

Cochrane Database of Systematic Reviews

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review)

Shepherd E, Salam RA, Middleton P, Han S, Makrides M, McIntyre S, Badawi N, Crowther CA

Shepherd E, Salam RA, Middleton P, Han S, Makrides M, McIntyre S, Badawi N, Crowther CA. Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews. *Cochrane Database of Systematic Reviews* 2018, Issue 6. Art. No.: CD012409. DOI: 10.1002/14651858.CD012409.pub2.

www.cochranelibrary.com

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

WILEY

TABLE OF CONTENTS

HEADER	1
ABSTRACT	1
PLAIN LANGUAGE SUMMARY	3
BACKGROUND	4
OBJECTIVES	6
METHODS	6
RESULTS	8
Figure 1	10
DISCUSSION	19
AUTHORS' CONCLUSIONS	21
ACKNOWLEDGEMENTS	22
REFERENCES	23
ADDITIONAL TABLES	29
APPENDICES	103
CONTRIBUTIONS OF AUTHORS	133
DECLARATIONS OF INTEREST	133
SOURCES OF SUPPORT	133
INDEX TERMS	134

[Overview of Reviews]

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews

Emily Shepherd¹, Rehana A Salam², Philippa Middleton³, Shanshan Han¹, Maria Makrides³, Sarah McIntyre⁴, Nadia Badawi^{4,5}, Caroline A Crowther⁶

¹ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology, The University of Adelaide, Adelaide, Australia. ²Division of Women and Child Health, Aga Khan University Hospital, Karachi, Pakistan. ³Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, Australia. ⁴Research Institute, Cerebral Palsy Alliance, University of Sydney, Sydney, Australia. ⁵Grace Centre for Newborn Care, The Children's Hospital at Westmead, Sydney, Australia. ⁶Liggins Institute, The University of Auckland, Auckland, New Zealand

Contact address: Emily Shepherd, ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology, The University of Adelaide, Adelaide, South Australia, 5006, Australia. emily.shepherd@adelaide.edu.au.

Editorial group: Cochrane Neonatal Group. **Publication status and date:** New, published in Issue 6, 2018.

Citation: Shepherd E, Salam RA, Middleton P, Han S, Makrides M, McIntyre S, Badawi N, Crowther CA. Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews. *Cochrane Database of Systematic Reviews* 2018, Issue 6. Art. No.: CD012409. DOI: 10.1002/14651858.CD012409.pub2.

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

Cerebral palsy is an umbrella term that encompasses disorders of movement and posture attributed to non-progressive disturbances occurring in the developing foetal or infant brain. As there are diverse risk factors and aetiologies, no one strategy will prevent cerebral palsy. Therefore, there is a need to systematically consider all potentially relevant interventions for prevention.

Objectives

Primary

To summarise the evidence from Cochrane Systematic Reviews regarding effects of neonatal interventions for preventing cerebral palsy (reducing cerebral palsy risk).

Secondary

To summarise the evidence from Cochrane Systematic Reviews regarding effects of neonatal interventions that may increase cerebral palsy risk.

Methods

We searched the *Cochrane Database of Systematic Reviews* (27 November 2016) for reviews of neonatal interventions reporting on cerebral palsy. Two review authors assessed reviews for inclusion, extracted data, and assessed review quality (using AMSTAR and ROBIS) and quality of the evidence (using the GRADE approach). Reviews were organised by topic; findings were summarised in text and were tabulated. Interventions were categorised as effective (high-quality evidence of effectiveness); possibly effective (moderate-quality evidence of harm or lack of effectiveness); and no conclusions possible (low- to very low-quality evidence).

Main results

Forty-three Cochrane Reviews were included. A further 102 reviews pre-specified the outcome cerebral palsy, but none of the included randomised controlled trials (RCTs) reported this outcome. Included reviews were generally of high quality and had low risk of bias, as determined by AMSTAR and ROBIS. These reviews involved 454 RCTs; data for cerebral palsy were available from 96 (21%) RCTs involving 15,885 children. Review authors considered interventions for neonates with perinatal asphyxia or with evidence of neonatal encephalopathy (3); interventions for neonates born preterm and/or at low or very low birthweight (33); and interventions for other specific groups of 'at risk' neonates (7). Quality of evidence (GRADE) ranged from very low to high.

Interventions for neonates with perinatal asphyxia or with evidence of neonatal encephalopathy

Effective interventions: high-quality evidence of effectiveness

Researchers found a reduction in cerebral palsy following therapeutic hypothermia versus standard care for newborns with hypoxic ischaemic encephalopathy (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.54 to 0.82; seven trials; 881 children).

No conclusions possible: very low-quality evidence

One review observed no clear differences in cerebral palsy following therapeutic hypothermia versus standard care.

Interventions for neonates born preterm and/or at low or very low birthweight

Possibly effective interventions: moderate-quality evidence of effectiveness

Researchers found a reduction in cerebral palsy with prophylactic methylxanthines (caffeine) versus placebo for endotracheal extubation in preterm infants (RR 0.54, 95% CI 0.32 to 0.92; one trial; 644 children).

Probably ineffective interventions: moderate-quality evidence of harm

Researchers reported an increase in cerebral palsy (RR 1.45, 95% CI 1.06 to 1.98; 12 trials; 1452 children) and cerebral palsy in assessed survivors (RR 1.50, 95% CI 1.13 to 2.00; 12 trials; 959 children) following early (at less than eight days of age) postnatal corticosteroids versus placebo or no treatment for preventing chronic lung disease in preterm infants.

Probably ineffective interventions: moderate-quality evidence of lack of effectiveness

Trial results showed no clear differences in cerebral palsy following ethamsylate versus placebo for prevention of morbidity and mortality in preterm or very low birthweight infants (RR 1.13, 95% CI 0.64 to 2.00; three trials, 532 children); volume expansion versus no treatment (RR 0.76, 95% CI 0.48 to 1.20; one trial; 604 children); gelatin versus fresh frozen plasma (RR 0.94, 95% CI 0.52 to 1.69; one trial, 399 children) for prevention of morbidity and mortality in very preterm infants; prophylactic indomethacin versus placebo for preventing mortality and mortality in preterm infants (RR 1.04, 95% CI 0.77 to 1.40; four trials; 1372 children); synthetic surfactant versus placebo for respiratory distress syndrome in preterm infants (RR 0.76, 95% CI 0.55 to 1.05; five trials; 1557 children); or prophylactic phototherapy versus standard care (starting phototherapy when serum bilirubin reached a pre-specified level) for preventing jaundice in preterm or low birthweight infants (RR 0.96, 95% CI 0.50 to 1.85; two trials; 756 children).

No conclusions possible: low- to very low-quality evidence

No clear differences in cerebral palsy were observed with interventions assessed in 21 reviews.

Interventions for other specific groups of 'at risk' neonates

No conclusions possible: low- to very low-quality evidence

Review authors observed no clear differences in cerebral palsy with interventions assessed in five reviews.

Authors' conclusions

This overview summarises evidence from Cochrane Systematic Reviews regarding effects of neonatal interventions on cerebral palsy, and can be used by researchers, funding bodies, policy makers, clinicians, and consumers to aid decision-making and evidence translation. To formally assess other benefits and/or harms of included interventions, including impact on risk factors for cerebral palsy, review of the included Reviews is recommended.

Therapeutic hypothermia versus standard care for newborns with hypoxic ischaemic encephalopathy can prevent cerebral palsy, and prophylactic methylxanthines (caffeine) versus placebo for endotracheal extubation in preterm infants may reduce cerebral palsy risk. Early (at less than eight days of age) postnatal corticosteroids versus placebo or no treatment for preventing chronic lung disease in preterm infants may increase cerebral palsy risk.

Cerebral palsy is rarely identified at birth, has diverse risk factors and aetiologies, and is diagnosed in approximately one in 500 children. To date, only a small proportion of Cochrane Systematic Reviews assessing neonatal interventions have been able to report on this outcome. There is an urgent need for long-term follow-up of RCTs of such interventions addressing risk factors for cerebral palsy (through strategies such as data linkage with registries) and for consideration of the use of relatively new interim assessments (including the General Movements Assessment). Such RCTs must be rigorous in their design and must aim for consistency in cerebral palsy outcome measurement and reporting to facilitate pooling of data and thus to maximise research efforts focused on prevention.

PLAIN LANGUAGE SUMMARY

Interventions for babies from birth to one month of life for preventing cerebral palsy: an overview of Cochrane Systematic Reviews

What is the issue?

'Cerebral palsy' is a term that includes a group of conditions affecting people's ability to move; it is the most common physical disability in childhood. Cerebral palsy is usually due to events before, during, or after childbirth that lead to injury to babies' developing brains. No single cause of cerebral palsy is known. For many children, the cause of cerebral palsy is unclear, but many risk factors are known. The biggest risk factor is preterm birth (birth before 37 weeks of pregnancy). Other risk factors during the neonatal period (birth to one month of life) include prolonged loss of oxygen during birth; brain injury; strokes or seizures; disorders of the heart, blood vessels, airways, and lungs; prolonged mechanical assistance for breathing; some infections; jaundice (yellow discolouration of the skin and eyes due to excess bilirubin in the blood); and some syndromes or abnormalities of chromosomes (structures that hold genes).

Why is this important?

As there are different risk factors for and causes of cerebral palsy, it is likely that different interventions may be needed to prevent cerebral palsy by reducing risk factors. This overview summarises evidence about preventing cerebral palsy that has been presented in Cochrane Systematic Reviews of interventions during the neonatal period.

What evidence did we find?

We searched for evidence on 27 November 2016, and identified 43 Cochrane Reviews assessing interventions during the neonatal period that reported some information on cerebral palsy. These Reviews were all of moderate to high quality, but the quality of the evidence about cerebral palsy ranged from very low to high. Three Reviews assessed interventions for newborn babies who may have had a lack of oxygen at or around the time of birth; 33 Reviews assessed interventions for babies born preterm or at low birthweight; and seven Reviews assessed interventions for other groups of newborn babies at risk of injury to their brains (such as newborn babies with low blood sugar at birth).

We found that one intervention was effective for cerebral palsy prevention. Newborn babies who may have had a lack of oxygen at or around the time of birth who had induced hypothermia (cooling of their body or just their brain) were less likely to develop cerebral palsy than babies who did not receive hypothermia (seven trials; 881 children; high-quality evidence). We found that one intervention was possibly effective for cerebral palsy prevention. Preterm newborns who received methylxanthines (caffeine) when weaning from machine-assisted breathing (extubation from mechanical ventilation) was planned were less likely to develop cerebral palsy than babies who received a placebo (one trial; 644 children; moderate-quality evidence). We found one intervention that was probably ineffective and may cause harm: Preterm newborns who received early (at less than eight days of age) corticosteroids to prevent chronic lung disease were more likely to develop cerebral palsy than babies who received a placebo (12 trials; 959 children; moderate-quality evidence). We found that five other interventions were probably ineffective (did not prevent or increased the chance of cerebral palsy) (moderate-quality evidence). Review authors did not find enough evidence to say whether the other interventions prevented, increased, or had no impact on cerebral palsy (low- or very low-quality evidence).

What does this mean?

This overview identified one intervention that was effective in preventing cerebral palsy (induced hypothermia for newborn babies who may have had a lack of oxygen), one that was possibly effective for preventing cerebral palsy (caffeine for preterm babies weaning from machine-assisted breathing), one that appeared to cause harm (corticosteroids at less than eight days of age for preterm babies to prevent chronic lung disease), and five that did not appear to make a difference. For the other interventions assessed, there was not enough evidence to allow conclusions. It is important that additional good quality trials assessing interventions that might impact cerebral palsy risk factors conduct long-term follow-up to measure the impact of these interventions. We identified over 100 other Cochrane Reviews that may in the future provide information on interventions during the neonatal period for preventing cerebral palsy if they include long-term follow-up.

BACKGROUND

Description of the condition

Cerebral palsy: definition and prevalence

'Cerebral palsy' was originally (and continues to be) defined by clinical description at a time when there was little knowledge of aetiology or pathology (Morris 2007). Today, many registries and surveillance programmes, including those in Australia, the United Kingdom, and Europe, highlight five key elements of cerebral palsy: It is an 'umbrella term'; it is permanent but not unchanging; it involves a disorder of movement or posture or both, and of motor function; it is due to a non-progressive interference, lesion, or abnormality; and the interference, lesion, or abnormality arose in the developing or immature brain (Cans 2000; Mutch 1992; Rosenbaum 2007; Smithers-Sheedy 2014). As cerebral palsy is defined by clinical description, which may change over time, a longer time span for diagnosis is considered useful to confirm that the condition meets criteria for cerebral palsy and to accurately describe the motor impairment. Thus, final ascertainment for surveillance programmes across the world ranges from four to 12 years, with many considering data to be 'complete' at or near five years (Smithers-Sheedy 2014). Although average age at diagnosis has been around 18 months, recent evidence has suggested that cerebral palsy may be reliably detected as early as three to four months' post term age via tests such as Prechtl's Qualitative Assessment of General Movements and medical resonance imaging (Bosanquet 2013; Morgan 2016).

Cerebral palsy is the most common physical disability in childhood. In a recent meta-analysis, including 19 studies (with varying ages of ascertainment), the global pooled prevalence was 2.11 per 1000 live births (95% confidence interval (Cl) 1.98 to 2.25); a cumulative meta-analysis demonstrated stability over the past 10 years (Oskoui 2013). Similar rates have been reported in countries that have used consistent methods of ascertainment for over 20 years (such as Australia, Sweden, and England), with most published estimates in the region of 2 per 1000 (Blair 2006). In low- and middle-income countries, prevalence estimates have tended to be in a similar range or higher (Blair 2006; Cans 2000). However, emerging evidence, including rates from Australia and Europe, now shows that overall rates and severity of the condition are starting to decline for the first time (Reid 2015; Sellier 2015).

Cerebral palsy: causes and risk factors

Brain injury was acquired during an event more than 28 days after birth in approximately 6% of individuals with cerebral palsy (ACPR Group 2013). In the remaining 94% of individuals, brain injury occurred during pregnancy, at birth, or over the first 28 days of life (ACPR Group 2013). Preterm birth is one of the principal risk factors for cerebral palsy and associated neurosensory disabilities (Himpens 2008; Oskoui 2013), with over 40% of individuals with cerebral palsy born preterm (ACPR Group 2013). However, more than half of all individuals with cerebral palsy are born at term (ACPR Group 2013).

Studies on antenatal, intrapartum, and neonatal risk factors for cerebral palsy are abundant. Although a great number of risk factors have been identified, their commonality is that separately, or in combination, they influence potentially preventable pathways to brain injury. Risk factors commonly reported include (i) factors before conception (e.g. low or advanced maternal age, high parity, nulliparity, a short or long interpregnancy interval, a history of stillbirth, multiple miscarriages, neonatal death or preterm birth, family history of cerebral palsy and other genetic predispositions, low socioeconomic status, pre-existing maternal conditions (such as epilepsy or intellectual disability)); (ii) factors in early pregnancy (e.g. male sex, multiple gestation, congenital malformations or birth defects, infections (such as TORCH complex - toxoplasmosis (parasite), other infections, rubella, cytomegalovirus, herpes simplex virus)); (iii) factors during pregnancy (e.g. maternal disease (such as thyroid disorders), pregnancy complications (such as pre-eclampsia, placenta praevia, and placental abruption), intrauterine infection or inflammation and chorioamnionitis, intrauterine growth restriction, other precursors to preterm birth); and (iv) factors around the time of birth and the neonatal period (e.g. acute intrapartum hypoxic events and neonatal encephalopathy, neonatal brain injury (such as intraventricular haemorrhage, periventricular leucomalacia, and hydrocephalus), strokes or seizures, cardiovascular disorders (such as patent ductus arteriosus and hypotension), respiratory disorders, associated prolonged ventilation (such as for respiratory distress syndrome or bronchopulmonary dysplasia), infection (such as sepsis and necrotising enterocolitis), metabolic or endocrine disorders (such as hypoglycaemia and hypothyroidism), neonatal jaundice along with inborn errors of metabolism, particular syndromes or chromosomal abnormalities) (Badawi 2005; Dixon 2002; Drougia 2007; Jacobsson 2004; McIntyre 2011; McIntyre 2013; Murphy 1997; Nelson 2008; Tran 2005; Walstab 2004).

Research has shown that contrary to previous beliefs, birth asphyxia is a relatively rare cause of cerebral palsy (Blair 1988; Ellenberg 2013). A growing body of evidence suggests that genetic abnormalities contribute in some cases (MacLennan 2015; Moreno-De-Luca 2012; O'Callaghan 2009; Oskoui 2015). Common risk factors in the post-neonatal period (some of which also contribute in the neonatal period) include infection (such as meningitis/encephalitis, or severe infection and subsequent severe dehydration), head injury (such as from traffic accidents, other traumatic injury, or non-accidental injury), vascular episodes (such as post cardiac or brain surgery), and other events (such as near drowning or near sudden infant death) (Cans 2004; Germany 2013).

Cerebral palsy: consequences

Cerebral palsy, the leading cause of physical disability for children, is a condition with lifelong impact. Most individuals will survive to adulthood, and some studies suggest that life expectancy can be similar to that of the general population (Colver 2012). For known cases of antenatally or neonatally acquired cerebral palsy, the 20-year survival rate has been estimated at 90%. However, strong associations between increasing motor impairment, severe intellectual impairment, number of severe impairments, and early mortality have been shown (Blair 2001; Hemming 2005; Reid 2012). Frequently used definitions for cerebral palsy acknowledge common co-occurring impairments, diseases, and functional limitations (Rosenbaum 2007). A recent systematic review estimated that among children with cerebral palsy, "1 in 2 had an intellectual disability...1 in 4 could not talk; 1 in 4 had epilepsy; 1 in 4 had a behavior disorder...1 in 10 were blind...and 1 in 25 were deaf" (Novak 2012).

Economic studies have estimated lifetime costs of cerebral palsy, including healthcare, social care, and productivity costs, as EUR 860,000 for men and EUR 800,000 for women in Denmark (in 2000)

(Kruse 2009), and as USD 921,000 for individuals in the United States (in 2003) (CDC 2004). In Australia, the financial cost of cerebral palsy was estimated as AUD 1.47 billion (in 2007), and the value of lost well-being a further AUD 2.4 billion (Access Economics 2008).

The impact of cerebral palsy is considerable (Davis 2010). Accordingly, identification of primary preventive measures has been regarded as a key priority among individuals with cerebral palsy, their families, clinicians, and researchers (McIntyre 2010).

Description of the interventions

Cochrane

Neonatal approaches to prevention of cerebral palsy

Research efforts aimed at prevention of cerebral palsy have increasingly focused on understanding the causes of cerebral palsy. As it is now widely recognised that causes differ, for example, by gestational age (e.g. for preterm and term-born children) and by clinical subtype of cerebral palsy, it is reasonable to consider that successful primary preventive interventions will also vary according to different aetiologies or causal factors.

In this overview, therefore, we will include a broad range of neonatal interventions (with varying primary aims or indications) that may mediate cerebral palsy risk, including (but not limited to):

- interventions for neonates following birth asphyxia or with evidence of encephalopathy (e.g. cooling; erythropoietin; darbepoetin; allopurinol; melatonin; magnesium sulphate; anticonvulsants; xenon; naloxone; dopamine; fluid restriction; acupuncture; umbilical cord stem cells);
- interventions for neonates with neurological disorders, such as intracranial haemorrhage or post-haemorrhagic hydrocephalus (e.g. heparin; antithrombin; phenobarbital; diuretic therapy; erythropoietin; repeated lumbar or ventricular punctures); or those with seizures (anticonvulsants);
- 3. interventions for neonates requiring resuscitation (e.g. air or oxygen for positive-pressure ventilation; lower or higher oxygen concentrations titrated to target oxygen saturations; face mask, laryngeal mask airway, nasal airway or endotracheal intubation; positive end-expiratory pressure; respiratory function monitoring);
- interventions for neonates with cardiovascular disorders, such as hypotension (e.g. corticosteroids; inotropes; early volume expansion; adrenaline; dopamine; dobutamine) or patent ductus arteriosus (e.g. ibuprofen; indomethacin; fluid restriction; surgical ligation);
- 5. interventions for neonates with respiratory disorders, such as apnoea of prematurity (e.g. kinaesthetic stimulation; methylxanthines (caffeine)); respiratory distress syndrome (e.g. early or delayed, prophylactic or selective, protein-containing or protein-free, animal-derived or synthetic pulmonary surfactant; thyroid hormones; continuous distending pressure); or bronchopulmonary dysplasia (chronic lung disease) (e.g. early or late, inhaled or systemic, postnatal corticosteroids);
- interventions for gastrointestinal tract disorders, such as necrotising enterocolitis (e.g. lactoferrin; probiotics; antibiotics; immunoglobulin; peritoneal drainage; laparotomy);
- interventions for neonates with infection, such as for control of general infection (e.g. chlorhexidine skin or cord care; patient isolation for infection; gowning by attendants and visitors in newborn nurseries); fungal and protozoal infections (e.g.

prophylactic antifungal agents; antifungal therapy for invasive fungal infection); viral infections (e.g. antiviral agents for treatment of herpes simplex virus or cytomegalovirus infection); or bacterial infections (e.g. intravenous immunoglobulin for prevention of infection, or for suspected or proven infection; antibiotics for suspected early- or late-onset sepsis; intraventricular antibiotics for meningitis; prophylactic antibiotics for ventilated newborns);

- interventions for neonates with metabolic or endocrine disorders, such as disorders of carbohydrate metabolism (e.g. oral dextrose gel for hypoglycaemia; insulin for hyperglycaemia) or thyroid disorders (postnatal thyroid hormones);
- 9. interventions for neonates with jaundice and liver disorders (e.g. phototherapy);
- 10.interventions focused on nutrition or metabolism for highrisk neonates (i.e. preterm or low birthweight neonates, or both) including enteral nutrition interventions (e.g. high protein intake; donor breast milk; nutrient-enriched formula; multinutrient fortification of human breast milk; responsive or scheduled feeding), parenteral nutrition interventions (e.g. early or late, high or low amino acid administration), or vitamin or mineral supplementation (e.g. glutamine; arginine; iodine; vitamin E);
- 11.interventions for neurodevelopmental care or physical environment management (or both) for neonates (e.g. developmental care to reduce stressors in the neonatal nursery; kangaroo mother care; massage; co-bedding in the neonatal nursery; early developmental programmes post discharge to prevent motor and cognitive impairments); and
- 12.interventions for all neonates at birth, such as newborn screening for inborn errors of metabolism.

We will not consider interventions in the antenatal or intrapartum period (such as magnesium sulphate for foetal neuroprotection (Doyle 2009)), as these interventions will be assessed in a separate overview (Shepherd 2016, under review).

How the intervention might work

Advances in research into several factors that modify the risk of cerebral palsy suggest many opportunities for prevention, with the main neonatal strategies focusing on protection of the immature brain through administration of neuroprotective agents or therapies.

