

end of the year were used, i.e. for 2016, all structures available on

SAbDab deposited before the end of 2016 were used. In 1997, there

was only a single L3 cluster; by 2016 there were seven and the por-

tion of non-clustered data had more than halved. Using the 1997

dataset for prediction, we achieve similar precision as with 2017’s

data (97.4% in 1997 and 94.0% in 2017), but �30% less coverage.
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Table 1. Coverage and precision of SCALOP and FREAD on

SAbDab

H1 H2 L1 L2 L3

Coverage (%) SCALOP 93.75 97.54 97.38 98.50 91.69

FREAD 96.79 93.38 98.76 98.89 98.02

Precision (%) SCALOP 89.26 93.60 95.67 99.13 93.31

FREAD 80.19 88.50 92.72 98.27 91.29

Note: A target structure with a root-mean-square deviation of <1.5 Å to

the predicted structure is considered correct.

Fig. 1. The changes in L3 clusters in the past 20 years. The radii of the pie

charts are proportional to the log(number of sequences). In 1997, only one L3

cluster existed whose members were all length-9 loops. In 2011, four clusters

existed, covering different sequence lengths. Between 2011 and 2016, some

length-10 sequences joined the 2011-L3-9-A cluster, which becomes the 2016-

L3-9, 10-A cluster. The enriched knowledge improves the prediction coverage

of SCALOP while retaining the precision. The numbers below the pie chart

are a leave-one-out (if needed) cross-validation on all antibodies up to July 1,

2018 (Supplementary Material)
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