For many individuals born at or near term who develop cerebral palsy, their neonatal course has been seemingly unremarkable, with the exception of those following perinatal asphyxia and with neonatal encephalopathy (brain injury that may be due to cerebral hypoxia and ischaemia before birth) (Badawi 2005; O'Shea 2008). For these neonates, therapeutic hypothermia, applied selectively to the head (as a 'cooling cap') or to the whole body, is one such intervention that can mediate cerebral palsy risk (O'Shea 2008). Beyond cooling, a range of other interventions (including those used as adjuvant therapy with cooling) may contribute to cerebral palsy prevention by protecting against secondary cell death and brain damage following hypoxic-ischaemic insult (Robertson 2012), or by treating the underlying cause(s) of encephalopathy (such as infection or metabolic derangement).

For preterm and very low birthweight neonates, and for other groups of neonates (such as those with hypoglycaemia) who are

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

at increased risk of brain injury, many pharmacological and nonpharmacological interventions in the neonatal period may mediate cerebral palsy risk (O'Shea 2008). Although these interventions differ in their primary aims (such as maintaining adequate ventilation (e.g. through treatment of apnoea of prematurity with caffeine); maintaining normal metabolic status (e.g. through treatment of neonatal hypoglycaemia with dextrose gel); or controlling neonatal seizures (e.g. through use of anticonvulsants)), each may contribute to cerebral palsy prevention by reducing the likelihood or severity of brain injury, and thus of long-term neurodevelopmental sequelae.

Why it is important to do this overview

A multitude of individual studies and Cochrane Systematic Reviews assessing a broad range of neonatal interventions (with varying primary aims or indications) acknowledge the potential for the intervention of interest to influence cerebral palsy risk. With awareness that there are many and varied risk factors for cerebral palsy, and that causes of cerebral palsy differ, there is a need to systematically consider all potentially relevant interventions for their ability to contribute to reducing cerebral palsy risk. As new data suggest possible declining rates and severity of cerebral palsy, it is important to examine the different interventions that may, together, contribute to these observations.

To our knowledge, to date, no 'overview' has brought together the evidence around neonatal interventions for cerebral palsy prevention from Cochrane Systematic Reviews into a single coherent document to be used by researchers, funding bodies, policy makers, clinicians, and consumers to aid decision-making and evidence implementation.

Although the objective of this overview is to summarise the evidence from Cochrane Systematic Reviews regarding effects of neonatal interventions for preventing cerebral palsy, it is also important to consider whether such interventions may, instead, actually contribute to increasing cerebral palsy risk.

Is an overview the right approach?

We have followed the Editorial Decision Tree proposed by the Cochrane Comparing Multiple Interventions Methods Group to establish whether our review would better fit an overview format or an intervention review format, specifically:

- 1. we will review systematic reviews, instead of individual trials;
- 2. we will not compare multiple interventions with the intention of drawing inferences about the comparative effectiveness of these interventions; and
- 3. we intend to present a map of evidence from systematic reviews but with no attempt to rank the interventions.

On the basis of these points, the Editorial Decision Tree recommends an overview as the appropriate format for this review.

OBJECTIVES

Primary

To summarise the evidence from Cochrane Systematic Reviews regarding effects of neonatal interventions for preventing cerebral palsy (reducing cerebral palsy risk).

Secondary

To summarise the evidence from Cochrane Systematic Reviews regarding effects of neonatal interventions that may increase cerebral palsy risk.

METHODS

Criteria for considering reviews for inclusion

In this overview of systematic reviews, we included only published Cochrane Systematic Reviews of neonatal interventions for which cerebral palsy was reported as a primary or secondary review outcome. We identified Cochrane protocols and titles for future inclusion and classified them as 'Ongoing reviews' (in an Appendix).

We made note of publication and search dates of the reviews; however, we did not attempt to update the individual systematic reviews.

Participants

We considered reviews that included:

- 1. neonates with perinatal asphyxia or with evidence of neonatal encephalopathy; and
- 2. neonates born preterm or at low or very low birthweight (or both preterm and low/very low birthweight neonates).

We also included reviews that included other groups of 'at risk' neonates (e.g. neonates with hypoglycaemia), so long as the intervention assessed in the Cochrane Systematic Review was recognised by the review authors as having the potential to influence cerebral palsy risk - cerebral palsy had to be pre-specified as a primary or secondary outcome in the review.

Interventions

We considered all types of interventions used in the neonatal period compared with placebo, no treatment, or an alternative intervention.

We included both pharmacological and non-pharmacological interventions (see Description of the interventions for further description of possible interventions).

Outcomes of interest

Primary

1. Cerebral palsy (regardless of criteria used for diagnosis by review authors or trialists, and regardless of age at diagnosis; however, we have reported any variation)

Secondary

- 1. Cerebral palsy or death (regardless of criteria used for diagnosis by review authors or trialists, and regardless of age at diagnosis; however, we have reported any variation)
- 2. Severity of cerebral palsy (e.g. according to Gross Motor Function Classification System (GMFCS); Manual Ability Classification System (MACS); Communication Function Classification System (CFCS))
- 3. Type of cerebral palsy (e.g. according to topography (diplegia; hemiplegia; quadriplegia; monoplegia; triplegia) or motor type (spastic; dyskinetic; ataxic))

- Motor dysfunction (regardless of criteria used for diagnosis by review authors or trialists, and regardless of age at diagnosis; however, we have reported any variation)
- 5. Other composite outcomes that include cerebral palsy as a component (regardless of criteria used for diagnosis by review authors or trialists, and regardless of age at diagnosis; however, we have reported any variation)

To be included, a review had to pre-specify our overview's primary outcome - cerebral palsy (or a composite outcome that included cerebral palsy*) as a primary or secondary systematic review outcome - and must have reported data for this outcome from at least one of the included trials in the review.

We listed reviews that pre-specified cerebral palsy as a primary or secondary systematic review outcome but provided no reported data from included trials on this outcome as 'Reviews awaiting further classification', and we will reconsider these reviews in future updates of the overview.

* When possible, we extracted data related to cerebral palsy from any composite outcomes that included cerebral palsy. When it was not possible to extract only cerebral palsy data from such composite outcomes, we reported the composite outcome data; however, we reported these separately from the data for our primary outcome (i.e. as a secondary outcome).

Search methods for identification of reviews

We searched the *Cochrane Database of Systematic Reviews* on 27 November 2016, using the term 'cerebral palsy'. We used the search term to search 'all text', not limited to 'title, abstract, or keywords'. We did not apply any language or date restrictions. We searched no other databases. We managed citations retrieved through the search by using Covidence (Covidence 2015).

Data collection and analysis

We based our data collection and synthesis methods on Chapter 22 of the *Cochrane Handbook for Systematic Reviews of Interventions* (Higgins 2011). When appropriate, we prepared the overview using Covidence (Covidence 2015) and Review Manager 5 software (RevMan 2014).

Selection of reviews

Two overview authors independently assessed for inclusion all potential systematic reviews identified by the search. We resolved disagreements through discussion, or, if required, we consulted a third member of the overview team.

Data extraction and management

Two overview authors independently extracted data from the reviews using a pre-defined data extraction form. We resolved discrepancies through discussion or, if needed, through consultation with a third overview author. When information regarding review outcomes was unclear or missing, we accessed the published papers of individual studies for further details.

We extracted information on the following.

- 1. Review characteristics.
 - a. Review title and authors.
 - b. Date that the review was last assessed as up-to-date.
 - c. Number of included trials and numbers of participants (neonates) in the trials and their characteristics (e.g. countries in which the trials were conducted, trial inclusion criteria).
 - d. Quality of the included trials (as reported by the review authors; see 'Quality of studies included within reviews' below under Assessment of methodological quality of included reviews).
 - e. Interventions and comparisons relevant to this overview.
 - f. All pre-specified outcomes relevant to this overview (their definitions, and whether they were primary or secondary outcomes in the included reviews).
 - g. Any other characteristics required to assess and report on review quality (see 'Quality of included reviews' under Assessment of methodological quality of included reviews).
- 2. Statistical summaries*.
 - a. Summary intervention effects (including pooled effects (e.g. risk ratios (RRs), odds ratios (ORs), or mean differences (MDs) as reported in the individual reviews), 95% confidence intervals (Cls), and numbers of studies and participants contributing data to each pooled effect) from comparisons and for outcomes relevant to this overview.
 - b. Information required to assess and report on the quality of evidence for the intervention effects extracted above (see 'Quality of evidence in included reviews' under Assessment of methodological quality of included reviews).

* When review authors were not able to perform meta-analyses and therefore did not report statistical summaries, we extracted from those reviews the narrative text related to results for our overview outcomes.

Assessment of methodological quality of included reviews

Quality of included reviews

We assessed the methodological quality of each systematic review using the AMSTAR (A Measurement Tool to Assess Systematic Reviews) instrument (Shea 2009). AMSTAR evaluates the methods used in a review against 11 distinct criteria and assesses the degree to which review methods are unbiased. Each item on AMSTAR is rated as 'yes' (clearly done), 'no' (clearly not done), 'cannot answer', or 'not applicable'. These criteria were as follows:

- 1. Was an 'a priori' design provided?
- 2. Was there duplicate study selection and data extraction?
- 3. Was a comprehensive literature search performed?
- 4. Was status of the publication used as an inclusion criterion?
- 5. Was a list of studies (included and excluded) provided?
- 6. Were the characteristics of included studies provided?
- 7. Was the scientific quality of included studies assessed and documented?
- 8. Was the scientific quality of included studies used appropriately in formulating conclusions?
- 9. Were the methods used to combine the findings of studies appropriate?
- 10.Was the likelihood of publication bias assessed?

11. Was conflict of interest stated?

For all items except item 4, we considered a rating of 'yes' as adequate. For item 4, we considered a rating of 'no' as adequate. We considered a review that adequately met all of the 11 criteria to be a review of the highest quality (Shea 2009). For this overview, we considered reviews that achieved scores of 8 to 11 as high quality; scores of 4 to 7 as medium quality; and scores of 0 to 3 as low quality.

To further assess risk of bias of the systematic reviews, we additionally used the new ROBIS (Risk of Bias in Systematic Reviews) tool (Whiting 2015). This tool considers risk of bias across four key domains.

- 1. Study eligibility criteria.
- 2. Identification and selection of studies.
- 3. Data collection and study appraisal.
- 4. Synthesis and findings.

A series of questions within each domain elicited information about possible limitations of the systematic review, leading to a judgement about concerns within that domain (low, high, or unclear). We then considered risk of bias of the review as a whole, using signalling questions and information to support the overall judgement of risk of bias (low, high, or unclear) (Whiting 2015).

Two overview authors independently assessed the quality of included reviews using AMSTAR and ROBIS, and another overview author verified this assessment. We resolved differences through discussion or, if needed, through consultation with a third overview author.

We also noted and reported for each review the publication and search dates.

Quality of studies included within reviews

We did not reassess the quality of studies included within reviews but instead reported study quality according to review authors' assessments. We collected this information during the data extraction process.

Quality of evidence in included reviews

We assessed/reported the quality of evidence for our primary outcome (cerebral palsy) and for secondary review outcomes using the GRADE approach, as outlined in the GRADE handbook. We reported the quality of evidence as assessed by systematic review authors (who were in the best position to assess quality, given their familiarity with study-level data) by using GRADEPro 'Summary of findings' tables from the reviews if provided (or when necessary, we constructed such tables using the GRADEpro Guideline Development Tool). The GRADE system assesses the following features for the evidence found for important outcomes.

- 1. Study limitations (risk of bias): internal validity of the evidence.
- 2. Inconsistency: heterogeneity or variability in estimates of effect across studies.
- 3. Indirectness: degrees of difference between populations, interventions, and comparators for the intervention and the outcome of interest.

- 4. Imprecision (random error): extent to which confidence in the effect estimate is adequate to support a particular decision.
- 5. Publication bias: degree of selective publication of studies.

The GRADE system rates the quality of evidence as follows.

- 1. High (further research is very unlikely to change confidence in the estimate of effect).
- 2. Moderate (further research is likely to have an important impact on confidence in the estimate of effect and may change the estimate).
- 3. Low (further research is very likely to have an important impact on confidence in the estimate of effect and is likely to change the estimate).
- 4. Very low (any estimate of effect is very uncertain).

Data synthesis

We prepared a narrative description of characteristics of the included Cochrane Reviews. We organised Review findings by groups of neonates when possible as follows: interventions for neonates with perinatal asphyxia or with evidence of neonatal encephalopathy; interventions for neonates born preterm and at low or very low birthweight; and interventions for other specific groups of 'at risk' neonates.

We summarised the main results of included reviews by categorising their findings in the following framework (as has been used within previous Cochrane and non-Cochrane overviews, such as Farquhar 2015 and Lassi 2015).

- 1. Effective interventions: indicating that the review found highquality evidence of effectiveness for an intervention.
- Possibly effective interventions (more evidence needed): indicating that the review found moderate-quality evidence of effectiveness for an intervention, but more evidence is needed.
- 3. Ineffective interventions: indicating that the review found highquality evidence of lack of effectiveness for an intervention.
- 4. Probably ineffective interventions (more evidence needed): indicating that the review found moderate-quality evidence suggesting lack of effectiveness for an intervention, but more evidence is needed.
- 5. No conclusions possible: indicating that the review found low- or very low-quality evidence, or insufficient evidence to comment on the effectiveness of an intervention.

We based the choice of category on quality of evidence for the primary overview outcome (cerebral palsy). We used separate assessments for different comparisons (e.g. when one intervention was compared both with placebo (or no treatment) and with an alternative intervention). This approach to summarising the evidence was based on an earlier Cochrane overview (Jones 2012), which categorised interventions as 'What works,' 'What may work', and 'Insufficient evidence to make a judgement'.

RESULTS

Our search of the *Cochrane Database of Systematic Reviews* yielded 513 protocols and reviews. Following title and abstract review, we excluded 303 protocols or reviews and assessed the full text of 210 protocols or reviews.

We excluded 25 reviews that did not pre-specify cerebral palsy as a primary or secondary review outcome (see Table 1, 'Characteristics of excluded studies').

We listed an additional 142 protocols and reviews in the Appendices.

1. Appendix 1 ('Ongoing reviews') lists 40 Cochrane protocols that pre-specified cerebral palsy as a primary or secondary outcome;

we will consider these protocols for inclusion in future updates of the overview when they have been published as full reviews.

2. Appendix 2 ('Reviews awaiting further classification') summarises the 102 Cochrane Reviews that pre-specified cerebral palsy as a primary or secondary outcome but reported no data from included trials on this outcome; again, we will consider these reviews for inclusion in future updates of the overview.

We therefore included 43 reviews in this overview. See Figure 1.

Figure 1. Study flow diagram.

Figure 1. (Continued)

Description of included reviews

Of the 43 included reviews:

- 1. Three reviews focused on interventions for neonates with perinatal asphyxia or with evidence of neonatal encephalopathy, categorised under the Cochrane Neonatal 'Neonatal care' topic.
 - a. Asphyxia: 'Allopurinol for preventing mortality and morbidity in newborn infants with hypoxic-ischaemic encephalopathy' (Chaudhari 2012); 'Cooling for newborns with hypoxic ischaemic encephalopathy' (Jacobs 2013); 'Prophylactic barbiturate use for the prevention of morbidity and mortality following perinatal asphyxia' (Young 2016).
- 2. Thirty-three reviews focused on interventions for neonates born preterm and/or at low or very low birthweight, categorised under the following Cochrane Neonatal 'Neonatal care' topics.
 - a. *Haemorrhage: periventricular/intraventricular:* 'Ethamsylate for the prevention of morbidity and mortality in preterm or very low birth weight infants' (Hunt 2010); 'Postnatal phenobarbital for the prevention of intraventricular haemorrhage in preterm infants' (Smit 2013).
 - b. *Hypotension:* 'The effect of inotropes on morbidity and mortality in preterm infants with low systemic or organ blood flow' (Osborn 2007b).
 - c. *Fluid therapy:* 'Early volume expansion for prevention of morbidity and mortality in very preterm infants' (Osborn 2004).
 - d. *Patent ductus arteriosus*: 'Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants' (Fowlie 2010); 'Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants' (Ohlsson 2015).
 - e. *Blood disorders:* 'Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants' (Ohlsson 2014); 'Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants' (Whyte 2011).
 - f. *Nitric oxide:* 'Inhaled nitric oxide for respiratory failure in preterm infants' (Barrington 2010).
 - g. *Apneoa*: 'Methylxanthine treatment for apnoea in preterm infants' (Henderson-Smart 2010b); 'Prophylactic methylxanthine for prevention of apnoea in preterm infants' (Henderson-Smart 2010c).

- h. *Respiratory distress syndrome:* 'Inositol in preterm infants at risk for or having respiratory distress syndrome' (Howlett 2015); 'Animal derived surfactant extract for treatment of respiratory distress syndrome' (Seger 2009); 'Synthetic surfactant for respiratory distress syndrome in preterm infants' (Soll 2000); 'Prophylactic protein free synthetic surfactant for preventing morbidity and mortality in preterm infants' (Soll 2010).
- i. *Mechanical ventilation:* 'Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants' (Cools 2015); 'Continuous distending pressure for respiratory distress in preterm infants' (Ho 2015); 'Prophylactic methylxanthines for endotracheal extubation in preterm infants' (Henderson-Smart 2010).
- j. Bronchopulmonary dysplasia: 'Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants' (Doyle 2014b); 'Moderately early (7 to 14 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants' (Halliday 2003); 'Late (> 7 days) postnatal corticosteroids for chronic lung disease in preterm infants' (Doyle 2014); 'Early administration of inhaled corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates' (Shah 2012); 'Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants' (Darlow 2016).
- k. Necrotising enterocolitis: 'Probiotics for prevention of necrotizing enterocolitis in preterm infants' (AlFaleh 2014); 'Arginine supplementation for prevention of necrotising enterocolitis in preterm infants' (Shah 2007).
- l. *Fungal infections:* 'Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants' (Cleminson 2015).
- m. *Jaundice:* 'Prophylactic phototherapy for preventing jaundice in preterm or low birth weight infants' (Okwundu 2012).
- n. *Parenteral feeding:* 'Glutamine supplementation to prevent morbidity and mortality in preterm infants' (Moe-Byrne 2016).
- Other neonatal care (including thermal environment and developmental care): 'Thyroid hormones for preventing neurodevelopmental impairment in preterm infants' (Osborn 2001); 'Prophylactic postnatal thyroid hormones for prevention of morbidity and mortality in preterm infants' (Osborn 2007); 'Sound reduction management in

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

the neonatal intensive care unit for preterm or very low birth weight infants' (Almadhoob 2015); 'Kangaroo mother care to reduce morbidity and mortality in low birthweight infants' (Conde-Agudelo 2016); 'Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants' (Spittle 2015).

- 3. Seven reviews focused on interventions for other specific groups of 'at risk' neonates, categorised under the following Cochrane Neonatal 'Neonatal care' topics.
 - a. *Pulmonary hypertension:* 'Endothelin receptor antagonists for persistent pulmonary hypertension in term and late preterm infants' (More 2016).
 - b. *Resuscitation:* 'Air versus oxygen for resuscitation of infants at birth' (Tan 2005).
 - c. *Nitric oxide:* 'Nitric oxide for respiratory failure in infants born at or near term' (Finer 2006).
 - d. *Mechanical ventilation:* 'Long versus short inspiratory times in neonates receiving mechanical ventilation' (Kamlin 2003); 'Volume-targeted versus pressure-limited ventilation in the neonate' (Wheeler 2010) (although in these reviews, relevant outcome data were from neonates born preterm and/or at low or very low birthweight only).
 - e. *Herpes simplex:* 'Antiviral agents for treatment of herpes simplex virus infection in neonates' (Jones 2009).
 - f. *Hypoglycaemia*: 'Oral dextrose gel for the treatment of hypoglycaemia in newborn infants' (Weston 2016).

The 43 reviews included between one - as in Almadhoob 2015, Osborn 2007b, and Shah 2007 - and 33 - as in Ohlsson 2015 randomised controlled trials, and between 34 - as in Almadhoob 2015 - and 5529 - as in AlFaleh 2014 - infants. In total, the 43 reviews included 454 randomised trials, involving 63,977 infants.

One-third (14) of the 43 reviews had conducted searches (and were considered 'up-to-date') in the past three years (November 2013 to November 2016) (AlFaleh 2014; Almadhoob 2015; Cleminson 2015; Conde-Agudelo 2016; Cools 2015; Darlow 2016; Ho 2015; Howlett 2015; Moe-Byrne 2016; More 2016; Ohlsson 2015; Spittle 2015; Weston 2016; Young 2016). The other 29 reviews had latest search end dates ranging from May 1998 - in Soll 2000 - to August 2013 - in Doyle 2014b.

See Table 2 and Table 3 for further details of the characteristics of the 43 included reviews (including review IDs and titles, search dates and when the review was last assessed as up-to-date, numbers of randomised controlled trials and infants included, interventions and comparisons examined, overview outcomes reported, and summary of included trial limitations (risk of bias)).

Methodological quality of included reviews

We rated the quality of included reviews using the AMSTAR and ROBIS tools (Shea 2009 and Whiting 2015, respectively).

With regards to AMSTAR criteria:

- 41/43 reviews clearly pre-specified their design; for two reviews, this was unclear, with no reference made/access given to prespecified published protocols (Seger 2009; Soll 2000);
- 2. 40/43 reviews clearly reported duplicate study selection and data extraction; for three reviews, it was unclear as to whether

two independent review authors were involved in study selection and data extraction (Halliday 2003; Osborn 2001; Soll 2000);

- 42/43 reviews performed a comprehensive literature search; one review searched only one electronic database (in addition to electronic searching and handsearching of meeting abstracts) (Finer 2006);
- 4. all reviews considered grey literature;
- 41/43 reviews provided lists of both included and excluded studies; two reviews did not mention excluded studies and therefore provided no list (Henderson-Smart 2010; Shah 2007);
- 6. all reviews provided the characteristics of included studies;
- 7. all reviews assessed and documented the scientific quality of included studies;
- 8. 42/43 reviews clearly used scientific quality of included studies appropriately in formulating conclusions; one review did not clearly incorporate the quality of included studies into the conclusions (Barrington 2010);
- 9. 35/38 reviews combined the findings of studies using appropriate methods; three reviews provided no/limited discussion and/or exploration of substantial statistical heterogeneity present in some review meta-analyses and did not use a random-effects model (Halliday 2003; Okwundu 2012; Soll 2000); for five reviews, review authors found this item to be 'not applicable' and conducted no meta-analyses (Almadhoob 2015; Jones 2009; More 2016; Osborn 2007b; Shah 2007);
- 10.18/43 reviews assessed the likelihood of publication bias; 25 reviews did not assess publication bias likelihood and/or did not pre-specify methods to be used if 10 or more trials were included in meta-analyses (AlFaleh 2014; Barrington 2010; Cools 2015; Finer 2006; Fowlie 2010; Halliday 2003; Henderson-Smart 2010; Henderson-Smart 2010b; Henderson-Smart 2010c; Ho 2015; Hunt 2010; Jacobs 2013; Jones 2009; Kamlin 2003; Okwundu 2012; Osborn 2001; Osborn 2004; Osborn 2007; Seger 2009; Shah 2007; Soll 2000; Soll 2010; Spittle 2015; Tan 2005; Wheeler 2010);
- 11.2/43 reviews clearly reported conflicts of interest/potential sources of support for both the review and the included studies (Jacobs 2013; Weston 2016); the remaining 41 reviews did not report conflicts of interests/sources of support for the included studies (AlFaleh 2014; Almadhoob 2015; Barrington 2010; Chaudhari 2012; Cleminson 2015; Conde-Agudelo 2016; Cools 2015; Darlow 2016; Doyle 2014; Doyle 2014b; Finer 2006; Fowlie 2010; Halliday 2003; Henderson-Smart 2010; Henderson-Smart 2010; Henderson-Smart 2010; Jones 2009; Kamlin 2003; Moe-Byrne 2016; More 2016; Ohlsson 2014; Ohlsson 2015; Okwundu 2012; Osborn 2001; Osborn 2004; Osborn 2007; Osborn 2007b; Seger 2009; Shah 2007; Shah 2012; Smit 2013; Soll 2000; Soll 2010; Spittle 2015; Tan 2005; Wheeler 2010; Whyte 2011; Young 2016).

See Table 4 for further details.

With regards to ROBIS domains:

 40 reviews were considered to have 'low risk of bias' across study eligibility criteria, data collection and study appraisal, and synthesis and findings domains, and 39 were considered to have 'low risk of bias' for the identification and selection of studies domain;

- three reviews were considered to have 'unclear risk of bias' for the study eligibility criteria domain; as above, two reviews provided no reference/access to pre-specified published protocols (Seger 2009; Soll 2000); and one review made a notable protocol deviation related to the inclusion criteria (Almadhoob 2015);
- 3. three reviews were considered to have 'unclear risk of bias' for both the identification and selection of studies domain and the data collection and study appraisal domain because review authors did not clearly specify whether two independent review authors were involved in selection of studies, data collection, and study appraisal (Halliday 2003; Osborn 2001; Soll 2000); one further review was considered to have 'unclear risk of bias' for the identification and selection of studies domain, as above, owing to concern regarding comprehensiveness of the search (Finer 2006); and
- 4. finally, three reviews were considered to have 'unclear risk of bias' for the synthesis and findings domain owing to the presence of substantial statistical heterogeneity (with use of a fixed-effect model) in some review meta-analyses that was not clearly explained/explored (Halliday 2003; Okwundu 2012; Soll 2000).

See Table 5 for additional details.

Overall, all 41 included reviews were judged to be of 'high quality' according to AMSTAR (with scores ranging from 8 to 11 out of 11, or from 7 to 9 out of 10), and two were judged to be of 'moderate quality' (with scores of 6 and 7 out of 11) (Halliday 2003; Soll 2000); according to ROBIS, 40 reviews were judged to have 'low risk of bias', and three to have 'unclear risk of bias' (Finer 2006; Osborn 2001; Soll 2000).

Effect of interventions

Below, we have summarised the main results of the included reviews by categorising their findings according to the framework discussed under Data synthesis, organised by groups of neonates and 'Neonatal care' topics.

For further details, including outcome definitions and judgements supporting the quality of the evidence for each outcome, see Table 6 (cerebral palsy); Table 7 (cerebral palsy: subgroup or sensitivity analyses); Table 8 (cerebral palsy or death); Table 9 (severity of cerebral palsy); Table 10 (other composite outcomes that include cerebral palsy); and Table 11 (motor dysfunction).

Interventions for neonates with perinatal asphyxia or evidence of neonatal encephalopathy

Effective interventions: high-quality evidence of effectiveness

Neonatal care: treating asphyxia

High-quality evidence from the Jacobs 2013 review showed a reduction in cerebral palsy among survivors assessed at 18 to 24 months following therapeutic hypothermia versus standard care for newborns with hypoxic-ischaemic encephalopathy (risk ratio (RR) 0.66, 95% confidence interval (CI) 0.54 to 0.82; seven trials; 881 children) (Table 6). Subgroup analysis based on method of cooling (e.g. selective head cooling with mild hypothermia, whole body cooling) showed no clear subgroup differences (Chi² = 0.01, df = 1 (P = 0.93), l² = 0.0%) (Table 7). Low-quality evidence from Jacobs 2013 also showed no clear differences for cerebral palsy at six to seven

years following therapeutic hypothermia versus standard care (RR 0.60, 95% CI 0.31 to 1.18; one trial; 121 children) (Table 6). Highquality evidence from Jacobs 2013 showed reductions in death or major disability among survivors assessed at 18 to 24 months (RR 0.75, 95% CI 0.68 to 0.83; eight trials; 1344 children), major neurodevelopmental disability at 18 to 24 months (RR 0.77, 95% CI 0.63 to 0.94; eight trials; 1344 children), major neurodevelopmental disability among survivors assessed at 18 to 24 months (RR 0.67, 95% CI 0.55 to 0.80; eight trials; 917 children), and neuromotor delay among survivors assessed at 18 to 24 months (RR 0.75, 95% CI 0.59 to 0.94; six trials; 657 children) (Table 10; Table 11). Low-quality evidence suggested no clear differences for death or moderate to severe disability at six to seven years (RR 0.81, 95% CI 0.64 to 1.04; one trial; 190 children) nor for moderate to severe disability at six to seven years (RR 0.92, 95% CI 0.57 to 1.48; one trial; 119 children) following therapeutic hypothermia versus standard care (Table 10).

No conclusions possible: very low-quality evidence

Neonatal care: treating asphyxia

Very low-quality evidence from the Young 2016 review suggested no clear differences for cerebral palsy at three to six years with barbiturates (phenobarbital) versus conventional therapy for prevention of morbidity and mortality following perinatal asphysia (RR 0.58, 95% CI 0.19 to 1.70; two trials; 69 children) (Table 6). Very low-quality evidence from Young 2016 also suggested a reduction in death or major neurodevelopmental disability at three years (RR 0.33, 95% CI 0.14 to 0.78; one trial; 31 children) and in major neurodevelopmental disability at three years (RR 0.24, 95% CI 0.06 to 0.92; one trial; 31 children) following barbiturates (phenobarbital) versus conventional therapy (Table 10).

Very low-quality evidence from the Chaudhari 2012 review suggested no clear differences for severe quadriplegia among survivors at 18 months or at four to eight years following allopurinol versus placebo or no drug for preventing mortality and morbidity among newborn infants with hypoxic-ischaemic encephalopathy (RR 0.59, 95% CI 0.28 to 1.27; three trials; 73 children) (Table 9). Very low-quality evidence from Chaudhari 2012 also suggested no clear differences for death or severe neurodevelopmental disability among survivors at 18 months or at four to eight years following allopurinol versus placebo (RR 0.78, 95% CI 0.56 to 1.08; three trials; 110 children) (Table 10).

Interventions for neonates born preterm and/or at low or very low birthweight

Possibly effective interventions: moderate-quality evidence of effectiveness

Neonatal care: mechanical ventilation

Moderate-quality evidence from the Henderson-Smart 2010 review showed a reduction in cerebral palsy at 18 to 21 months' corrected age with prophylactic methylxanthines (caffeine) versus placebo for endotracheal extubation in preterm infants (RR 0.54, 95% CI 0.32 to 0.92; one trial; 644 children) (Table 6). Moderate-quality evidence from Henderson-Smart 2010 also showed a reduction in death or major disability at 18 to 21 months' corrected age with prophylactic methylxanthines (caffeine) versus placebo (RR 0.85, 95% CI 0.73 to 0.99; one trial; 676 children) (Table 10).

Probably ineffective interventions: moderate-quality evidence of harm

Neonatal care: preventing bronchopulmonary dysplasia

Moderate-quality evidence from the Doyle 2014b review showed an increase in cerebral palsy at 11 months to seven to nine years (RR 1.45, 95% CI 1.06 to 1.98; 12 trials; 1452 children) and in cerebral palsy among survivors assessed at 11 months to seven to nine years (RR 1.50, 95% CI 1.13 to 2.00; 12 trials; 959 children) following early (less than eight days of age) postnatal corticosteroids versus placebo or no treatment for preventing chronic lung disease in preterm infants (Table 6). Subgroup analysis based on type of corticosteroid used (i.e. dexamethasone, hydrocortisone) suggested no clear subgroup differences for cerebral palsy at 11 months to seven to nine years ($Chi^2 = 2.96$, df = 1 (P = 0.09), I² = 66%); however, a possible subgroup difference was identified that was based on the type of corticosteroid used for cerebral palsy among survivors assessed at 11 months to seven to nine years (Chi² = 3.99, df = 1 (P = 0.05), I^2 = 75%), with an increase in risk specifically observed in the dexamethasone (not the hydrocortisone) subgroup (Table 7). Moderate-quality evidence from Doyle 2014b also showed no clear differences for cerebral palsy or death at 11 months to seven to nine years (RR 1.09, 95% CI 0.92 to 1.25; 12 trials; 1452 children) (Table 8) nor for death or major neurosensory disability at 18 to 22 months to 53 months (RR 1.05, 95% CI 0.93 to 1.17; seven trials; 1233 children) (Table 10); Bayley Scales of Infant Development Psychomotor Developmental Index less than minus two standard deviations below the mean at 18 to 22 months or at 25 months (RR 1.17, 95% CI 0.85 to 1.60; three trials; 842 children); or Bayley Scales of Infant Development Psychomotor Developmental Index less than minus two standard deviations below the mean among tested survivors at 18 to 22 months or at 25 months (RR 1.17, 95% CI 0.87 to 1.57; three trials; 528 children) with early postnatal corticosteroids versus placebo or no treatment (Table 11). Lowquality evidence from Doyle 2014b suggested no clear differences between major neurosensory disability at 18 to 22 months to 53 months (RR 1.16, 95% CI 0.94 to 1.43; seven trials; 1233 children) and major neurosensory disability among survivors examined at 18 to 22 months to 53 months (RR 1.14, 95% CI 0.94 to 1.38; seven trials; 799 children) with early postnatal corticosteroids versus placebo or no treatment (Table 10).

Probably ineffective interventions: moderate-quality evidence of lack of effectiveness

Neonatal care: preventing haemorrhage: periventricular/ intraventricular

Moderate-quality evidence from the Hunt 2010 review showed no clear differences for cerebral palsy among surviving children available for follow-up at two years up to 3.5 to 4.2 years following ethamsylate versus placebo for prevention of morbidity and mortality in preterm or very low birthweight infants (RR 1.13, 95% CI 0.64 to 2.00; three trials; 532 children) (Table 6), nor on further subgroup analysis of infants born at less than 31 completed weeks at less than 1500 grams (RR 0.82, 95% CI 0.38 to 1.75; two trials; 328 children) (Table 7). Moderate-quality evidence from Hunt 2010 also showed no clear differences for neurodevelopmental disability at two years of age among surviving children available for follow-up (RR 0.79, 95% CI 0.53 to 1.17; three trials; 532 children), and lowquality evidence suggested no clear differences for death or any disability by two years of age among children with known outcome at any point in time (RR 0.96, 95% CI 0.82 to 1.11; seven trials; 1334 children) following ethamsylate versus placebo (Table 10).

Neonatal care: fluid therapy

Moderate-guality evidence from the Osborn 2004 review showed no clear differences for cerebral palsy among survivors at two years following volume versus no treatment (RR 0.76, 95% CI 0.48 to 1.20; one trial; 604 children) and gelatin versus fresh frozen plasma (RR 0.94, 95% CI 0.52 to 1.69; one trial; 399 children) for prevention of morbidity and mortality in very preterm infants (Table 6). Formal subgroup analyses in Osborn 2004 were not applicable based on timing of treatment, types of infants enrolled, or methodological quality (with the one included trial for this outcome using early treatment (less than 24 hours of age) in unselected preterm infants (not selected on the basis of cardiovascular compromise) and providing complete follow-up for neurodevelopmental outcomes (RR 0.76, 95% CI 0.48 to 1.20; one trial; 604 children, as in main analysis)) (Table 7). Moderate-quality evidence from Osborn 2004 also showed no clear differences between volume versus no treatment for severe neurodevelopmental disability among survivors at two years (RR 0.80, 95% CI 0.52 to 1.23; one trial; 604 children) or for death or severe neurodevelopmental disability among survivors at two years (RR 1.00, 95% CI 0.80 to 1.24; one trial; 776 children); or between gelatin versus fresh frozen plasma for severe neurodevelopmental disability among survivors at two years (RR 0.99, 95% CI 0.57 to 1.72; one trial; 399 children) or for death or severe neurodevelopmental disability among survivors at two years (RR 1.11, 95% CI 0.86 to 1.43; one trial; 518 children) (Table 10).

Neonatal care: preventing/treating patent ductus arteriosus

Moderate-quality evidence from the Fowlie 2010 review showed no clear differences for cerebral palsy at 18 to 54 months (RR 1.04, 95% CI 0.77 to 1.40; four trials; 1372 children) or at eight years (RR 1.24, 95% CI 0.59 to 2.62; one trial; 304 children) following prophylactic indomethacin versus placebo for preventing mortality and morbidity in preterm infants (Table 6). Moderatequality evidence from Fowlie 2010 also showed no clear differences for death or severe neurodevelopmental disability at 18 to 36 months following prophylactic indomethacin versus placebo (RR 1.02, 95% 0.90 to 1.15; three trials; 1491 children) (Table 10).

Neonatal care: treating respiratory distress syndrome

Moderate-quality evidence from the Soll 2000 review showed no clear differences in cerebral palsy among survivors examined at one year (RR 0.76, 95% CI 0.55 to 1.05; five trials; 1557 children) (Table 6) nor in moderate to severe cerebral palsy among survivors examined at one year following synthetic surfactant versus placebo for respiratory distress syndrome in preterm infants (RR 0.75, 95% CI 0.48 to 1.16; five trials; 1557 children) (Table 9).

Neonatal care: preventing jaundice

Moderate-quality evidence from the Okwundu 2012 review showed no clear differences for cerebral palsy in all infants (birthweight < 2500 grams) at one year or at 18 months following prophylactic phototherapy versus standard care (starting phototherapy when serum bilirubin reached a pre-specified level) for preventing jaundice in preterm or low birthweight infants (RR 0.96, 95% CI 0.50 to 1.85; two trials; 756 children) (Table 6). Very low-quality evidence suggested no clear differences for cerebral palsy among all infants (birthweight < 1000 grams) at 18 months (RR 0.29,

95% CI 0.04 to 2.27; one trial; 30 children) (Table 6). Okwundu 2012 reported in text that "Secondary reports emanating from Brown 1985 at six-year follow-up also showed that there was no significant difference in the rate of cerebral palsy between the phototherapy and control group" (not graded). Moderate-quality evidence from Okwundu 2012 did however show a reduction in neurodevelopmental impairment at 18 to 22 months following prophylactic phototherapy versus standard care (RR 0.85, 95% CI 0.74 to 0.99; one trial; 1804 children) (Table 10).

No conclusions possible: low-quality evidence

Neonatal care: preventing/treating blood disorders

Low-quality evidence from Ohlsson 2014 suggested no clear differences for cerebral palsy at 18 to 22 months' corrected age in children examined following darbepoetin alfa versus placebo for preventing red blood cell transfusion in preterm and/or low birthweight infants (RR 0.08, 95% CI 0.00 to 1.40; one trial; 51 children) (Table 6).

Low-quality evidence from Whyte 2011 suggested no clear differences for cerebral palsy at 18 to 21 months' follow-up among survivors following transfusion at a restrictive (low haemoglobin) versus a liberal (high haemoglobin) threshold for preventing morbidity and mortality in very low birthweight infants (RR 1.29, 95% CI 0.55 to 3.03; one trial; 335 children) (Table 6). Low-quality evidence from Whyte 2011 also suggested no clear differences for any neurosensory impairment at 18 to 21 months' follow-up among survivors (RR 1.31, 95% CI 0.90 to 1.90; one trial; 328 children) nor for death or severe morbidity at 18 to 21 months' follow-up (Mental Development Index component defined < 70) (RR 1.17, 95% CI 0.94 to 1.47; one trial; 421 children); however, moderatequality evidence showed a possible increase in death or severe morbidity at 18 to 21 months' follow-up (Mental Development Index component defined < 85) (RR 1.21, 95% CI 1.01 to 1.44; one trial; 421 children) with transfusion at a restrictive (low haemoglobin) versus a liberal (high haemoglobin) threshold (Table 10).

Neonatal care: nitric oxide

Low-quality evidence from Barrington 2010 suggested no clear differences following inhaled nitric oxide versus placebo or no treatment for respiratory failure in preterm infants for cerebral palsy at 18 to 22 months (trial entry before three days based on oxygenation) (RR 1.85, 95% CI 0.93 to 3.71; two trials; 209 children); cerebral palsy at two years' corrected age or at 30 months (trial entry after three days based on bronchopulmonary dysplasia risk) (RR 1.10, 95% CI 0.54 to 2.23; two trials; 498 children); or cerebral palsy at one or two years' corrected age (trials of routine use in intubated preterm infants) (RR 0.94, 95% CI 0.51 to 1.70; two trials; 593 children) (Table 6). Low- to very low-quality evidence from Barrington 2010 also suggested no clear differences for neurodevelopmental disability at 18 to 22 months (trial entry before three days based on oxygenation) (RR 1.05, 95% CI 0.78 to 1.40; two trials; 208 children), neurodevelopmental disability at two years' corrected age or at 30 months (trial entry after three days based on bronchopulmonary dysplasia risk) (RR 0.90, 95% CI 0.74 to 1.09; two trials; 498 children), or neurodevelopmental disability at one or two years' corrected age (trials of routine use in intubated preterm infants) (RR 0.90, 95% CI 0.72 to 1.13; two trials; 593 children) following inhaled nitric oxide versus placebo or no treatment (Table 10). Moderate-quality evidence from Barrington 2010 also showed no clear differences for Bayley Mental or Psychomotor Developmental Index less than minus two standard deviations below the mean at two years' corrected age (trials of routine use in intubated preterm infants) following inhaled nitric oxide versus placebo (RR 0.56, 95% CI 0.33 to 0.93; one trial; 138 children) (Table 11).

Neonatal care: preventing/treating apnoea

Low-quality evidence from the Henderson-Smart 2010b review suggested no clear differences for cerebral palsy at 18 to 21 months' corrected age following caffeine versus placebo for treatment of apnoea in preterm infants (RR 0.60, 95% CI 0.29 to 1.25; one trial; 729 children) (Table 6). Low-quality evidence from Henderson-Smart 2010b also suggested no clear differences in death or major disability at 18 to 21 months' corrected age following caffeine versus placebo (RR 0.85, 95% CI 0.71 to 1.01; one trial; 767 children) (Table 10).

Low-quality evidence from the Henderson-Smart 2010c review suggested no clear differences for cerebral palsy at 18 to 21 months' corrected age following caffeine versus placebo for prevention of apnoea in preterm infants (RR 1.03, 95% CI 0.43 to 2.49; one trial; 415 children) (Table 6). Low-quality evidence from Henderson-Smart 2010c also suggested no clear differences in death or major disability at 18 to 21 months' corrected age following caffeine versus placebo (RR 1.00, 95% CI 0.80 to 1.24; one trial; 423 children) (Table 10).

Neonatal care: preventing respiratory distress syndrome

Low-quality evidence from the Soll 2010 review suggested no clear differences for cerebral palsy at one to two years following prophylactic protein-free synthetic surfactant versus placebo for preventing morbidity and mortality in preterm infants (RR 0.93, 95% CI 0.64 to 1.33; four trials; 670 children) (Table 6). Subgroup analyses were conducted that were based on surfactant product (Exosurf Neonatal, DPPC/HDL; Burroughs Wellcome, Research Triangle Park, North Carolina, USA); however, formal tests for subgroup differences were not applied in the review (Table 7). Low-quality evidence from Soll 2010 also suggested no clear differences for moderate or severe cerebral palsy at one or two years following prophylactic protein-free synthetic surfactant versus placebo (RR 0.92, 95% CI 0.53 to 1.59; four trials; 670 children) (Table 9).

Neonatal care: mechanical ventilation

Low-quality evidence from the Wheeler 2010 review suggested no clear differences for severe disability at six to 18 months and at 22 months (RR 0.86, 95% CI 0.47 to 1.59; two trials; 209 children), for severe disability at 22 months or at death (RR 0.54, 95% CI 0.27 to 1.06; one trial; 109 children) (Table 10), and for gross motor developmental issues (RR 1.00, 95% CI 0.47 to 2.14; one trial; 128 children) (Table 11) following volume-targeted versus pressure-limited ventilation in the neonate.

Neonatal care: preventing/treating bronchopulmonary dysplasia

Low-quality evidence from the Doyle 2014 review suggested no clear differences for cerebral palsy at one to three years (RR 1.06, 95% CI 0.76 to 1.50; 14 trials; 876 children), cerebral palsy at one to three years among survivors assessed (RR 1.05, 95% CI 0.75 to 1.47; 14 trials; 631 children), cerebral palsy at latest age reported (one year up to 17 years) (RR 1.12, 95% CI 0.79 to 1.60; 15 trials; 855 children), or cerebral palsy at latest age reported among

survivors assessed (one year up to 17 years) (RR 1.12, 95% CI 0.79 to 1.58; 15 trials; 591 children) following late (more than seven days of age) postnatal corticosteroids versus placebo or no treatment for chronic lung disease in preterm infants (Table 6). Low-quality evidence from Doyle 2014 also suggested no clear differences for cerebral palsy or death at one to three years (RR 0.92, 95% CI 0.76 to 1.12; 14 trials; 876 children), cerebral palsy or death at latest age reported (one year up to 17 years) (RR 0.95, 95% CI 0.77 to 1.16; 15 trials; 855 children) (Table 8), major neurosensory disability at one year corrected age up to 11 years (RR 1.17, 95% CI 0.85 to 1.60; eight trials; 655 children), major neurosensory disability among survivors assessed at one year corrected age up to 11 years (RR 1.10, 95% CI 0.81 to 1.50; eight trials; 480 children), death or major neurosensory disability at one year corrected age up to 11 years (RR 1.10, 95% CI 0.81 to 1.50; eight trials; 655 children) (Table 10), Bayley Scales of Infant Development Psychomotor Development Index less than minus two standard deviations below the mean at one year corrected age (RR 0.78, 95% CI 0.34 to 1.80; one trial; 118 children), or Bayley Scales of Infant Development Psychomotor Development Index less than minus two standard deviations below the mean among survivors assessed at one year corrected age (RR 0.67, 95% CI 0.30 to 1.50; one trial; 90 children) (Table 11) with late postnatal corticosteroids versus placebo or no treatment.

Low-quality evidence from the Darlow 2016 review suggested no clear differences for neurodevelopmental impairment at 18 to 24 months following supplemental vitamin A versus a sham injection to prevent mortality and short- and long-term morbidity in very low birthweight infants (RR 0.89, 95% CI 0.74 to 1.08; one trial; 538 children) (Table 10). Moderate-quality evidence also showed no clear differences for death or neurodevelopmental impairment at 18 to 24 months following supplemental vitamin A versus a sham injection (RR 0.92, 95% CI 0.81 to 1.05; one trial; 687 children) (Table 10).

Neonatal care: preventing necrotising enterocolitis

Low-quality evidence from the Shah 2007 review suggested no clear differences for cerebral palsy at 36 months' post-menstrual age following arginine supplementation versus placebo for prevention of necrotising enterocolitis in preterm infants (RR 0.88, 95% CI 0.21 to 3.80; one trial; 135 children) (Table 6). Low-quality evidence from Shah 2007 also suggested no clear differences for major neurodevelopmental disability at 36 months' post-menstrual age following arginine supplementation versus placebo (RR 0.65, 95% CI 0.23 to 1.83; one trial; 132 children) (Table 10).

Neonatal care: preventing/treating fungal infection

Low-quality evidence from the Cleminson 2015 review suggested no clear differences for cerebral palsy at 18 to 22 months post term following use of a systemic antifungal agent versus placebo to prevent mortality and morbidity in very low birthweight infants (RR 0.96, 95% CI 0.45 to 2.03; one trial; 219 children) (Table 6). Low-quality evidence from Cleminson 2015 also suggested no clear differences for neurodevelopmental impairment (composite) at 18 to 22 months following use of a systemic antifungal agent versus placebo (RR 1.13, 95% CI 0.71 to 1.81; one trial; 171 children) (Table 10).

Neonatal care: parenteral feeding

Moe-Byrne 2016 assessed glutamine supplementation versus placebo to prevent morbidity and mortality in preterm infants

and reported the following: "van den Berg 2005 reported neurodevelopmental outcomes for infants aged two years post term. Outcomes assessed included...incidence of cerebral palsy... No significant differences between the glutamine and the control groups were reported for any of these individual outcomes" (not graded) (Table 6). Low-quality evidence from the Moe-Byrne 2016 review also suggested no clear differences for neurodevelopmental impairment at two years post term following glutamine supplementation versus placebo (RR 1.07, 95% CI 0.59 to 1.92; one trial; 72 children) (Table 10).

Neonatal care: other

Low-quality evidence from both the Osborn 2001 and Osborn 2007 reviews suggested no clear differences for cerebral palsy at 5.7 years following prophylactic thyroid hormones versus placebo for prevention of morbidity and mortality in preterm infants (RR 0.72, 95% CI 0.28 to 1.84; one trial; 156 children) (Table 6). In Osborn 2007, subgroup analyses based on dosing strategy, timing, and methodological quality were not possible for this outcome, with the one included trial using T4 8 mcg/kg/d, on days 1 to 42, commencing within 48 hours, and being of adequate methodological quality (Table 7). Low-quality evidence from both Osborn 2001 and Osborn 2007 also suggested no clear differences for cerebral palsy or death at 5.7 years following prophylactic thyroid hormones versus placebo (RR 0.70, 95% CI 0.43 to 1.14; one trial; 200 children) (Table 8).

Low-quality evidence from the Conde-Agudelo 2016 review suggested no clear differences for cerebral palsy at 12 months' corrected age following kangaroo mother care versus conventional neonatal care to reduce morbidity and mortality among low birthweight infants (RR 0.65, 95% CI 0.21 to 2.02; one trial; 588 children) (Table 6).

Low-quality evidence from the Spittle 2015 review suggested no clear differences for cerebral palsy at 18 months to six years following early developmental intervention versus standard follow-up post hospital discharge to prevent motor and cognitive impairment in preterm infants (RR 0.82, 95% CI 0.52 to 1.27; seven trials; 985 children) (Table 6). Subgroup analyses based on commencement of intervention (inpatient, post hospital discharge), focus of intervention (parent-infant relationship and infant development, infant development), and quality of studies (high-quality studies, lower-quality studies) were performed for this outcome; however, formal subgroup interaction tests were not applied in the review (Table 7). Low-quality evidence from Spittle 2015 also suggested no clear differences for motor outcome at school age (five years) following early developmental intervention versus standard follow-up (RR 1.12, 95% CI 0.87 to 1.44; two trials; 333 children) (Table 11).

No conclusions possible: very low-quality evidence

Neonatal care: preventing haemorrhage: periventricular/ intraventricular

Very low-quality evidence from the Smit 2013 review suggested no clear differences for severe neurodevelopmental impairment at 27 months (RR 1.44, 95% CI 0.41 to 5.04; one trial; 101 children) nor for mild neurodevelopmental impairment at 27 months (RR 0.57, 95% CI 0.15 to 2.17; one trial; 101 children) following phenobarbital versus no treatment for prevention of intraventricular haemorrhage in preterm infants (Table 10).

Neonatal care: treating hypotension

Very low-quality evidence from the Osborn 2007b review suggested no clear differences for cerebral palsy at three years among survivors assessed following dobutamine versus dopamine in preterm infants with low superior vena cava flow (RR 0.16, 95% CI 0.01 to 2.64; one trial; 13 children) (Table 6). Very low-quality evidence from Osborn 2007b also suggested no clear differences for disability at three years among survivors (RR 0.10, 95% 0.01 to 1.56; one trial; 13 children), for death or disability at three years (RR 0.79, 0.57 to 1.11; one trial; 37 children), or for death or disability at latest follow-up (one to three years) (RR 0.95, 95% CI 0.66 to 1.38; one trial; 41 children) following dobutamine versus dopamine (Table 10).

Neonatal care: treating patent ductus arteriosus

Very low-quality evidence from Ohlsson 2015 suggested no clear differences for moderate or severe cerebral palsy at 18 to 24 months following oral ibuprofen versus intravenous ibuprofen for treatment of patent ductus arteriosus in preterm or low birthweight (or both) infants (RR 1.35, 95% CI 0.24 to 7.48; one trial; 57 children) (Table 6).

Neonatal care: preventing blood disorders

Very low-quality evidence from Ohlsson 2014 suggested no clear differences for cerebral palsy at 18 to 22 months' corrected age among children examined following erythropoietin versus placebo for preventing red blood cell transfusion in preterm and/or low birthweight infants (RR 0.66, 95% CI 0.31 to 1.37; two trials; 153 children) (Table 6). Very low-quality evidence from Ohlsson 2014 also suggested no clear differences for any neurodevelopmental impairment at 18 to 22 months' corrected age among children examined (RR 0.97, 95% CI 0.62 to 1.51; one trial; 99 children) (Table 10) nor for Psychomotor Developmental Index less than 70 at 18 to 22 months' corrected age among children examined (RR 2.33, 95% CI 0.98 to 5.53; one trial; 90 children) following erythropoietin versus placebo (Table 11).

Neonatal care: preventing/treating respiratory distress syndrome

Very low-quality evidence from Howlett 2015 suggested no clear differences for major neural developmental impairment at one year corrected age (RR 0.53, 95% CI 0.24 to 1.16; one trial; 169 children) (Table 10) nor for minor neural developmental impairment at one year corrected age (RR 0.84, 95% CI 0.38 to 1.86; one trial; 169 children) following inositol supplementation (repeat doses) versus placebo in preterm infants at risk for or having respiratory distress syndrome (Table 11).

Very low-quality evidence from Seger 2009 suggested no clear differences for cerebral palsy at one and two years' corrected age following animal-derived surfactant extract versus no treatment for respiratory distress syndrome (RR 0.88, 95% CI 0.34 to 2.27; one trial; 73 children) (Table 6). Subgroup analysis based on surfactant product for this outcome was not applicable, with the one included trial using porcine surfactant extract (Table 7). Very low-quality evidence from Seger 2009 also suggested no clear differences for major developmental disability among survivors at one and two years' corrected age following animal-derived surfactant extract versus no treatment (RR 3.30, 95% 0.14 to 26.78; one trial; 73 children) (Table 10).

Neonatal care: mechanical ventilation

Very low-quality evidence from the Ho 2015 review suggested no clear differences for cerebral palsy at nine to 15 years following continuous distending pressure versus standard care for respiratory distress in preterm infants (RR 5.0, 95% CI 0.26 to 97.37; one trial; 36 children) (Table 6). Subgroup analysis based on type of continuous distending pressure was not possible for this outcome, with the only included trial using continuous negative pressure (Table 7). Very low-quality evidence from Ho 2015 also suggested no clear differences for death or severe disability at nine to 15 years (RR 1.33, 95% CI 0.34, 5.17; one trial; 38 children), for severe disability at nine to 15 years (RR 1.06, 95% CI 0.24 to 4.57; one trial; 37 children), or for any disability at nine to 15 years (RR 0.62, 95% CI 0.31 to 1.21; one trial; 37 children) following continuous distending pressure versus standard care (Table 10).

Very low-quality evidence from the Kamlin 2003 review suggested no clear differences for cerebral palsy among survivors at less than 33 weeks' gestation, at birth, and at 18 months following long versus short inspiratory times among neonates receiving mechanical ventilation (RR 2.9, 95% CI 0.97 to 8.65; one trial; 177 children) (Table 6).

Neonatal care: preventing bronchopulmonary dysplasia

Very low-quality evidence from the Halliday 2003 review suggested no clear differences for cerebral palsy at 12 months' corrected age up to 90 months (RR 1.03, 95% CI 0.47 to 2.24; four trials; 204 children) nor for cerebral palsy among survivors assessed at 12 months' corrected age up to 90 months (RR 0.83, 95% CI 0.39 to 1.74; four trials; 130 children) following moderately early (between seven and 14 days of age) postnatal corticosteroids versus placebo or no treatment for preventing chronic lung disease in preterm infants (Table 6). Very low-quality evidence from Halliday 2003 also suggested no clear differences for cerebral palsy or death at 12 months' corrected age up to 90 months (RR 0.83, 95% CI 0.55 to 1.23; four trials; 204 children) (Table 8), for major neurosensory disability at 15 months' corrected age up to 90 months (RR 1.26, 95% CI 0.45 to 3.49; two trials; 96 children), for major neurosensory disability among survivors assessed at 15 months' corrected age up to 90 months (RR 0.89, 95% CI 0.38 to 2.10; two trials; 56 children), or for death or major neurosensory disability at 15 months' corrected age up to 90 months (RR 1.02, 95% CI 0.66 to 1.56; two trials; 96 children) with moderately early postnatal corticosteroids versus placebo or no treatment (Table 10).

Very low-quality evidence from the Shah 2012 review suggested no clear differences in cerebral palsy at three years with early inhaled corticosteroids versus placebo for preventing chronic lung disease among ventilated very low birthweight preterm neonates (RR 1.33, 95% CI 0.33 to 5.42; one trial; 56 children) (Table 6). Very low-quality evidence from Shah 2012 also suggested no clear differences for mean developmental index less than two standard deviations of the mean on the Bayley Scales of Infant Development with early inhaled corticosteroids versus placebo (RR 1.25, 95% CI 0.37 to 4.17; one trial; 56 children) (Table 11).

Neonatal care: preventing necrotising enterocolitis

Very low-quality evidence from the AlFaleh 2014 review suggested no clear differences for mental retardation and cerebral palsy at six years following probiotics versus control (distilled water) for

prevention of necrotising enterocolitis in preterm infants (RR 1.02, 95% CI 0.15 to 6.94; one trial; 85 children) (Table 10).

Neonatal care: other

Very low-quality evidence from the Almadhoob 2015 review suggested no clear differences for cerebral palsy at 18 to 22 months' corrected age with use of silicone earplugs versus no earplugs in the neonatal intensive care unit for preterm or very low birthweight infants (RR 3.0, 95% CI 0.14 to 63.15; one trial; 14 children) (Table 6).

No conclusions possible: not graded

Neonatal care: mechanical ventilation

The Cools 2015 review assessed elective high-frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cools 2015 did not perform a metaanalysis for the outcome cerebral palsy, with age and methods of assessment varying between studies, and rather reported the results for three separate trials in text, as below (not graded) (Table 6).

- "Neurodevelopmental status was assessed at 16 to 24 months' corrected age in 77% of survivors of the HIFI 1989 study (185 HFOV and 201 CV) using Bayley psychometric tests and central nervous system examinations... The rate of cerebral palsy was 11% in both groups".
- 2. "Moriette 2001 assessed neuromotor outcome at the corrected age of two years in 192 of 212 survivors (90%) using a physician questionnaire...the risk of spastic cerebral palsy was significantly lower for infants ventilated with HFOV (4% versus 17%; OR 0.87, 95% CI 0.79 to 0.96), even after adjustment for multiple factors. Survival without cerebral palsy was significantly more likely in the HFOV group than in the CV group (OR 1.89, 95% CI 1.04 to 3.44)".
- 3. "Sun 2014 assessed neurodevelopmental outcomes at 18 months' corrected age in 145 infants of the HFOV group (84% of survivors) and in 143 infants of the CV group (86% of survivors). Cerebral palsy occurred significantly less in the HFOV group (3% versus 10% in the CV group, P = 0.03)".

Interventions for other specific groups of 'at risk' neonates

No conclusions possible: low-quality evidence

Neonatal care: treating pulmonary hypertension

Low-quality evidence from the More 2016 review suggested no clear differences for cerebral palsy at six months following use of endothelin receptor antagonists versus placebo for persistent pulmonary hypertension in term and late preterm infants (RR 0.09, 95% CI 0.00 to 1.61; one trial; 37 children) (Table 6). Low-quality evidence from More 2016 also suggested no clear differences for adverse neurological outcomes at six months with use of endothelin receptor antagonists versus placebo (RR 0.07, 95% CI 0.00,1.20; one trial; 37 children) (Table 11).

Neonatal care: nitric oxide

Low-quality evidence from the Finer 2006 review suggested no clear differences for cerebral palsy among survivors at 13 or 18 to 24 months following inhaled nitric oxide versus placebo for respiratory failure in infants born at or near term (RR 1.02, 95% CI 0.49 to 2.14; two trials; 299 children) (Table 6). Finer 2006 also reported on an additional trial not included in the meta-analysis

for this outcome: "This group [Wessel 1996] has now published follow up data, including neurodevelopmental outcomes, which were obtained by telephone interview of 60 of the 83 survivors of the original trial. The interview was conducted between one and four years of age... Although cerebral palsy [was] reported it is unclear how [it] was defined ... It is not, therefore, possible to add any of these data to the meta-analysis, but they do appear to show no evidence of neurodevelopmental impairment due to inhaled nitric oxide therapy" (not graded). Low-quality evidence from Finer 2006 also suggested no clear differences for neurodevelopmental disability among survivors at 13 or 18 to 24 months (RR 0.97, 95% CI 0.66 to 1.44; two trials; 301 children) (Table 10) nor for Bayley Psychomotor Developmental Index more than two standard deviations below the mean at 13 or 18 to 24 months (RR 1.09, 95% CI 0.58 to 2.03; two trials; 283 children) (Table 11) following inhaled nitric oxide versus placebo.

No conclusions possible: very low-quality evidence

Neonatal care: resuscitation

Very low-quality evidence from the Tan 2005 review suggested no clear differences for cerebral palsy among those followed up at 18 to 24 months following room air versus 100% oxygen for resuscitation of infants at birth (RR 1.34, 95% CI 0.55 to 3.24; one trial; 213 children) (Table 6). Very low-quality evidence from Tan 2005 also suggested no clear differences in not walking among those followed up at 18 to 24 months following room air versus 100% oxygen (RR 1.03, 95% CI 0.04 to 2.25; one trial; 213 children) (Table 11).

Neonatal care: nitric oxide

Very low-quality evidence from the Finer 2006 review suggested no clear differences for cerebral palsy among survivors at 18 to 24 months following inhaled nitric oxide versus placebo for respiratory failure among infants with diaphragmatic hernias born at or near term (RR 8.33, 95% CI 0.45 to 154.78; one trial; 22 children) (Table 6).

Neonatal care: treating herpes simplex

Very low-quality evidence from the Jones 2009 review suggested no clear differences in cerebral palsy in central nervous system herpes simplex virus (HSV) neonatal infection up to three years by HSV serotype: HSV-1 (no events, one trial, nine children) and HSV-2 (RR 1.07, 95% CI 0.49 to 2.33; one trial; 14 children) following acyclovir versus vidarabine for treatment of HSV infection in neonates (Table 6). Very low-quality evidence from Jones 2009 also suggested no clear differences for abnormal neurodevelopment at approximately one year of age (RR 1.50, 95% 0.62 to 3.65; one trial; 56 children) nor for abnormal neurodevelopment or death at approximately one year of age (RR 0.86, 95% CI 0.60 to 1.22; one trial; 56 children) following vidarabine versus placebo; and abnormal neurodevelopment at approximately one year of age (RR 0.82, 95% 0.50 to 1.34; one trial; 202 children) or abnormal neurodevelopment or death at approximately one year of age (RR 0.79, 95% CI 0.57 to 1.10; one trial; 202 children) following acyclovir versus vidarabine (Table 10).

Neonatal care: treating hypoglycaemia

Very low-quality evidence from the Weston 2016 review suggested no clear differences in cerebral palsy at age two years following dextrose gel versus placebo for treatment of hypoglycaemia in newborn infants (RR 5.16, 95% CI 0.25 to 106.12; one trial;

183 children) (Table 6). Very low-quality evidence from Weston 2016 also suggested no clear differences in major neurosensory disability at two years (RR 6.27, 95% CI 0.77 to 51.03; one trial; 184 children) nor in any developmental disability at two years (RR 1.11, 95% CI 0.75 to 1.63; one trial; 184 children) following dextrose gel versus placebo (Table 10).

DISCUSSION

Summary of main results

This review included 43 Cochrane Reviews with outcome data for cerebral palsy available from meta-analyses of data from 96 randomised controlled trials (RCTs) involving 15,885 children.

Interventions for neonates with perinatal asphyxia or with evidence of neonatal encephalopathy

- 1. Effective interventions (high-quality evidence of effectiveness): High-quality evidence showed a reduction in cerebral palsy following therapeutic hypothermia versus standard care for newborns with hypoxic ischaemic encephalopathy.
- 2. No conclusions possible: very low-quality evidence: Very lowquality evidence suggested no clear differences in cerebral palsy following barbiturates (phenobarbital) versus conventional therapy for prevention of morbidity and mortality following perinatal asphyxia.

Interventions for neonates born preterm and/or at low or very low birthweight

- 1. Possibly effective interventions (moderate-quality evidence of effectiveness): Moderate-quality evidence showed a reduction in cerebral palsy with prophylactic methylxanthines (caffeine) versus placebo for endotracheal extubation in preterm infants.
- Probably ineffective interventions (moderate-quality evidence of harm): Moderate-quality evidence showed an increase in cerebral palsy and cerebral palsy among survivors assessed following early (less than eight days) postnatal corticosteroids versus control for preventing chronic lung disease in preterm infants.
- 3. Probably ineffective interventions (moderate-quality evidence of lack of effectiveness): Moderate-quality evidence showed no clear differences in cerebral palsy following ethamsylate versus placebo for prevention of morbidity and mortality in preterm or very low birthweight infants; volume versus no treatment and gelatin versus fresh frozen plasma for prevention of morbidity and mortality in very preterm infants; prophylactic indomethacin versus placebo or no drug for preventing mortality and morbidity in preterm infants; synthetic surfactant versus placebo for respiratory distress syndrome in preterm infants; or prophylactic phototherapy versus standard care (starting phototherapy when serum bilirubin reached a pre-specified level) for preventing jaundice in preterm or low birthweight infants.
- 4. No conclusions possible (low- to very low-quality evidence): Low- to very low-quality evidence suggested no clear differences for cerebral palsy following dobutamine versus dopamine in preterm infants with low superior vena cava flow; oral ibuprofen versus intravenous ibuprofen for treatment of patent ductus

arteriosus in preterm or low birthweight (or both) infants; darbepoetin alfa versus placebo and erythropoietin versus placebo for preventing red blood cell transfusion in preterm and/or low birthweight infants; transfusion at a restrictive (low haemoglobin) versus a liberal (high haemoglobin) threshold for preventing morbidity and mortality in very low birthweight infants; inhaled nitric oxide versus placebo or no treatment for respiratory failure in preterm infants; caffeine versus placebo for treatment of apnoea in preterm infants; caffeine versus placebo for prevention of apnoea in preterm infants; animalderived surfactant extract versus no treatment for treatment of respiratory distress syndrome; prophylactic protein-free synthetic surfactant versus placebo for preventing morbidity and mortality in preterm infants; continuous distending pressure versus standard care for respiratory distress in preterm infants; long versus short inspiratory times in neonates receiving mechanical ventilation; moderately early (between seven and 14 days of age) postnatal corticosteroids versus placebo or no treatment for preventing chronic lung disease in preterm infants; late (more than seven days of age) postnatal corticosteroids versus placebo or no treatment for chronic lung disease in preterm infants; early inhaled corticosteroids versus placebo for preventing chronic lung disease in ventilated very low birthweight preterm neonates; arginine supplementation versus placebo for prevention of necrotising enterocolitis in preterm infants; systemic antifungal agents versus placebo for prevention of mortality and morbidity in very low birthweight infants; prophylactic thyroid hormones versus placebo for prevention of morbidity and mortality in preterm infants; use of silicone earplugs versus no earplugs in the neonatal intensive care unit for preterm or very low birthweight infants; kangaroo mother care versus conventional neonatal care to reduce morbidity and mortality in low birthweight infants; and early developmental intervention versus standard follow-up post hospital discharge to prevent motor and cognitive impairment in preterm infants.

Interventions for other specific groups of 'at risk' neonates

1. No conclusions possible (low- to very low-quality evidence): Low- to very low-quality evidence suggested no clear differences for cerebral palsy following endothelin receptor antagonists versus placebo for persistent pulmonary hypertension in term and late preterm infants; inhaled nitric oxide versus placebo for respiratory failure in infants born at or near term; room air versus 100% oxygen for resuscitation of infants at birth; acyclovir versus vidarabine for treatment of HSV infection in neonates; and dextrose gel versus placebo for treatment of hypoglycaemia in newborn infants.

Overall completeness and applicability of evidence

This overview summarises published Cochrane Systematic Reviews assessing neonatal interventions reporting on cerebral palsy and does not consider interventions in the antenatal or intrapartum period, which is the focus of a companion overview (Shepherd 2016).

We were able to include only 43 reviews (representing less than 13% of the 343 Neonatal reviews in the *Cochrane Database of Systematic Reviews*). We identified an additional 40 protocols that have prespecified cerebral palsy as a primary or secondary outcome and will be considered for inclusion in future updates of the overview

Cochrane

Library

when they have been published as full reviews. These protocols plan to assess a variety of interventions (see Appendix 1: 'Ongoing reviews'). We were not able to include an additional 102 reviews assessing a wide range of neonatal interventions, although we recognised the potential impact of the intervention of interest on cerebral palsy (through pre-specifying cerebral palsy as a review outcome); none of the included trials within these reviews reported on this outcome. We summarised the main conclusions of these reviews in Appendix 2 ('Reviews awaiting further classification') and will again consider them for inclusion in future updates of the overview. In total, the 43 reviews included 454 RCTs involving infants.

Although the 43 reviews in this overview included 454 randomised trials involving over 63,977 infants, the body of evidence for our review was substantially reduced by the fact that the included reviews (and trials) did not report on our overview outcomes. For our primary outcome - cerebral palsy - we included data from metaanalyses of 35 reviews involving 96 randomised trials, or only 21% of the trials within the included reviews.

The body of evidence for our secondary outcomes was further reduced for the composite outcome including cerebral palsy (30 reviews), motor dysfunction (12 reviews), cerebral palsy or death (five reviews), and severity of cerebral palsy (three reviews). None of our included reviews reported specifically on type of cerebral palsy. For most of our outcomes, reviews reported data from only one or two trials, up to a maximum of 15 trials. Thus, review authors often presented too few data to permit firm conclusions on effects on cerebral palsy and on our secondary outcomes. For most of the included reviews, data related to cerebral palsy were commonly short term (reported at one to three years of age), and longerterm follow-up was less commonly reported (although follow-up to 17 years was reported). Included reviews often did not report information regarding definitions nor criteria for cerebral palsy diagnosis and assessment methods.

We did not attempt to make indirect comparisons to address questions concerning the relative performance of different neonatal interventions. Rather we aimed to systematically consider all potentially relevant interventions for their ability to contribute to prevention of cerebral palsy. Within this overview, we did not attempt to duplicate details of participants and interventions (and control conditions) in individual trials. The reader may refer to these individual reviews and trials for more information on these factors. Further, the scope of this overview was limited to effects of interventions on cerebral palsy (and a restricted number of prespecified secondary review outcomes). To assess effects (benefits or harms) of the included interventions on other outcomes, readers are encouraged to refer to the included Cochrane Reviews themselves. For example, although low-quality evidence presented in this overview suggested no clear differences in cerebral palsy following kangaroo mother care, the Conde-Agudelo 2016 review reported moderate-quality evidence of benefit for outcomes including mortality, severe infection/sepsis, hypothermia, weight gain, and breastfeeding, and thus supports the use of kangaroo mother care for low birthweight infants as an alternative to conventional neonatal care (mainly in resource-limited settings). Similarly, although very low-quality evidence in this overview suggested no clear differences in cerebral palsy following dextrose gel for treatment of hypoglycaemia, the Weston 2016 review found moderate-quality evidence of benefit for outcomes including mother-infant separation and breastfeeding, and thus concluded that oral dextrose therapy should be considered first-line treatment for neonates with hypoglycaemia.

Although our overview could demonstrate high-quality evidence of a reduction in cerebral palsy following therapeutic hypothermia for newborns with hypoxic-ischaemic encephalopathy (Jacobs 2013), the incidence of death and disability, including cerebral palsy, remains high despite therapy. Thus, optimisation of hypothermia strategies or adjuvant therapies is urgently needed to further improve outcomes. A range of possible agents such as antiepileptic drugs (including topiramate), xenon, erythropoietin, melatonin, magnesium sulphate, and cord blood continue to be under investigation (AAP 2014; Robertson 2012).

Quality of the evidence

We assessed almost all of the included reviews to be of high quality and to have low risk of bias using the AMSTAR and ROBIS tools (see Table 4: AMSTAR assessments for included reviews; and Table 5: ROBIS assessments for included reviews). Although these two tools differ in their approaches to assessing review quality or risk of bias, findings of these assessments were similar. All of the included reviews assessed risk of bias of included randomised trials (most used current guidance as outlined in Chapter 8 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011)), and the quality of randomised trials was variable within and between reviews (see Table 3: Risk of bias assessments from included reviews). Six of the 43 reviews used the GRADE approach to assess the quality of evidence for overview outcomes (Darlow 2016; Moe-Byrne 2016; More 2016; Okwundu 2012; Weston 2016; Young 2016). For the other reviews, we used the GRADE system to rate the quality of evidence and incorporated assessments of study limitations (risk of bias) as reported by the review authors. For our primary review outcome - cerebral palsy - evidence ranged from very low to high quality, and for our secondary review outcomes, quality of evidence varied similarly. Downgrading of quality was most commonly due to study limitations (risk of bias) and imprecision (small sample sizes, low numbers of events, and wide confidence intervals). Findings regarding the quality of evidence for each outcome are set out in Table 6: Cerebral palsy; Table 8: Cerebral palsy or death; Table 9: Severity of cerebral palsy; Table 10: Other composite outcomes that include cerebral palsy as a component; and Table 11: Motor dysfunction.

Potential biases in the overview process

We were aware of risks of introducing bias at all stages of the overview process, and we took several steps to minimise this, including developing a Cochrane overview protocol. At least two overview authors independently assessed reviews for inclusion, carried out data extraction and quality assessment, and assessed the quality of evidence using the GRADE approach. A potential source of bias is related to the fact that one overview author (Nadia Badawi) is an author of one of the included reviews (Jones 2009). As pre-specified in our protocol, two other overview authors, who were not authors of this review, carried out data extraction and quality assessment for this review.

We undertook a comprehensive search of the *Cochrane Database of Systematic Reviews* without applying language or date restrictions, and we identified published reviews, as well as planned/ongoing reviews (protocols). We did not search other databases; thus

it is possible that non-Cochrane systematic reviews assessing neonatal interventions and reporting on cerebral palsy have been conducted but were not identified. It is also the case that Cochrane Reviews assessing interventions that could have the potential to impact cerebral palsy risk (see Description of the interventions for further discussion of various interventions) may not have acknowledged this through inclusion of cerebral palsy as a review outcome. Thus, data from relevant randomised trials assessing these interventions will not have been identified and included in this overview. Based on our search strategy, even Cochrane Reviews that pre-specified outcomes such as 'long-term growth and neurodevelopment' (Cools 2015) but subsequently reported specifically on 'cerebral palsy' were captured in our search and were included in this overview. However, reviews that have reported on long-term neurodevelopmental outcomes without any mention of 'cerebral palsy' will not have been identified; this highlights the need for all Cochrane Reviews to provide clear definitions accompanying any reported outcome measures.

Although we judged almost all of our included reviews to be of high quality and to have low risk of bias, we did not consider all as 'upto-date', with only approximately one-third conducting searches in the past three years; similarly, not all of the 'Reviews awaiting further classification' were 'up-to-date'. Thus, it is possible that additional trials assessing neonatal interventions and reporting on cerebral palsy have been published but have not yet been included in relevant Cochrane Reviews; it is also possible that additional trials have been conducted but have not yet been published. If/ when such trials are included in relevant Cochrane Reviews, we will incorporate them into an update of this overview.

Agreements and disagreements with other studies or reviews

We have not identified any other overviews or systematic reviews specifically designed to assess neonatal interventions for preventing cerebral palsy.

McIntyre 2013 conducted a systematic review of cohort and casecontrol studies that focused on identifying risk factors for cerebral palsy in children born at term and aimed to assess whether the potential for prevention of these risk factors has been adequately explored. Intrapartum and neonatal risk factors identified included birth asphyxia, neonatal seizures, respiratory distress syndrome, hypoglycaemia, jaundice, and infections including meningitis and sepsis. It is recognised that a strategy for prevention of cerebral palsy currently exists for only one of these risk factors - hypothermia for birth asphyxia - as was identified in this overview. McIntyre 2013 highlighted that prevention strategies are urgently required.

A further recent systematic review - Hadders-Algra 2016 - focused on early interventions in infants younger than 12 months' corrected age with or at very high risk for cerebral palsy (such as on the basis of a lesion of the brain - periventricular leucomalacia or intraventricular haemorrhage, or definitely abnormal general movements). This review included seven studies of moderate to high quality assessing interventions such as neurodevelopmental treatment only, multi-sensory stimulation, developmental stimulation, and multi-faceted interventions combining developmental stimulation, support of parent-infant interaction, and neurodevelopmental treatment (Hadders-Algra 2016). Hadders-Algra 2016 concluded that although two suggestions emerged (dosing may be critical for effectiveness;

multi-faceted interventions may offer the best opportunities), current evidence is limited.

AUTHORS' CONCLUSIONS

Implications for practice

This overview summarises the evidence from Cochrane Systematic Reviews of randomised controlled trials regarding effects of neonatal interventions on cerebral palsy, and can be used by researchers, funding bodies, policy makers, clinicians, and consumers to aid decision-making and evidence translation.

High-quality evidence shows that therapeutic hypothermia versus standard care for newborns with hypoxic-ischaemic encephalopathy can reduce cerebral palsy. Moderate-quality evidence shows that prophylactic methylxanthines (caffeine) versus placebo for endotracheal extubation in preterm infants may also reduce cerebral palsy risk. Moderate-quality evidence shows that early (less than eight days of age) postnatal corticosteroids versus placebo or no treatment for preventing chronic lung disease in preterm infants may increase cerebral palsy risk. In addition, moderate-quality evidence shows no clear differences in cerebral palsy risk with ethamsylate versus placebo for prevention of morbidity and mortality in preterm or very low birthweight infants; volume versus no treatment and gelatin versus fresh frozen plasma for prevention of morbidity and mortality in very preterm infants; prophylactic indomethacin versus placebo for prevention of mortality and morbidity in preterm infants; synthetic surfactant versus placebo for respiratory distress syndrome in preterm infants; or prophylactic phototherapy versus standard care (starting phototherapy when serum bilirubin reached a pre-specified level) for preventing jaundice in preterm or low birthweight infants. No conclusions were possible for other interventions assessed in this overview because evidence was of low to very low quality.

The scope of this overview was limited to the effects of interventions on cerebral palsy (and pre-specified secondary overview outcomes); consultation of the included Cochrane Reviews is recommended to formally assess additional benefits and/or harms of these interventions.

Implications for research

This overview highlights areas for which evidence is insufficient to permit conclusions on the effects of several neonatal interventions on cerebral palsy. These topics can be used to generate research questions and priorities. As cerebral palsy is rarely identified at birth, has diverse risk factors and aetiologies, and is diagnosed in approximately one in 500 children, it is a challenging outcome for investigators of such interventions to measure and report on. To date, a small proportion of Cochrane Reviews assessing neonatal interventions have reported on cerebral palsy; this may be due to a number of factors, including lack of primary research (with few randomised trials of neonatal interventions conducting longterm follow-up of children), lack of reporting on cerebral palsy by randomised trials, lack of reporting on cerebral palsy by relevant Cochrane Reviews (i.e. not pre-specifying it as an outcome of interest, not clearly defining long-term follow-up results reported, or not being 'up-to-date'), and the absence of Cochrane Reviews assessing relevant interventions.

With greater understanding of the diverse risk factors and aetiologies of cerebral palsy, there is an urgent need for long-

term follow-up of interventions to address risk factors for cerebral palsy. In light of the challenges associated with long-term followup of randomised trials, new strategies to measure impact on cerebral palsy, such as data linkage with cerebral palsy registries, should be applied. Additionally, there is a need to consider the use of relatively new interim assessments (such as the General Movements Assessment). Such studies must be rigorous in their design and should aim for consistency in cerebral palsy outcome measurement and reporting to facilitate pooling of outcome data and thus aid research efforts aimed at prevention of cerebral palsy.

ACKNOWLEDGEMENTS

We thank the Cochrane Neonatal Editorial Base for its support. As part of the pre-publication editorial process, this review has been commented on by four editors, and the protocol for this review was commented on by four editors.

We thank the Cerebral Palsy Alliance Research Foundation Australia for funding this project.

REFERENCES

References to included reviews

AlFaleh 2014

AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. *Cochrane Database of Systematic Reviews* 2014, Issue 4. [DOI: 10.1002/14651858.CD005496.pub4; PUBMED: 24723255]

Almadhoob 2015

Almadhoob A, Ohlsson A. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. *Cochrane Database of Systematic Reviews* 2015, Issue 1. [DOI: 10.1002/14651858.CD010333.pub2; PUBMED: 25633155]

Barrington 2010

Barrington KJ, Finer N. Inhaled nitric oxide for respiratory failure in preterm infants. *Cochrane Database of Systematic Reviews* 2010, Issue 12. [DOI: 10.1002/14651858.CD000509.pub4; PUBMED: 21154346]

Chaudhari 2012

Chaudhari T, McGuire W. Allopurinol for preventing mortality and morbidity in newborn infants with hypoxic-ischaemic encephalopathy. *Cochrane Database of Systematic Reviews* 2012, Issue 7. [DOI: 10.1002/14651858.CD006817.pub3; PUBMED: 22786499]

Cleminson 2015

Cleminson J, Austin N, McGuire W. Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants. *Cochrane Database of Systematic Reviews* 2015, Issue 10. [DOI: 10.1002/14651858.CD003850.pub5; PUBMED: 26497056]

Conde-Agudelo 2016

Conde-Agudelo A, Díaz-Rossello JL. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. *Cochrane Database of Systematic Reviews* 2016, Issue 8. [DOI: 10.1002/14651858.CD002771.pub4; PUBMED: 27552521]

Cools 2015

Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. *Cochrane Database of Systematic Reviews* 2015, Issue 3. [DOI: 10.1002/14651858.CD000104.pub4; PUBMED: 25785789]

Darlow 2016

Darlow BA, Graham PJ, Rojas-Reyes MX. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. *Cochrane Database of Systematic Reviews* 2016, Issue 8. [DOI: 10.1002/14651858.CD000501.pub4; PUBMED: 27552058]

Doyle 2014

Doyle LW, Ehrenkranz RA, Halliday HL. Late (> 7 days) postnatal corticosteroids for chronic lung disease in preterm infants. *Cochrane Database of Systematic Reviews* 2014, Issue 5. [DOI: 10.1002/14651858.CD001145.pub3; PUBMED: 24825542]

Doyle 2014b

Doyle LW, Ehrenkranz RA, Halliday HL. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. *Cochrane Database of Systematic Reviews* 2014, Issue 5. [DOI: 10.1002/14651858.CD001146.pub4; PUBMED: 24825456]

Finer 2006

Finer N, Barrington KJ. Nitric oxide for respiratory failure in infants born at or near term. *Cochrane Database of Systematic Reviews* 2006, Issue 4. [DOI: 10.1002/14651858.CD000399.pub2; PUBMED: 17054129]

Fowlie 2010

Fowlie PW, Davis PG, McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. *Cochrane Database of Systematic Reviews* 2010, Issue 7. [DOI: 10.1002/14651858.CD000174.pub2; PUBMED: 20614421]

Halliday 2003

Halliday HL, Ehrenkranz RA, Doyle LW. Moderately early (7-14 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. *Cochrane Database of Systematic Reviews* 2003, Issue 1. [DOI: 10.1002/14651858.CD001144; PUBMED: 12535400]

Henderson-Smart 2010

Henderson-Smart DJ, Davis PG. Prophylactic methylxanthines for endotracheal extubation in preterm infants. *Cochrane Database of Systematic Reviews* 2010, Issue 12. [DOI: 10.1002/14651858.CD000139.pub2; PUBMED: 21154342]

Henderson-Smart 2010b

Henderson-Smart DJ, De Paoli AG. Methylxanthine treatment for apnoea in preterm infants. *Cochrane Database of Systematic Reviews* 2010, Issue 12. [DOI: 10.1002/14651858.CD000140.pub2; PUBMED: 21154343]

Henderson-Smart 2010c

Henderson-Smart DJ, De Paoli AG. Prophylactic methylxanthine for prevention of apnoea in preterm infants. *Cochrane Database of Systematic Reviews* 2010, Issue 12. [DOI: 10.1002/14651858.CD000432.pub2; PUBMED: 21154344]

Ho 2015

Ho JJ, Subramaniam P, Davis PG. Continuous distending pressure for respiratory distress in preterm infants. *Cochrane Database of Systematic Reviews* 2015, Issue 7. [DOI: 10.1002/14651858.CD002271.pub2; PUBMED: 26141572]

Howlett 2015

Howlett A, Ohlsson A, Plakkal N. Inositol in preterm infants at risk for or having respiratory distress syndrome. *Cochrane Database of Systematic Reviews* 2015, Issue 2. [DOI: 10.1002/14651858.CD000366.pub3; PUBMED: 25927089]

Hunt 2010

Hunt R, Hey E. Ethamsylate for the prevention of morbidity and mortality in preterm or very low birth weight infants.

Cochrane Database of Systematic Reviews 2010, Issue 1. [DOI: 10.1002/14651858.CD004343.pub2; PUBMED: 20091562]

Jacobs 2013

Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. *Cochrane Database of Systematic Reviews* 2013, Issue 1. [DOI: 10.1002/14651858.CD003311.pub3; PUBMED: 23440789]

Jones 2009

Jones CA, Walker KS, Badawi N. Antiviral agents for treatment of herpes simplex virus infection in neonates. *Cochrane Database of Systematic Reviews* 2009, Issue 3. [DOI: 10.1002/14651858.CD004206.pub2; PUBMED: 19588350]

Kamlin 2003

Kamlin COF, Davis PG. Long versus short inspiratory times in neonates receiving mechanical ventilation. *Cochrane Database of Systematic Reviews* 2004, Issue 4. [DOI: 10.1002/14651858.CD004503.pub2; PUBMED: 15495117]

Moe-Byrne 2016

Moe-Byrne T, Brown JVE, McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. *Cochrane Database of Systematic Reviews* 2016, Issue 4. [DOI: 10.1002/14651858.CD001457.pub6; PUBMED: 27089158]

More 2016

More K, Athalye-Jape GK, Rao SC, Patole SK. Endothelin receptor antagonists for persistent pulmonary hypertension in term and late preterm infants. *Cochrane Database of Systematic Reviews* 2016, Issue 8. [DOI: 10.1002/14651858.CD010531.pub2; PUBMED: 27535894]

Ohlsson 2014

Ohlsson A, Aher SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. *Cochrane Database of Systematic Reviews* 2014, Issue 4. [DOI: 10.1002/14651858.CD004863.pub4; PUBMED: 24771408]

Ohlsson 2015

Ohlsson A, Walia R, Shah SS. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. *Cochrane Database of Systematic Reviews* 2015, Issue 2. [DOI: 10.1002/14651858.CD003481.pub6; PUBMED: 25692606]

Okwundu 2012

Okwundu CI, Okoromah CAN, Shah PS. Prophylactic phototherapy for preventing jaundice in preterm or low birth weight infants. *Cochrane Database of Systematic Reviews* 2012, Issue 1. [DOI: 10.1002/14651858.CD007966.pub2; PUBMED: 22258977]

Osborn 2001

Osborn DA. Thyroid hormones for preventing neurodevelopmental impairment in preterm infants. *Cochrane Database of Systematic Reviews* 2001, Issue 4. [DOI: 10.1002/14651858.CD001070; PUBMED: 11687092]

Osborn 2004

Osborn DA, Evans NJ. Early volume expansion for prevention of morbidity and mortality in very preterm infants. *Cochrane Database of Systematic Reviews* 2004, Issue 2. [DOI: 10.1002/14651858.CD002055.pub2; PUBMED: 15106166]

Osborn 2007

Osborn DA, Hunt R. Prophylactic postnatal thyroid hormones for prevention of morbidity and mortality in preterm infants. *Cochrane Database of Systematic Reviews* 2007, Issue 1. [DOI: 10.1002/14651858.CD005948.pub2; PUBMED: 17253571]

Osborn 2007b

Osborn DA, Paradisis M, Evans NJ. The effect of inotropes on morbidity and mortality in preterm infants with low systemic or organ blood flow. *Cochrane Database of Systematic Reviews* 2007, Issue 1. [DOI: 10.1002/14651858.CD005090.pub2; PUBMED: 17253539]

Seger 2009

Seger N, Soll R. Animal derived surfactant extract for treatment of respiratory distress syndrome. *Cochrane Database of Systematic Reviews* 2009, Issue 2. [DOI: 10.1002/14651858.CD007836; PUBMED: 19370695]

Shah 2007

Shah PS, Shah VS. Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. *Cochrane Database of Systematic Reviews* 2007, Issue 3. [DOI: 10.1002/14651858.CD004339.pub3; PUBMED: 17636753]

Shah 2012

Shah VS, Ohlsson A, Halliday HL, Dunn M. Early administration of inhaled corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. *Cochrane Database of Systematic Reviews* 2012, Issue 5. [DOI: 10.1002/14651858.CD001969.pub3; PUBMED: 22592680]

Smit 2013

Smit E, Odd D, Whitelaw A. Postnatal phenobarbital for the prevention of intraventricular haemorrhage in preterm infants. *Cochrane Database of Systematic Reviews* 2013, Issue 8. [DOI: 10.1002/14651858.CD001691.pub3; PUBMED: 23943189]

Soll 2000

Soll R. Synthetic surfactant for respiratory distress syndrome in preterm infants. *Cochrane Database of Systematic Reviews* 2000, Issue 2. [DOI: 10.1002/14651858.CD001149; PUBMED: 10796417]

Soll 2010

Soll R, Özek E. Prophylactic protein free synthetic surfactant for preventing morbidity and mortality in preterm infants. *Cochrane Database of Systematic Reviews* 2010, Issue 1. [DOI: 10.1002/14651858.CD001079.pub2; PUBMED: 20091513]

Spittle 2015

Spittle A, Orton J, Anderson PJ, Boyd R, Doyle LW. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. *Cochrane Database of Systematic Reviews*

2015, Issue 11. [DOI: 10.1002/14651858.CD005495.pub4; PUBMED: 26597166]

Tan 2005

Tan A, Schulze AA, O'Donnell CPF, Davis PG. Air versus oxygen for resuscitation of infants at birth. *Cochrane Database of Systematic Reviews* 2005, Issue 2. [DOI: 10.1002/14651858.CD002273.pub3; PUBMED: 15846632]

Weston 2016

Weston PJ, Harris DL, Battin M, Brown J, Hegarty JE, Harding JE. Oral dextrose gel for the treatment of hypoglycaemia in newborn infants. *Cochrane Database of Systematic Reviews* 2016, Issue 5. [DOI: 10.1002/14651858.CD011027.pub2; PUBMED: 27142842]

Wheeler 2010

Wheeler K, Klingenberg C, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in the neonate. *Cochrane Database of Systematic Reviews* 2010, Issue 11. [DOI: 10.1002/14651858.CD003666.pub3; PUBMED: 21069677]

Whyte 2011

Whyte R, Kirpalani H. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. *Cochrane Database of Systematic Reviews* 2011, Issue 11. [DOI: 10.1002/14651858.CD000512.pub2; PUBMED: 22071798]

Young 2016

Young L, Berg M, Soll R. Prophylactic barbiturate use for the prevention of morbidity and mortality following perinatal asphyxia. *Cochrane Database of Systematic Reviews* 2016, Issue 5. [DOI: 10.1002/14651858.CD001240.pub3; PUBMED: 27149645]

References to excluded reviews

Atherton 2012

Atherton H, Sawmynaden P, Sheikh A, Majeed A, Car J. Email for clinical communication between patients/caregivers and healthcare professionals. *Cochrane Database of Systematic Reviews* 2012, Issue 11. [DOI: 10.1002/14651858.CD007978.pub2; PUBMED: 23152249]

Barlow 2015

Barlow J, Bennett C, Midgley N, Larkin SK, Wei Y. Parent-infant psychotherapy for improving parental and infant mental health. *Cochrane Database of Systematic Reviews* 2015, Issue 1. [DOI: 10.1002/14651858.CD010534.pub2; PUBMED: 25569177]

Bredemeyer 2012

Bredemeyer SL, Foster JP. Body positioning for spontaneously breathing preterm infants with apnoea. *Cochrane Database of Systematic Reviews* 2012, Issue 6. [DOI: 10.1002/14651858.CD004951.pub2; PUBMED: 22696346]

Brown 2016

Brown JVE, Meader N, Cleminson J, McGuire W. C-reactive protein for diagnosing late-onset infection in newborn infants.

Cochrane Database of Systematic Reviews 2016, Issue 3. [DOI: 10.1002/14651858.CD012126]

Carr 2003

Carr R, Modi N, Doré CJ. G-CSF and GM-CSF for treating or preventing neonatal infections. *Cochrane Database of Systematic Reviews* 2003, Issue 3. [DOI: 10.1002/14651858.CD003066; PUBMED: 12917944]

Davis 2001

Davis PG, Henderson-Smart DJ. Intravenous dexamethasone for extubation of newborn infants. *Cochrane Database of Systematic Reviews* 2001, Issue 4. [DOI: 10.1002/14651858.CD000308; PUBMED: 11687075]

Ethawi 2016

Ethawi YH, Abou Mehrem A, Minski J, Ruth CA, Davis PG. High frequency jet ventilation versus high frequency oscillatory ventilation for pulmonary dysfunction in preterm infants. *Cochrane Database of Systematic Reviews* 2016, Issue 5. [DOI: 10.1002/14651858.CD010548.pub2; PUBMED: 27149997]

Hancock 2013

Hancock EC, Osborne JP, Edwards SW. Treatment of infantile spasms. *Cochrane Database of Systematic Reviews* 2013, Issue 6. [DOI: 10.1002/14651858.CD001770.pub3; PUBMED: 23740534]

Jones 2003

Jones CA, Walker KS, Henderson-Smart DJ. Antiviral therapy for symptomatic congenital cytomegalovirus infection in neonates and infants up to 3 months of age. *Cochrane Database of Systematic Reviews* 2003, Issue 3. [DOI: 10.1002/14651858.CD004340]

Lewin 2010

Lewin S, Munabi-Babigumira S, Glenton C, Daniels K, Bosch-Capblanch X, van Wyk BE, et al. Lay health workers in primary and community health care for maternal and child health and the management of infectious diseases. *Cochrane Database of Systematic Reviews* 2010, Issue 3. [DOI: 10.1002/14651858.CD004015.pub3; PUBMED: 20238326]

Malviya 2013

Malviya MN, Ohlsson A, Shah SS. Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants. *Cochrane Database of Systematic Reviews* 2013, Issue 3. [DOI: 10.1002/14651858.CD003951.pub3; PUBMED: 23543527]

Morag 2016

Morag I, Ohlsson A. Cycled light in the intensive care unit for preterm and low birth weight infants. *Cochrane Database of Systematic Reviews* 2016, Issue 8. [DOI: 10.1002/14651858.CD006982.pub4; PUBMED: 27508358]

Okwundu 2014

Okwundu CI, Uthman OA, Smith J. Transcutaneous screening for hyperbilirubinemia in neonates. *Cochrane Database of Systematic Reviews* 2014, Issue 4. [DOI: 10.1002/14651858.CD011060]

Pammi 2011

Pammi M, Brocklehurst P. Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropenia. *Cochrane Database of Systematic Reviews* 2011, Issue 10. [DOI: 10.1002/14651858.CD003956.pub2; PUBMED: 21975741]

Pammi 2015

Pammi M, Flores A, Versalovic J, Leeflang MMG. Molecular assays for the diagnosis of sepsis in neonates. *Cochrane Database of Systematic Reviews* 2015, Issue 11. [DOI: 10.1002/14651858.CD011926]

Pammi 2015b

Pammi M, Haque KN. Pentoxifylline for treatment of sepsis and necrotizing enterocolitis in neonates. *Cochrane Database of Systematic Reviews* 2015, Issue 3. [DOI: 10.1002/14651858.CD004205.pub3; PUBMED: 25751631]

Scholefield 2013

Scholefield B, Duncan H, Davies P, Gao Smith F, Khan K, et al. Hypothermia for neuroprotection in children after cardiopulmonary arrest. *Cochrane Database of Systematic Reviews* 2013, Issue 2. [DOI: 10.1002/14651858.CD009442.pub2; PUBMED: 23450604]

Shah 2012b

Shah SS, Ohlsson A, Shah VS. Intraventricular antibiotics for bacterial meningitis in neonates. *Cochrane Database of Systematic Reviews* 2012, Issue 7. [DOI: 10.1002/14651858.CD004496.pub3; PUBMED: 22786491]

Suresh 2003

Suresh G, Martin CL, Soll R. Metalloporphyrins for treatment of unconjugated hyperbilirubinemia in neonates. *Cochrane Database of Systematic Reviews* 2003, Issue 2. [DOI: 10.1002/14651858.CD004207; PUBMED: 12804504]

Thukral 2015

Thukral A, Deorari A, Chawla D. Periodic change of body position under phototherapy in term and late preterm neonates with hyperbilirubinemia. *Cochrane Database of Systematic Reviews* 2015, Issue 12. [DOI: 10.1002/14651858.CD011997]

Upadhyay 2016

Upadhyay A, Chawla D, Joshi P, Davis PG. Short-duration versus standard-duration antibiotic regimens for the treatment of neonatal bacterial infection. *Cochrane Database of Systematic Reviews* 2016, Issue 1. [DOI: 10.1002/14651858.CD012063]

Ward 2003

Ward MC, Sinn J. Steroid therapy for meconium aspiration syndrome in newborn infants. *Cochrane Database of Systematic Reviews* 2003, Issue 4. [DOI: 10.1002/14651858.CD003485; PUBMED: 14583981]

Whitelaw 2001

Whitelaw A, Brion LP, Kennedy CR, Odd D. Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. *Cochrane Database of Systematic Reviews* 2001, Issue 2. [DOI: 10.1002/14651858.CD002270; PUBMED: 11406041]

Whitelaw 2001b

Whitelaw A. Repeated lumbar or ventricular punctures in newborns with intraventricular hemorrhage. *Cochrane Database of Systematic Reviews* 2001, Issue 1. [DOI: 10.1002/14651858.CD000216; PUBMED: 11279684]

Woodgate 2001

Woodgate PG, Davies MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. *Cochrane Database of Systematic Reviews* 2001, Issue 2. [DOI: 10.1002/14651858.CD002061; PUBMED: 11406029]

Additional references

AAP 2014

American Academy of Pediatrics. Clinical report: hypothermia and neonatal encephalopathy. *Pediatrics* 2014;**133**(6):1146-50. [DOI: 10.1542/peds.2014-0899]

Access Economics 2008

Access Economics. The Economic Impact of Cerebral Palsy in Australia in 2007. Sydney: Cerebral Palsy Australia, 2008.

ACPR Group 2013

Australian Cerebral Palsy Register (ACPR) Group. Report of the Australian Cerebral Palsy Register, Birth Years 1993–2006. *ACPR Group: Sydney, 2013*.

Badawi 2005

Badawi N, Felix JF, Kurinczuk JJ, Dixon G, Watson L, Keogh JM, et al. Cerebral palsy following term newborn encephalopathy: a population-based study. *Developmental Medicine and Child Neurology* 2005;**47**(5):293-8. [PUBMED: 15892370]

Blair 1988

Blair E, Stanley FJ. Intrapartum asphyxia: a rare cause of cerebral palsy. *Journal of Pediatrics* 1988;**112**(4):515-9. [PUBMED: 3351675]

Blair 2001

Blair E, Watson L, Badawi N, Stanley FJ. Life expectancy among people with cerebral palsy in Western Australia. *Developmental Medicine and Child Neurology* 2001;**43**(8):508-15. [PUBMED: 11508916]

Blair 2006

Blair E, Watson L. Epidemiology of cerebral palsy. *Seminars in Fetal & Neonatal Medicine* 2006;**11**(2):117-25. [DOI: 10.1016/j.siny.2005.10.010; PUBMED: 16338186]

Bosanquet 2013

Bosanquet M, Copeland L, Ware R, Boyd R. A systematic review of tests to predict cerebral palsy in young children. *Developmental Medicine and Child Neurology* 2013;**55**(5):418-26. [DOI: 10.1111/dmcn.12140; PUBMED: 23574478]

Cans 2000

Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. *Developmental Medicine*

and Child Neurology 2000;**42**(12):816-24. [DOI: 10.1111/ j.1469-8749.2000.tb00695.x; PUBMED: 11132255]

Cans 2004

Cans C, McManus V, Crowley M, Guillem P, Platt MJ, Johnson A, et al. Cerebral palsy of post-neonatal origin: characteristics and risk factors. *Paediatric and Perinatal Epidemiology* 2004;**18**(3):214-20. [DOI: 10.1111/j.1365-3016.2004.00559.x; PUBMED: 15130161]

CDC 2004

Centers for Disease Control and Prevention (CDC). Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment - United States, 2003. *Morbidity and Mortality Weekly Report* 2004;**53**(3):57-9. [PUBMED: 14749614]

Colver 2012

Colver A. Outcomes for people with cerebral palsy: life expectancy and quality of life. *Paediatrics and Child Health* 2012;**22**(9):384-7. [DOI: 10.1016/j.paed.2012.03.003]

Covidence 2015

Covidence. About Covidence. www.covidence.org (accessed 17 May 2015).

Davis 2010

Davis E, Shelly A, Waters E, Boyd R, Cook K, Davern M. The impact of caring for a child with cerebral palsy: quality of life for mothers and fathers. *Child: Care, Health and Development* 2010;**36**(1):63-73. [DOI: 10.1111/j.1365-2214.2009.00989.x; PUBMED: 19702639]

Dixon 2002

Dixon G, Badawi N, Kurinczuk JJ, Keogh JM, Silburn SR, Zubrick SR. Early developmental outcomes after newborn encephalopathy. *Pediatrics* 2002;**109**(1):26-33. [PUBMED: 11773538]

Doyle 2009

Doyle LW, Crowther CA, Middleton P, Marret S, Rouse D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. *Cochrane Database of Systematic Reviews* 2009, Issue 1. [DOI: 10.1002/14651858.CD004661.pub3; PUBMED: 19160238]

Drougia 2007

Drougia A, Giapros V, Krallis N, Theocharis P, Nikaki A, Tzoufi M. Incidence and risk factors for cerebral palsy in infants with perinatal problems: a 15-year review. *Early Human Development* 2007;**83**(8):541-7. [PUBMED: 10.1016/j.earlhumdev.2006.10.004; PUBMED: 17188824]

Ellenberg 2013

Ellenberg JH, Nelson KB. The association of cerebral palsy with birth asphyxia: a definitional quagmire. *Developmental Medicine and Child Neurology* 2013;**55**(3):210-6. [DOI: 10.1111/ dmcn.12016; PUBMED: 23121164]

Farquhar 2015

Farquhar C, Rishworth JR, Brown J, Nelen WLDM, Marjoribanks J. Assisted reproductive technology: an overview of Cochrane Reviews. *Cochrane Database of Systematic Reviews* 2015, Issue 7. [DOI: 10.1002/14651858.CD010537.pub4; PUBMED: 26174592]

Germany 2013

Germany L, Ehlinger V, Klapouszczak D, Delobel M, Hollódy K, Sellier E, et al. Trends in prevalence and characteristics of postneonatal cerebral palsy cases: a European registry-based study. *Research in Developmental Disabilities* 2013;**34**(5):1669-77. [DOI: 10.1016/j.ridd.2013.02.016; PUBMED: 23500161]

Hadders-Algra 2016

Hadders-Algra M, Boxum AG, Hielkema T, Hamer EG. Effect of early intervention in infants at very high risk of cerebral palsy: a systematic review. Developmental Medicine and Child Neurology 2017; Vol. 59, issue 3:246-58. [DOI: 10.1111/ dmcn.13331; PUBMED: 27925172]

Hemming 2005

Hemming K, Hutton JL, Colver A, Platt M-J. Regional variation in survival of people with cerebral palsy in the United Kingdom. *Pediatrics* 2005;**116**(6):1383-90. [DOI: 10.1542/peds.2005-0259; PUBMED: 16322162]

Higgins 2011

Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from handbook.cochrane.org.

Himpens 2008

Himpens E, Van den Broeck C, Oostra A, Calders P, Vanhaesebrouck P. Prevalence, type, distribution, and severity of cerebral palsy in relation to gestational age: a metaanalytic review. *Developmental Medicine and Child Neurology* 2008;**50**(5):334-40. [DOI: 10.1111/j.1469-8749.2008.02047.x; PUBMED: 18355333]

Jacobsson 2004

Jacobsson B, Hagberg G. Antenatal risk factors for cerebral palsy. *Best Practice & Research. Clinical Obstetrics & Gynaecology* 2004;**18**(3):425-36. [DOI: 10.1016/j.bpobgyn.2004.02.011; PUBMED: 15183137]

Jones 2012

Jones L, Othman M, Dowswell T, Alfirevic Z, Gates S, Newburn M, et al. Pain management for women in labour: an overview of systematic reviews. *Cochrane Database of Systematic Reviews* 2012, Issue 3. [DOI: 10.1002/14651858.CD009234.pub2; PUBMED: 22419342]

Kruse 2009

Kruse M, Michelsen SI, Flachs EM, Brønnum-Hansen H, Madsen M, Uldall P. Lifetime costs of cerebral palsy. *Developmental Medicine and Child Neurology* 2009;**51**(8):622-8. [DOI: 10.1111/j.1469-8749.2008.03190.x; PUBMED: 19416329]

Lassi 2015

Lassi ZS, Middleton PF, Crowther C, Bhutta ZA. Interventions to improve neonatal health and later survival: an overview of systematic reviews. *EBioMedicine* 2015;**2**(8):985-1000. [DOI: 10.1016/j.ebiom.2015.05.023; PUBMED: 26425706]

MacLennan 2015

MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. American Journal of Obstetrics and Gynecology 2015; Vol. 213, issue 6:779-88. [DOI: 10.1016/j.ajog.2015.05.034; PUBMED: 26003063]

McIntyre 2010

McIntyre S, Novak I, Cusick A. Consensus research priorities for cerebral palsy: a Delphi survey of consumers, researchers, and clinicians. *Developmental Medicine and Child Neurology* 2010;**52**(3):270-5. [DOI: 10.1111/j.1469-8749.2009.03358.x; PUBMED: 19694780]

McIntyre 2011

McIntyre S, Morgan C, Walker K, Novak I. Cerebral palsy don't delay. *Developmental Disabilities Research Reviews* 2011;**17**(2):114-29. [DOI: 10.1002/ddrr.1106; PUBMED: 23362031]

McIntyre 2013

McIntyre S, Taitz D, Keogh J, Goldsmith S, Badawi N, Blair E. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. *Developmental Medicine and Child Neurology* 2013;**55**(6):499-508. [DOI: 10.1111/dmcn.12017; PUBMED: 23181910]

Moreno-De-Luca 2012

Moreno-De-Luca A, Ledbetter D, Martin C. Genetic insights into the causes and classification of cerebral palsies. *Lancet Neurology* 2012;**11**(3):283-92. [DOI: 10.1016/ S1474-4422(11)70287-3; PUBMED: 22261432]

Morgan 2016

Morgan C, Crowle C, Goyen T-A, Hardman C, Jackman M, Novak I, et al. Sensitivity and specificity of General Movements Assessment for diagnostic accuracy of detecting cerebral palsy early in an Australian context. *Journal of Paediatrics and Child Health* 2016;**52**(1):54-9. [DOI: 10.1111/jpc.12995; PUBMED: 26289780]

Morris 2007

Morris C. Definition and classification of cerebral palsy: a historical perspective. *Developmental Medicine and Child Neurology* 2007;**109**:3-7. [PUBMED: 17370476]

Murphy 1997

Murphy DJ, Hope PL, Johnson A. Neonatal risk factors for cerebral palsy in very preterm babies: case-control study. *British Medical Journal* 1997;**8**(314):404-8. [PUBMED: 9040385]

Mutch 1992

Mutch L, Alberman E, Hagberg B, Kodama K, Perat MV. Cerebral palsy epidemiology: where are we now and where are we going?. *Developmental Medicine and Child Neurology* 1992;**34**(6):547-51. [PUBMED: 1612216]

Nelson 2008

Nelson KB. Causative factors in cerebral palsy. *Clinical Obstetrics and Gynecology* 2008;**51**(4):749-62. [DOI: 10.1097/ GRF.0b013e318187087c; PUBMED: 18981800]

Novak 2012

Novak I, Hines M, Goldsmith S, Barclay R. Clinical prognostic messages from a systematic review on cerebral palsy. *Pediatrics* 2012;**130**(5):e1285-312. [DOI: 10.1542/peds.2012-0924; PUBMED: 23045562]

Oskoui 2013

Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. *Developmental Medicine and Child Neurology* 2013;**55**(6):509-19. [DOI: 10.1111/dmcn.12080; PUBMED: 23346889]

Oskoui 2015

Oskoui M, Gazzellone MJ, Thiruvahindrapuram B, Zarrei M, Andersen J, Wei J, et al. Clinically relevant copy number variations detected in cerebral palsy. *Nature Communications* 2015;**6**:7949. [DOI: 10.1038/ncomms8949; PUBMED: 26236009]

O'Callaghan 2009

O'Callaghan ME, MacLennan AH, Haan EA, Dekker G, South Australian Cerebral Palsy Research Group. The genomic basis of cerebral palsy: a HuGE systematic literature review. *Human Genetics* 2009;**126**(1):149-72. [DOI: 10.1007/s00439-009-0638-5; PUBMED: 19238444]

O'Shea 2008

O'Shea TM. Diagnosis, treatment, and prevention of cerebral palsy in near-term/term infants. *Clinics in Obstetrics and Gynaecology* 2008;**51**(4):816-28. [DOI: 10.1097/ GRF.0b013e3181870ba7; PUBMED: 18981805]

Reid 2012

Reid SM, Carlin JB, Reddihough DS. Survival of individuals with cerebral palsy born in Victoria, Australia, between 1970 and 2004. *Developmental Medicine and Child Neurology* 2012;**54**(4):353-60. [DOI: 10.1111/j.1469-8749.2012.04218.x; PUBMED: 22329739]

Reid 2015

Reid S, Meehan E, McIntyre S, Goldsmith S, Badawi N, Reddihough D. Temporal trends in cerebral palsy by impairment severity and birth gestation. Developmental Medicine and Child Neurology 2016; Vol. 58, issue Suppl 2:25-35. [DOI: 10.1111/ dmcn.13001; PUBMED: 26762733]

RevMan 2014 [Computer program]

Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager 5 (RevMan5). Version 5.3. Copenhagen: Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

Robertson 2012

Robertson NJ, Tan S, Groenendaal F, van Bel F, Juul SE, Bennet L, et al. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant?.

Journal of Pediatrics 2012;**160**(4):544-52.e4. [DOI: 10.1016/ j.jpeds.2011.12.052; PUBMED: 22325255]

Rosenbaum 2007

Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. *Developmental Medicine and Child Neurology* 2007;**109**:8-14. [PUBMED: 17370477]

Sellier 2015

Sellier E, Platt MJ, Andersen GL, Krägeloh-Mann I, De La Cruz J, Cans C, et al. Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Developmental Medicine and Child Neurology 2016; Vol. 58, issue 1:85-92. [DOI: 10.1111/dmcn.12865; PUBMED: 26330098]

Shea 2009

Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansoon E, Grimshaw J, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. *Journal of Clinical Epidemiology* 2009;**62**(10):1013-20. [DOI: 10.1016/j.jclinepi.2008.10.009; PUBMED: 19230606]

Shepherd 2016

Shepherd E, Middleton P, Makrides M, McIntyre SJ, Badawi N, Crowther CA. Antenatal and intrapartum interventions for preventing cerebral palsy: an overview of Cochrane systematic reviews. *Cochrane Database of Systematic Reviews* 2016, Issue 2. [DOI: 10.1002/14651858.CD012077]

ADDITIONAL TABLES

Smithers-Sheedy 2014

Smithers-Sheedy H, Badawi N, Blair E, Cans C, Himmelmann K, Krägeloh-Mann I, et al. What constitutes cerebral palsy in the twenty-first century?. *Developmental Medicine and Child Neurology* 2014;**56**(4):323-8. [DOI: 10.1111/dmcn.12262; PUBMED: 24111874]

Tran 2005

Tran U, Gray PH, O'Callaghan MJ. Neonatal antecedents for cerebral palsy in extremely preterm babies and interaction with maternal factors. *Early Human Development* 2005;**81**(6):555-61. [DOI: 10.1016/j.earlhumdev.2004.12.009; PUBMED: 15935933]

Walstab 2004

Walstab JE, Bell RJ, Reddihough DS, Brennecke SP, Bessell CK, Beischer NA. Factors identified during the neonatal period associated with risk of cerebral palsy. *Australian & New Zealand Journal of Obstetrics & Gynaecology* 2004;**44**(3):342-6. [DOI: 10.1111/j.1479-828X.2004.00249.x; PUBMED: 15282008]

Whiting 2015

Whiting P, Savović J, Higgins JP, Caldwell DM, Reeves BC, Shea B, et al. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. Journal of Clinical Epidemiology 2016; Vol. 69:225-34. [DOI: 10.1016/ j.jclinepi.2015.06.005; PUBMED: 26092286]

Review ID and title	Reason for exclusion	
Atherton 2012	Wrong participants (not neonates):	
Email for clinical communica- tion between patients/care- givers and healthcare profes- sionals	1. "We included all healthcare professionals, patients and caregivers regardless of age, gender and ethnicity. We considered participants originating the email communication, receiving the email communication and copied into the email communication"	
Barlow 2015	Wrong participants (not neonates):	
Parent-infant psychotherapy for improving parental and infant mental health	1. "We included studies involving parent-infant dyads in which the parent was experiencing men- tal health problems, domestic abuse or substance dependency, with or without the infant show- ing signs of attachment or dysregulation problems, or both attachment and dysregulation prob- lems. We included all infants irrespective of the presence of problems such as low birthweight, prematurity or disabilities. We included studies targeting infants and toddlers in which the mean age of the infant participants was 24 months or less at the point of referral. We included studies targeting all parents (i.e. including fathers, birth parents, adoptive and kinship parents, but not foster parents)"	
Bredemeyer 2012	Secondary outcomes pre-specified include the following:	
Body positioning for sponta- neously breathing preterm in-	 Short-term motor development up to about 12 months' corrected age, as measured by a va dated assessment tool 	
fants with apnoea	2. Longer-term motor development up to about 2 years' corrected age, as measured by a validated assessment tool	
	3. Neurodevelopment assessed at about 2 years' corrected age, as measured by a validated assessment tool	

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Table 1. Characteristics of excluded reviews

Table 1. Characteristics of excluded reviews (Continued)

No outcome data for these outcomes

Brown 2016	Protocol for diagnostic test accuracy review					
C-reactive protein for diagnos- ing late-onset infection in new- born infants						
Carr 2003	Secondary outcomes pre-specified include:					
G-CSF and GM-CSF for treating	. Long-term outcomes: death and disability at or > 1 year from birth					
tions	No outcome data for cerebral palsy (single study results reported "cognition, language and so- cial developmental performance scores were within the normal range for age and motor deficits were 'typical of high-risk, low birth weight neonates'. However there was no comparison made be- tween G-CSF and control infants"					
Davis 2001	No pre-specified outcome focused on development/disability at follow-up					
Intravenous dexamethasone for extubation of newborn infants						
Ethawi 2016	Secondary neonatal outcomes pre-specified include:					
High-frequency jet ventilation vs high-frequency oscillatory	1. Neurodevelopmental outcomes including motor, mental, and sensory outcomes at 2 years of age (study author defined)					
function in preterm infants	No outcome data for this outcome (no included trials)					
Hancock 2013	Outcomes pre-specified include:					
Treatment of infantile spasms	1. Long-term psychomotor development					
	No outcome data for cerebral palsy (single-study results reported related to BSID; VABS; 'cogni- tive development'; Japanese Tumor Scale; DDST)					
Jones 2003	Protocol					
Antiviral therapy for symp-	Primary outcomes pre-specified include:					
tomatic congenital cy- tomegalovirus infection in neonates and infants up to 3 months of age	1. Mortality at 1 year of life and the presence of cognitive, developmental, audiological, motor, or visual impairment upon completion of therapy, at follow-up at 1 year of life, and in later child-hood					
Lewin 2010	No pre-specified outcome focused on development/disability at follow-up					
Lay health workers in primary and community health care for maternal and child health and management of infectious dis- eases						
Malviya 2013	Secondary outcomes pre-specified include:					
Surgical vs medical treatment with cyclo-oxygenase inhibitors for symptomatic patent ductus	 Neurodevelopmental outcome (neurodevelopmental outcome assessed by a standardised and validated assessment tool, a child developmental specialist, or both) at any age (outcome data will be grouped at 6, 9, 12, 18, 24 months, if available) 					
arteriosus in preterm infants	No outcome data for this outcome					
Morag 2016	Secondary outcomes pre-specified include:					

Table 1. Characteristics of excluded reviews (Continued)

Cycled light in the intensive care	1. Long-term outcomes: growth and neurodevelopment, including visual and auditory outcomes
unit for preterm and low birth-	at any age as reported by study authors using standardised and validated tests
weight infants	

weight infants	No outcome data for these outcomes				
Okwundu 2014	Protocol				
Transcutaneous screening for hyperbilirubinaemia in neonates	No pre-specified outcome focused on development/disability at follow-up				
Pammi 2011	Primary outcomes pre-specified include:				
Granulocyte transfusions for neonates with confirmed or sus-	1. Neurological outcome at 1 year of age or later (neurodevelopmental outcome as assessed by any validated test)				
pected sepsis and neutropaema	No outcome data for this outcome				
Pammi 2015	Protocol for diagnostic test accuracy review				
Molecular assays for diagnosis of sepsis in neonates					
Pammi 2015b	Secondary outcomes pre-specified include:				
Pentoxifylline for treatment of sepsis and necrotising entero-	1. Neurological outcome at 2 or more years of age (neurodevelopmental outcome as assessed by a validated test)				
colitis in neonates	No outcome data for this outcome				
Scholefield 2013	Primary outcomes pre-specified include:				
Hypothermia for neuroprotec- tion in children after cardiopul- monary arrest	 Best neurological outcome at hospital discharge and within the first year as assessed by the Pae- diatric Cerebral Performance Category score and other validated outcome scores for use in chil- dren (e.g. VABS) 				
	No outcome data for these outcomes (no included trials)				
Shah 2012	Secondary outcomes pre-specified include:				
Intraventricular antibiotics for bacterial meningitis in neonates	 Neurodevelopmental outcome (neurodevelopmental outcome as assessed by a standardised and validated assessment tool or a child developmental specialist, or both) at any age (outcome data will be grouped at 12, 18, and 24 months, if available) 				
	No outcome data for this outcome				
Suresh 2003	Outcomes pre-specified include:				
Metalloporphyrins for treat- ment of unconiugated hyper-	1. Presence of neurodevelopmental sequelae (i.e. any sensory, motor, cognitive, psychological, or behavioural impairment reported on follow-up any time after the neonatal period)				
bilirubinaemia in neonates	 Degree of such neurodevelopmental impairment (expressed as mean or median scores on tests of neurodevelopmental function performed any time after the neonatal period) 				
	No outcome data for these outcomes				
Thukral 2015	Protocol				
Periodic change of body po- sition under phototherapy in	Secondary outcomes pre-specified include:				

1. Incidence of BIND (proportion). BIND or subtle encephalopathy shall be defined as neurological, cognitive, learning, or movement disorders; isolated hearing loss; or auditory dysfunction in

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

term and late preterm neonates

with hyperbilirubinaemia

Table 1. Characteristics of excluded reviews (Continued)

	the presence of hyperbilirubinaemia (Bergman 1985; Hyman 1969; Johnson 1974; Rubin 1979; Scheldt 1977)				
Upadhyay 2016	Protocol				
Short-duration vs standard-du-	Secondary outcomes pre-specified include:				
treatment of neonatal bacterial infection	1. Survival without major disability at 18 to 24 months' corrected age (proportion)				
Ward 2003	Primary outcomes pre-specified include:				
Steroid therapy for meconium aspiration syndrome in new-	1. Long-term growth and neurodevelopmental outcomes assessed at age 1, 2, and 5 years with validated assessment tools				
born infants	No outcome data for this outcome				
Whitelaw 2001	Outcomes pre-specified include:				
Diuretic therapy for newborn in-	1. Moderate to severe long-term motor disability at 1 to 3 years of age				
fants with post-haemorrhagic ventricular dilatation	2. Combined outcome: death or (moderate to severe) long-term disability at 1 to 3 years of age				
	Data reported for these outcomes; no outcome data for cerebral palsy. "The larger trial showed that acetazolamide and furosemide treatment resulted in a borderline increase in the risk for motor impairment at one year (RR 1.27, 95% CI 1.02 - 1.58; RD 0.16, 95% CI 0.02 - 0.31), but did not significantly affect the risk for the combined outcome of delay, disability or motor impairment among survivors, or the risk of the combined outcome of death, delay, disability or impairment at one year"				
Whitelaw 2001b	Outcomes pre-specified include:				
Repeated lumbar or ventricular	1. Surviving with major disability for 12 months or longer in survivors				
traventricular haemorrhage	2. Surviving with multiple neurodevelopmental impairments				
	Data reported for these outcomes; no outcome data for cerebral palsy. "The tables and figures show that none of the trials found a significant effect of CSF tapping on a) need for shunt b) death c) major disability in survivors d) multiple disability in survivors e) death or disability. Similarly, meta-analysis of the results of all included trials shows no significant effect of CSF tapping on any of these outcomes"				
Woodgate 2001	Outcomes pre-specified include:				
Permissive hypercapnia for pre-	1. Neurodevelopmental outcome				
tality in mechanically ventilated newborn infants	No outcome data for this outcome				

Abbreviations: BIND: bilirubin-induced neurological dysfunction; BSID: Bayley Scales of Infant Development; CI: confidence interval; CSF: cerebrospinal fluid; DDST: Denver Developmental Screening Test; G-CSF: granulocyte-colony stimulating factor; GM-CSF: granulocyte-macrophage colony-stimulating factor; RD: risk difference; RR: risk ratio; VABS: Vineland Adaptive Behavior Scales.

Table 2. Characteristics of included reviews

Review ID and title	Date of search and date as- sessed as up-to-date	No. included trials (coun- tries and publication years)	No. partici- pants in in- cluded tri- als	Inclusion criteria for 'Types of partici- pants'	Relevant compari- son inter- ventions (no. trials	Overview outcomes for which data were reported (no. trials and participants)
------------------------	--	---	--	--	---	--

Table 2. Characteristics of included reviews (Continued)

and participants)

Neonatal care: asphyxia						
Chaudhari 2012 Allopurinol for prevent- ing mor- tality and morbidity in newborn infants with hypoxic-is- chaemic en- cephalopa- thy	Searches: March 2012 Up-to-date: 4 April 2012	3 RCTs (Countries: Netherlands, Turkey; Published: 1990s: 1 RCT; 2000s: 2 RCTs)	114 infants	Newborn infants (> 34 weeks' gesta- tion) with hypox- ic-ischaemic en- cephalopathy de- fined as clinical evi- dence of cardiores- piratory or neuro- logical depression (Apgar score < 7 at 5 minutes and beyond after birth) and/or evidence of severe metabolic acidosis in intrapartum foetal, umbilical arterial cord, or very early neonatal blood sam- ples (pH < 7 or base deficit > 12 mmol/ L), and/or clinical or electro-encephalo- graphic (multi-chan- nel or amplitude integrated) evi- dence of neonatal encephalopathy (MacLennan 1999)	Allopurinol vs control (3 RCTs, 114 neonates)	Severity of cerebral palsy ("Severe quadriplegia in sur- viving infants" (3 RCTs, 73 chil- dren); reported as a primary outcome) Other composite outcome that includes cerebral palsy as a component ("Death or se- vere neurodevelopmental dis- ability in survivors" (3 RCTs, 110 children); reported as a primary outcome)
Jacobs 2013 Cooling for newborns with hy- poxic-is- chaemic en- cephalopa- thy	1 May 2012	11 RCTs (Countries: China: 2 RCTs; New Zealand: 1 RCT; Turkey: 1 RCT; USA; 3 RCTs; inter- national: 4 RCTs Published: 1990s: 1 RCT; 2000s: 7 RCTs; 2010s: 3 RCTs)	1505 in- fants	 Newborn infants of 35 weeks' gestation or greater Evidence of peri- partum asphyxia, with each enrolled infant satisfying at least 1 of the follow- ing criteria: Apgar score of 5 or less at 10 minutes Mechanical venti- lation or resuscita- tion at 10 minutes Cord pH < 7.1, or arterial pH < 7.1, or base deficit of 12 or more within 60 min- utes of birth Evidence of en- cephalopathy ac- cording to Sarnat 	Thera- peutic hy- pothermia vs standard care (11 RCTs, 1505 neonates)	Cerebral palsy ("Cerebral palsy in survivors assessed" (7 RCTs, 881 children) and "Outcome at 6 to 7 years of age: Cerebral pal- sy" (1 RCT, 121 children); report- ed as secondary outcomes) Other composite outcomes that include cerebral palsy as a component ("Death or ma- jor disability in survivors as- sessed" (8 RCTs, 1344 children); reported as a primary outcome) ("Major neurodevelopmental disability" (8 RCTs, 1344 chil- dren); "Major neurodevelop- mental disability in survivors as- sessed" (8 RCTs, 917 children); "Outcome at 6 to 7 years of age: death or moderate-to-severe disability" (1 RCT, 190 children); "Outcome at 6 to 7 years of age: moderate-to-severe disabili- ty" (1 RCT, 119 children); report- ed as secondary outcomes)

Table 2. Cha	aracteristics o	of included reviews	S (Continued)	staging (Finer 1981; Sarnat 1976): a. Stage 1 (mild): hy- peralertness, hy- per-reflexia, dilated pupils, tachycardia, absence of seizures b. Stage 2 (moder- ate): lethargy, hy- per-reflexia, mio- sis, bradycardia, seizures, hypotonia with weak suck and Moro c. Stage 3 (severe): stupor, flaccidity, small to mid posi- tion pupils that re- act poorly to light, decreased stretch re- flexes, hypothermia, and absent Moro No major congenital abnormalities recog-		Motor dysfunction ("Neuromo- tor delay (BSID PDI more than 2 SD below mean) in survivors as- sessed" (6 RCTs, 657 children); reported as a secondary out- come)
Young 2016 Prophylac- tic barbitu- rate use for the preven- tion of mor- bidity and mortality following perinatal asphyxia	30 Novem- ber 2015	9 RCTs 456 (Countries: Finland: 1 RCT; India: 2 RCTs; Mex- ico: 1 RCT; Romania: 1 RCT; South Africa: 1 RCT; Spain: 1 RCT; USA: 2 RCTs; Published: 1980s: 2 RCTs; 1990s: 2 RCTs; 2010s: 3 RCTs)	5 infants	 Term infants (37 weeks or greater) and late preterm infants (34 to 36+6 weeks' gestation) 3 days of age or less with perinatal asphyxia Evidence of peri- natal asphyxia, characterised by evidence of neonatal or foetal distress with each enrolled infant satisfying at least 1 of the following criteria: a. Cord gas or postnatal blood gas (within the first hour of life) with pH 7.0 or less or base deficit 12 mEq/ L or greater Apgar score 5 or less at 10 minutes 	Barbitu- rates vs control (8 RCTs, 439 neonates)	Cerebral palsy ("Cerebral pal- sy" (2 RCTs, 69 children); report- ed as a secondary outcome) Other composite outcomes that include cerebral palsy as a component ("Death or major neurodevelopmental disabili- ty" (1 RCT, 31 children); report- ed as a primary outcome) ("Ma- jor neurodevelopmental disabil- ity" (1 RCT, 31 children); report- ed as a secondary outcome)

Table 2. Characteristics of included reviews (Continued)

- c. Need for mechanical ventilation or resuscitation at 10 minutes of life
 3. With or without evidence of encephalopathy (moderate or severe) according to Sarnat staging (Sarnat 1976)
 4. No evidence of
- seizures 5. No major congenital abnormalities recognisable

at birth

Neonatal care: haemorrhage: periventricular/intraventricular

Hunt 2010 Ethamsy- late for the preven- tion of mor- bidity and mortality in preterm or very low birth weight in- fants	Search: 24 August 2009 Up-to-date: 22 Septem- ber 2009	7 RCTs (Countries: France, Greece, UK: 1 RCT; India: 1 RCT; Switzer- land: 1 RCT; Taiwan: 1 RCT; Turkey: 1 RCT; UK: 2 RCTs; Published: 1980s: 3 RCTs; 1990s: 4 RCTs)	1410 in- fants	Preterm infants born before and including 34 weeks plus 6 days' completed gestation or with birthweight < 2000 g	Etham- sylate vs placebo (7 RCTs, 1410 neonates)	Cerebral palsy ("Cerebral pal- sy in surviving children avail- able for follow-up" (3 RCTs, 532 children); reported as a primary outcome) Other composite outcomes that include cerebral palsy as a component ("Neurodevelop- mental disability at 2 years of age in surviving children avail- able for follow-up" (3 RCTs, 532 children); "Death or any disabil- ity by 2 years of age in children with known outcome at any point in time" (7 RCTs, 1334 chil- dren); reported as primary out- comes)
Smit 2013 Postnatal phenobar- bital for the preven- tion of in- traventric- ular haem- orrhage in preterm in- fants	Search: 31 October 2012 Up-to-date: 17 Decem- ber 2012	12 RCTs (Countries: not reported; Published: 1980s: 8 RCTs; 1990s: 1 RCT: 2000s: 3 RCTs)	982 infants	Newborn infants (less than 24 hours old) with gestation- al age < 34 weeks or birthweight < 1500 g. We included preterm infants with gesta- tional age 33 to 36 weeks or birthweight up to 1750 g, if they were mechanically ventilated. We ex- cluded infants with serious congenital malformations	Phenobar- bital vs control (12 RCTs, 982 neonates)	Other composite outcomes that include cerebral palsy as a component ("Mild neurode- velopmental impairment" (1 RCT, 101 children); "Severe neurodevelopmental impair- ment" (1 RCT, 101 children); re- ported as secondary outcomes)

Neonatal care: hypotension

Table 2. Characteristics of included reviews (Continued)

Osborn 2007b	19 May 2010	1 RCT (Country: not	42 infants	Preterm infants (< 37 weeks' gestation-	Dobuta- mine vs	Cerebral palsy ("Cerebral pal- sy at 3 years in survivors as-
The ef-		reported;		or organ blood flow	in preterm	ported as a primary outcome)
The ef- fect of in- otropes on morbidity and mor- tality in preterm in- fants with low sys- temic or or- gan blood flow		reported; Published: 2000s)		or organ blood flow in the neonatal pe- riod. Low SBF may be determined on the basis of echocar- diographically mea- sured ventricular outputs or surro- gates for SBF such as SVC flow. Low or- gan blood flow may be determined on the basis of tech- niques including ul- trasound Doppler, near infrared spec- troscopy, or xenon clearance techniques when evidence in the literature suggests that measurement is associated with sub- stantial clinical out- comes and/or actu- al organ blood flow. The review does not include studies that include surrogates of flow such as BP, ul- trasound Doppler-	in preterm infants with low supe- rior vena cava flow (1 RCT, 42 neonates)	ported as a primary outcome) Other composite outcomes that include cerebral palsy as a component ("Disability at 3 years in survivors assessed" (1 RCT, 13 children); "Death or dis- ability at 3 years" (1 RCT, 37 chil- dren); "Death or disability at lat- est follow-up" (1 RCT, 41 chil- dren); reported as primary out- comes)
				measured velocities, pulsatility, or resis-		
				tive indices		

Neonatal care: fluid therapy

Osborn 2004 Early vol- ume ex- pansion for preven- tion of mor- bidity and mortali- ty in very preterm in- fants	30 July 2008	8 RCTs (Countries: not reported; Published: 1970s: 1 RCT; 1980s: 1 RCT; 1990s: 4 RCTs; 2000s: 2 RCTs)	1185 in- fants	Very preterm infants born ≦ 32 weeks' gestation or ≦ 1500 g and enrolled and treated the first 72 hours after birth. Tri- als were eligible if they enrolled uns- elected preterm in- fants, preterm in- fants with clinically suspected poor per- fusion (e.g. low BP, poor cutaneous per- fusion, metabolic acidosis), or preterm infants with low blood flow (e.g. de- termined by Doppler	Volume vs no treat- ment in very preterm infants (5 RCTs, 978 neonates) Gelatin vs fresh frozen plasma in hypoten- sive infants (1 RCT, 519 neonates)	Cerebral palsy ("Cerebral pal- sy in survivors" (1 RCT, 604 chil- dren; and 1 RCT, 399 children); reported as a primary outcome) Other composite outcomes that include cerebral palsy as a component ("Severe neu- rodevelopmental disability in survivors" (1 RCT, 604 children; and 1 RCT, 399 children); "Death or severe neurodevelopmental disability" (1 RCT, 776 children; and 1 RCT, 518 children); report- ed as primary outcomes)
				blood flow (e.g. de- termined by Doppler ultrasound). Low BP may be defined as BP		

less than a specified percentile of a standard chart, mean BP ≦ 30 mmHg in any preterm infant, or mean BP ≦ 1 mmHg per week of gestation

Neonatal care: patent ductus arteriosus

Fowlie 2010 Prophylac- tic intra- venous in- domethacin for prevent- ing mor- tality and morbidity in preterm infants	Searches: April 2010 Up-to-date: 19 May 2010	19 RCTs (Countries: North Amer- ica: 13 RCTs; Latin Ameri- ca, Europe, Asia: 6 RCTs; Published: 1980s: 11 RCTs; 1990s: 7 RCTs; 2000s; 1 RCT)	2872 in- fants	Preterm neonates (less than 37 weeks' completed gesta- tion)	Prophy- lactic IV in- domethacin vs place- bo or no drug (19 RCTs, 2872 neonates)	Cerebral palsy ("Neurological assessments (18-54 months: Cerebral palsy" (4 RCTs, 1372 children); "School age neurolog- ical assessments: Cerebral pal- sy aged 8 years" (1 RCT, 304 chil- dren); reported as primary out- comes) Other composite outcome that includes cerebral palsy as a component ("Death or severe neurosensory impairment" (3 RCTs, 1491 children); reported as a primary outcome)
Ohlsson 2015 Ibupro- fen for the treatment of patent ductus ar- teriosus in preterm or low birth weight (or both) in- fants	7 May 2014	33 RCTs (Countries: Albania: 1 RCT; Bel- gium: 2 RCTs; Czech Re- public: 1 RCT; China: 1 RCT; China: 1 RCT; Iran: 3 RCTs; Is- rael: 1 RCT; Italy: 6 RCTs; Poland: 1 RCT; Qatar: 1 RCT; Qatar: 1 RCT; Spain: 2 RCTs; Taiwan: 2 RCTs; Thai- land: 2 RCTs; Tunisia: 1 RCT; Turkey: 3 RCTs; USA: 2 RCTs; Published: 1990s: 4 RCTs; 2000s: 18 RCTs;	2190 in- fants	Preterm infants less than 37 weeks' gestational age or LBW infants (less than 2500 g) with PDA diagnosed ei- ther clinically or by echocardiographical- ly (ECHO) guided cri- teria in the neonatal period (less than 28 days)	Oral ibupro- fen vs IV ibupro- fen (data for maxi- mum of 4 RCTs, 304 neonates)	Cerebral palsy ("Moderate/se- vere cerebral palsy at 18-24 months" (1 RCT, 57 children); re- ported as a secondary outcome)

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Table 2. Characteristics of included reviews (Continued)

2010s: 11 RCTs)

Neonatal car	Neonatal care: blood disorders							
Ohlsson 2014 Early ery- thropoi- etin for pre- venting red blood cell transfusion in preterm and/or low birth weight in- fants	1 July 2013	27 RCTs (Coun- tries: Aus- tria: 2 RCTs; Bangladesh: 1 RCT; Chile: 1 RCT; Chi- na: 2 RCTs; Greece: 3 RCTs; Iran: 1 RCT; Italy: 2 RCTs; Mexico: 1 RCT; New Zealand: 1 RCT; Poland: 1 RCT; Sin- gapore: 1 RCT; South Africa: 1 RCT; Switzer- land: 1 RCT; Turkey: 1 RCT; USA: 5 RCTs; Eu- rope: 3 RCTs; Published 1990s: 12 RCTs; 2000s: 13 RCTs; 2010s: 2 RCTs)	2209 in- fants	Preterm (< 37 weeks) and/or LBW (< 2500 g) neonates less than 8 days of age	Erythro- poietin vs placebo or no treat- ment (27 RCTs, 2209 neonates) Darbepo- etin alfa vs place- bo or no treatment (1 RCT, 66 neonates)	Cerebral palsy ("Cerebral palsy at 18 - 22 months' corrected age (in children examined)" (2 RCTs, 153 children; and 1 RCT, 51 chil- dren); reported as secondary outcomes) Other composite outcome that includes cerebral pal- sy as a component ("Any neu- rodevelopmental impairment at 18-22 months' corrected age (in children examined)" (1 RCT< 99 children); reported as a sec- ondary outcome) Motor dysfunction ("PDI < 70 at 18 - 22 months' corrected age (in children examined)" (1 RCT, 90 children); reported as a sec- ondary outcome)		
Whyte 2011 Low ver- sus high haemoglo- bin con- centration threshold for blood transfusion for prevent- ing mor- bidity and mortali- ty in very low birth weight in- fants	Search: Au- gust 2011 Up-to-date: 1 Septem- ber 2011	5 RCTs (Countries: Canada: 1 RCT; Interna- tional (Cana- da, USA, Aus- tralia): 1 RCT; Taiwan: 1 RCT; USA: 2 RCTs; Published: 1980s: 1 RCT; 1990s: 1 RCT; 2000s: 3 RCTs)	670 infants	VLBW infants (i.e. of birthweight less than or equal to 1500 g, or less than 32 weeks' gestation- al age) admitted to NICU at less than 1 week of age. We aimed specifically to include studies of infants receiving all levels of intensive care	Transfu- sion at a low haemo- globin or haemat- ocrit lev- el (restric- tive) vs transfusion at a high haemo- globin or haemat- ocrit level (liberal) (4 RCTs, 614 neonates)	Cerebral palsy ("Neurosenso- ry impairment at 18-21 months' follow-up among survivors: Cerebral palsy" (1 RCT, 335 chil- dren); reported as a secondary outcome) Other composite outcomes that include cerebral palsy as a component ("Death or severe morbidity: at 18-21 months' fol- low-up with MDI < 70" (1 RCT, 421 children); "Death or severe morbidity: at 18-21 months' fol- low-up with MDI < 85" (1 RCT, 421 children); reported as pri- mary outcomes) ("Neurosenso- ry impairment at 18-21 months' follow-up among survivors: any neurosensory impairment" (1		

Neonatal care: pulmonary hypertension

RCT, 328 children); reported as a secondary outcome)

More 2016 Endothe- lin recep- tor antag- onists for persistent pulmonary hyperten- sion in term and late preterm in- fants	28 December 2015	2 RCTs (Countries: Saudi Arabia: 1 RCT; un- clear (mul- ti-centre): 1 RCT; Published: 2010s: 2 RCTs)	68 infants	Late preterm in- fants (born at 34+0 to 36+6 weeks), term infants (born at 37+0 to 41+6 weeks), and post-term infants (i.e. born after 41+6 weeks' gestation) until post-menstru- al age (PMA) up to 44 weeks with PPHN were eligible for in- clusion. The diag- nosis of PPHN was clinical or was based on echocardiogra- phy. Clinical diagno- sis of PPHN was con- sidered when there was hypoxaemia re- fractory to oxygen therapy and me- chanical ventilation (Roberts 1997). The echocardiographic diagnosis of PPHN was made by demon- strating the presence of extrapulmonary right-to-left shunt- ing at the ductal or atrial level, near or suprasystemic pul- monary arterial pres- sures, and doppler evidence of tricus- pid regurgitation (Dhillon 2012; Stayer 2010)	Endothe- lin receptor antagonists vs placebo (1 RCT, 47 neonates)	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 37 children); report- ed as a secondary outcome) Motor dysfunction ("Adverse neurodevelopmental outcome at 6 months" (1 RCT, 37 chil- dren); reported as a secondary outcome)

Neonatal care: resuscitation

Tan 2005 Air versus oxygen for resuscita- tion of in- fants at	Search: De- cember 2003/Janu- ary 2004 Up-to-date: 15 February	5 RCTs (Countries: India: 1 RCT; 6 countries: 1 RCT; not reported: 3	1302 in- fants	Term or preterm neonates requiring IPPV at birth	Room air vs 100% oxygen (5 RCTs, 1302 neonates)	Cerebral palsy ("Long-term neurodevelopmental outcome: cerebral palsy in those followed up at 18-24 months" (1 RCT, 213 children); reported as a post hoc outcome)
birth	2005	RCTs Published: 1990s: 2 RCTs; 2000s: 3 RCTs)				Motor dysfunction ("Long-term neurodevelopmental outcome: not walking in those followed up at 18-24 months" (1 RCT, 213 children); reported as a post hoc outcome)

Neonatal care: nitric oxide

Barrington 2010 Inhaled ni- tric oxide for respira- tory failure in preterm infants	Search: June 2010 Up-to-date: 12 October 2010	14 RCTs (Countries: Europe: 3 RCTs; Tai- wan: 1 RCT; USA: 1 RCT; not report- ed/unclear: 9 RCTs Published: 1990s: 3 RCTs; 2000s: 11 RCTs)	3430 in- fants	Premature infants (less than 35 weeks' gestation) with res- piratory failure after adequate treatment with surfactant	 Inhaled NO compared with control; analyses conducted based on: Studies with entry before 3 days based on oxygenation (9 RCTs, 1006 neonates) Studies with entry after 3 days based on BPD risk (2 RCTs, 624 neonates) Studies of routine use in intubated preterm infants (3 RCTs, 1800 neonates) 	Cerebral palsy ("Cerebral pal- sy"; reported as an outcome (2 RCTs, 209 children; 2 RCTs, 498 children; and 2 RCTs, 593 chil- dren) (not separated into prima- ry/secondary)) Other composite outcome that includes cerebral palsy as a component ("Neurodevelop- mental disability" (2 RCTs, 208 children; 2 RCTs, 498 children; and 2 RCTs, 593 children); re- ported as an outcome (not sep- arated into primary/secondary)) Motor dysfunction ("Bayley MDI or PDI <-2SD" (1 RCT, 138 children); reported as an out- come (not separated into pri- mary/secondary))
Finer 2006 Nitric oxide for respira- tory failure in infants born at or near term	Search: No- vember 2005 Up-to-date: 30 May 2006	14 RCTs (Countries: 33 French and Belgian Units: 1 RCT; not reported: 13 RCTs Published: 1990s: 11 RCTs; 2000s: 3 RCTs)	1715 in- fants	Newborn infants (< 1 month of age) with hypoxaemia suspect- ed to be due to lung disease, pulmonary hypertension with right-to-left shunting, or both Only studies in term and near-term in- fants (> 34 weeks' gestation) were in- cluded Efforts were made in all studies to exclude	Inhaled NO vs control (10 RCTs, 1068 in- fants) Inhaled NO vs control in infants with di- aphragmat- ic hernia (2 RCTs, 84 neonates)	Cerebral palsy ("Cerebral pal- sy among survivors" (2 RCTs, 299 children; and 1 RCT, 22 children); reported as an out- come (not separated into pri- mary/secondary)) Other composite outcome that includes cerebral palsy as a component ("Neurodevel- opmental disability at 18 to 24 months among survivors" (2 RCTs, 301 children); reported as an outcome (not separated into primary/secondary))

infants with intracardiac shunting due to structural congenital heart disease

Infants with diaphragmatic hernia may respond differently from other near term infants (from preliminary data), and as far as possible results from infants with diaphragmatic hernias have been evaluated separately

Motor dysfunction ("Bayley PDI more than 2 SD below the mean" (2 RCTs, 283 children); reported as an outcome (not separated into primary/secondary))

Neonatal care: apnoea

Hender- son-Smart 2010b Methylxan- thine treat- ment for apnoea in preterm in- fants	Search: June 2010 Up-to-date: 4 July 2010	6 RCTs (Countries: not reported Published: 1980s: 3 RCTs; 1990s: 1 RCT; 2000s: 2 RCTs)	959 infants	Preterm infants with recurrent apnoea. There must have been an effort to ex- clude specific sec- ondary causes of ap- noea	Any methylx- anthine vs control (placebo or no drug therapy) (6 RCTs, 959 neonates)	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 729 children); report- ed as a secondary outcome) Other composite outcome that includes cerebral palsy as a component ("Death or ma- jor disability by late infancy" (1 RCT, 767 children); reported as a secondary outcome)
Hender- son-Smart 2010c Prophylac- tic methylx- anthine for prevention of apnoea in preterm infants	Search: Au- gust 2010 Up-to-date: 29 Septem- ber 2010	3 RCTs (Countries: not reported Published: 1980s: 2 RCTs; 2000s: 1 RCT)	557 infants	Preterm infants, particularly those born at less than 34 weeks' gestation, who are at risk of developing recur- rent apnoea, brady- cardia, and hypoxic episodes	Prophylac- tic methylx- anthine vs control (3 RCTs, 557 neonates)	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 415 children); report- ed as a secondary outcome) Other composite outcome that includes cerebral palsy as a component ("Death or ma- jor disability" (1 RCT, 423 chil- dren); reported as a secondary outcome)

Neonatal care: respiratory distress syndrome

Howlett 2015 Inositol in preterm in- fants at risk for or hav- ing respi- ratory dis- tress syn- drome	14 Septem- ber 2014	4 RCTs (Countries: Finland: 2 RCTs; USA: 2 RCTs Published: 1980s: 1 RCT; 1990s: 2 RCTs; 2010s: 1 RCT)	429 infants	Preterm infants (< 37 weeks' post-men- strual age) or LBW (< 2500 g) infants	Inositol supple- mentation (repeat doses) vs control (3 RCTs, 355 neonates)	Other composite outcomes that include cerebral palsy as a component ("Major neural developmental impairment at one year corrected age" (1 RCT, 169 children); reported as a sec- ondary outcome) Motor dysfunction ("Minor neural developmental impair- ment at one year corrected age" (1 RCT, 169 children); re- ported as a secondary outcome)
Seger 2009	Search: De- cember 2008	13 RCTs	1611 in- fants	Preterm infants (< 37 weeks' gestation) with clinical and/or	Animal-de- rived sur- factant ex-	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 73 children); report- ed as a secondary outcome)

Table 2. ChaAnimal de-rived sur-factant ex-tract fortreatmentof respira-tory dis-tress syn-drome	Tracteristics of Up-to-date: 13 February 2009	of included rev (Countries: not reported Published: 1980s: 7 RCTs; 1990s: 6 RCTs)	(Continued)	radiological evidence of respiratory dis- tress syndrome re- quiring assisted ven- tilation	tract treat- ment of respiratory distress (all infants) (13 RCTs, 1611 neonates)	Other composite outcome that includes cerebral palsy as a component ("Major neurode- velopmental disability in sur- vivors" (1 RCT, 73 children); re- ported as a secondary outcome)
Soll 2000 Synthetic surfactant for respi- ratory dis- tress syn- drome in preterm in- fants	Search: not report- ed Up-to-date: 21 May 1998	6 RCTs (Countries: not clear- ly report- ed; Cana- da/USA/ both: 3 RCTs Published; 1980s: 1 RCT; 1990s: 5 RCTs)	2358 in- fants	Neonates with clin- ical and radiologi- cal evidence of res- piratory distress syn- drome requiring as- sisted ventilation	Synthet- ic surfac- tant vs control (6 RCTs, 2358 neonates)	Cerebral palsy ("Cerebral palsy in survivors examined" (5 RCTs, 1557 children); reported as an outcome (not separated into primary/secondary)) Severity of cerebral palsy ("Moderate - severe cerebral palsy in survivors examined" (5 RCTs, 1557 children); reported as an outcome (not separated into primary/secondary))
Soll 2010 Prophylac- tic protein free syn- thetic sur- factant for prevent- ing mor- bidity and mortality in preterm in- fants	Search: September 2009 Up-to-date: 27 October 2009	7 RCTs (Countries: 1: UK; 6 RCTs: not re- ported Published: 1980s: 3 RCTs; 1990s: 4 RCTs)	1583 in- fants	Premature infants with or without evi- dence of surfactant deficiency	Prophy- lactic syn- thetic sur- factant vs control (7 RCTs, 1583 neonates)	Cerebral palsy ("Cerebral pal- sy, 1-2 years" (4 RCTs, 670 chil- dren); reported as a secondary outcome) Severity of cerebral palsy ("Cerebral palsy, moderate/se- vere" (4 RCTs, 670 children); re- ported as a secondary outcome)

Neonatal care: mechanical ventilation

Cools 2015 Elective high fre- quency os- cillatory ventilation versus con- ventional ventilation for acute pulmonary dysfunction in preterm infants	30 Novem- ber 2014	19 RCTs (Countries: not reported Published: 1980s: 1 RCT; 1990s: 6 RCTs; 2000s: 10 RCTs; 2010s: 2 RCTs)	4096 in- fants	Preterm or LBW in- fants with pulmonary dysfunction, main- ly due to respiratory distress syndrome, who were considered to require IPPV	High-fre- quency os- cillatory ventilation vs conven- tional ven- tilation (19 RCTs, 4096 neonates)	Cerebral palsy (reported in text as a secondary outcome (3 RCTs))
Ho 2015 Continuous distend- ing pres-	30 April 2015	6 RCTs (Countries: not reported	355 infants	Preterm infants with respiratory failure	Continuous distending pressure vs stan- dard care (6	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 36 children); report- ed as a secondary outcome)

Table 2. Cha sure for res- piratory distress in preterm in- fants	racteristics o	of included rev Published: 1970s: 4 RCTs; 1990s: 1 RCT; 2000s: 1 RCT)	iews (Continued)	RCTs, 355 neonates)	Other composite outcomes that include cerebral palsy as a component ("Death or se- vere disability" (1 RCT, 38 chil- dren); "Severe disability" (1 RCT, 37 children); "Any disability" (1 RCT, 37 children); reported as secondary outcomes)
Hender- son-Smart 2010 Prophylac- tic methylx- anthines for endo- tracheal ex- tubation in preterm in- fants	Search: July 2010 Up-to-date: 16 August 2010	7 RCTs (Countries: not reported Published: 1980s: 3 RCTs; 1990s: 3 RCTs; 2000s: 1 RCT)	916 infants	Preterm or LBW in- fants being weaned from IPPV	Methylx- anthine vs control (7 RCTs, 914 neonates)	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 644 children); report- ed as a secondary outcome) Other composite outcome that includes cerebral palsy as a component ("Death or major disability by 18-21 months" (1 RCT, 676 children); reported as a secondary outcome)
Kamlin 2003 Long ver- sus short inspirato- ry times in neonates receiving mechanical ventilation	Search: April 2004 Up-to-date: 22 June 2003	5 RCTs (Countries: not reported Published: 1980s: 3 RCTs; 19980s; 2 RCTs)	694 infants	Term and preterm in- fants at less than 28 days of age and re- quiring conventional mechanical ventila- tion. No restrictions on underlying patho- physiology were ap- plied	Long vs short in- spiratory times (5 RCTs, 694 neonates)	Cerebral palsy ("Cerebral palsy in survivors less than 33 weeks' gestation at birth" (1 RCT, 177 children); reported as a sec- ondary outcome)
Wheeler 2010 Vol- ume-tar- geted ver- sus pres- sure-limit- ed ventila- tion in the neonate	Search: January 2010 Up-to- date: 30 June 2010	12 RCTs (Countries: not reported Published: 1990s: 2 RCTs; 2000s: 10 RCTs)	693 infants	All intubated infants of less than 28 days' corrected age who were being mechani- cally ventilated with IPPV at the time of study entry. Infants of all gestational ages and both paral- ysed and non-paral- ysed infants were eli- gible	Vol- ume-tar- geted vs pres- sure-lim- ited venti- lation (12 RCTs, 693 neonates)	Other composite outcomes that include cerebral palsy as a component ("Severe dis- ability (any definition)" (2 RCTs, 209 children); "Severe disabili- ty (any definition) or death" (1 RCT, 109 children; reported as outcomes from post hoc meta- analyses) Motor dysfunction ("Gross mo- tor developmental issue (any definition)" (1 RCT, 128 chil- dren); reported as an outcome from a post hoc meta-analysis)
Neonatal car	e: bronchopuln	nonary dysplasi	a			
Doyle 2014b Early (< 8 days) post- natal corti- costeroids for prevent- ing chron-	Search: Au- gust 2013 Up-to-date: 18 February 2014	29 RCTs (Countries: not reported Published: 1970s: 1 RCT; 1990s: 17 RCTs; 2000s:	3750 in- fants	Preterm infants at risk of developing chronic lung disease, including those who were ventilator de- pendent	Early (< 8 days) postnatal corticos- teroids vs control (29 RCTs, 3750 neonates)	Cerebral palsy ("Cerebral pal- sy" (12 RCTs, 1452 children); "Cerebral palsy in survivors as- sessed" (12 RCTs, 959 children); reported as primary outcomes) Cerebral palsy or death ("Death or cerebral palsy" (12

Table 2. Characteristics of included reviews (Continued)

ic lung disease in preterm infants 10 RCTs; 2010s: 1 RCT)

RCTs, 1452 children); reported
as a primary outcome)

Other composite outcomes that include cerebral palsy as a component ("Major neurosensory disability (variable criteria - see individual studies)" (7 RCTs, 1233 children); "Major neurosensory disability (variable criteria) in survivors examined" (7 RCTs, 799 children); "Death or major neurosensory disability (variable criteria)" (7 RCTs, 1233 children); reported as primary outcomes)

Motor dysfunction ("Bayley Psychomotor Developmental Index (PDI) <-2SD" (3 RCTs, 842 children); "Bayley PDI <-2SD in tested survivors" (3 RCTs, 528 children); reported as primary outcomes)

Halliday 2003 Moderately early (7-14 days) post- natal corti- costeroids for prevent- ing chron- ic lung dis- ease in preterm in- fants	Search: Oc- tober 2002 Up-to-date: 11 Novem- ber 2008	7 RCTs (Countries: not reported Published: 1980s: 1 RCT; 1990s: 6 RCTs)	669 infants	Preterm babies de- veloping chronic lung disease includ- ing those who were ventilator dependent	Moderately early (7-14 days) post- natal corti- costeroids vs control (7 RCTs, 659 neonates)	Cerebral palsy ("Cerebral palsy" (4 RCTs, 204 children); "Cerebral palsy in survivors as- sessed" (4 RCTs, 130 children); reported as review outcomes (not separated into primary and secondary)) Cerebral palsy or death ("Death or cerebral palsy" (4 RCTs, 204 children); reported as a review outcome) Other composite outcomes that include cerebral palsy as a component ("Major neu- rosensory disability (variable criteria - see individual stud- ies)" (2 RCTs, 96 children); "Ma- jor neurosensory disability (vari- able criteria) in survivors as- sessed" (2 RCTs, 56 children); "Death or major neurosensory disability (variable criteria)" (2 RCTs, 96 children); reported as review outcomes)
Doyle 2014 Late (> 7 days) post- natal corti- costeroids	Search: August 2013 Up-to-date:	21 RCTs (Countries: Australia, Canada, New Zealand: 1	1424 in- fants	Preterm infants with evolving or estab- lished chronic lung disease, defined as oxygen-dependent, ventilator-depen-	Late (> 7 days) post- natal corti- costeroids vs con- trol (21	Cerebral palsy ("Cerebral pal- sy: at 1 to 3 years" (14 RCTs, 876 children); "Cerebral palsy: at latest reported age" (15 RCTs, 855 children); "Cerebral pal- sy in survivors assessed; at 1
for chron- ic lung dis-	18 February 2014	RCT; 6 coun- tries: 1 RCT;		dent, or both, with or	RCTs, 1424 neonates)	to 3 years" (14 RCTs, 631 chil- dren); "Cerebral palsy in sur-

Table 2. Cha ease in preterm in- fants	iracteristics o	of included rev not reported: 19 RCTs Published: 1980s: 5 RCTs; 1990s: 12 RCTs; 2000s: 3 RCTs; 2010s: 1 RCT)	iews (Continued)	without radiographic changes of BPD		vivors assessed: at latest report- ed age" (15 RCTs, 591 children); reported as primary outcomes) Cerebral palsy or death ("Death or cerebral palsy: at 1 to 3 years" (14 RCTs, 876 children); "Death or cerebral palsy: at lat- est reported age" (15 RCTs, 855 children); reported as primary outcomes) Other composite outcomes that include cerebral palsy as a component ("Major neu- rosensory disability (variable criteria - see individual stud- ies)" (8 RCTs, 655 children); "Ma- jor neurosensory disability (vari- able criteria) in survivors as- sessed" (8 RCTs, 480 children); "Death or major neurosensory disability (variable criteria)" (8 RCTs, 655 children); reported as primary outcomes) Motor dysfunction ("Bayley Psychomotor Developmental Index (PDI) < -2 SD" (1 RCT, 118 children); "Bayley PDI < -2 SD in survivors tested" (1 RCT, 90 chil- dren); reported as primary out- comes)
Shah 2012 Early ad- ministra- tion of in- haled corti- costeroids for prevent- ing chron- ic lung dis- ease in ven- tilated very low birth weight preterm neonates	29 July 2011	7 RCTs (Countries: Canada: 1 RCT; China: 1 RCT; Ger- many: 1 RCT; UK: 1 RCT; USA: 1 RCT; USA: 1 RCT; not reported: 2 RCTs Published: 1990s: 5 RCTs; 2000s: 2 RCTs)	495 infants	Ventilator-de- pendent preterm neonates with birth- weight ≤ 1500 g and postnatal age < 2 weeks	Early in- haled steroids (< 2 weeks) vs placebo (7 RCTs, 495 neonates)	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 56 children); report- ed as a secondary outcome) Motor dysfunction ("Mean de- velopmental index on BSID-II < 2 SD of the mean" (1 RCT, 56 chil- dren); reported as a secondary outcome)
Darlow 2016 Vitamin A supple- menta- tion to pre- vent mor- tality and short- and	1 May 2016	11 RCTs (Countries: Greece: 1 RCT; South Africa: 1 RCT; Thailand: 1 RCT; UK: 2 RCTs; USA: 6 RCTs	1580 in- fants	VLBW infants (de- fined as birthweight ≤ 1500 g or at less than 32 weeks' ges- tation)	Supple- mental vi- tamin A vs no sup- plemen- tation (10 RCTs, 1460 neonates)	Other composite outcomes that include cerebral palsy as a component ("Neurode- velopmental impairment at 18 to 22 months" (1 RCT, 538 chil- dren); "Death or neurodevel- opmental impairment at 18 to 22 months" (1 RCT, 687 chil- dren); reported as secondary outcomes)

> 1980s: 2 RCTs; 1990s: 4 RCTs; 2000s: 3 RCTs: 2010s: 2 RCTs)

Table 2. Characteristics of included reviews (Continued) long-term Published:

long-term	
morbidi-	
ty in very	
low birth	
weight in-	
fants	

Neonatal care: infections: necrotising enterocolitis

AlFaleh 2014 Probiotics for pre- vention of necrotis- ing ente- rocolitis in preterm in- fants	1 October 2013	24 RCTs (Countries: Australia and New Zealand: 1 RCT; Brazil: 1 RCT; Colom- bia: 1 RCT; France: 1 RCT; Ger- many: 2 RCTs; Greece: 2 RCTs; India: 1 RCT; Israel: 1 RCT; Israel: 1 RCT; Israel: 1 RCT; Israel: 1 RCT; Israel: 1 RCT; Japan: 2 RCTs; Tai- wan: 2 RCTs; Turkey: 1 RCT; USA: 1 RCT; USA: 1 RCT; ISA: 1 RCT; ISA: 1 RCT; ISA: 1 RCT; ISA: 1 RCT; ISA: 1 RCT; 1990s: 2 RCTs; 2000s: 12 RCTs; 2010s: 9 RCTs)	5529 in- fants (20 RCTs with reported outcomes)	Preterm infants at < 37 weeks and birth- weight < 2500 g, or both	Probiotics vs con- trol (20 RCTs, 5529 neonates)	Other composite outcome that includes cerebral palsy as a component ("Mental retarda- tion and cerebral palsy" (1 RCT, 85 children); reported as a sec- ondary outcome)
Shah 2007 Arginine supple- mentation for pre- vention of necrotis- ing ente- rocolitis in preterm in-	Search: Au- gust 2010 Up-to-date: 28 Novem- ber 2010	1 RCT (Country: not reported Published; 2000s)	152 infants	Preterm infants less than 37 weeks' ges- tation at birth	Arginine supple- mentation vs placebo (1 RCT, 152 neonates)	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 135 children); report- ed as a post hoc secondary out- come) Other composite outcome that includes cerebral palsy as a component ("Major neurode- velopmental disability" (1 RCT, 132 children); reported as a post hoc secondary outcome)

Neonatal care: infections: fungal infections

comes)

Table 2. Characteristics of included reviews (Continued)

Cleminson 2015	Search: Au- gust 2015	15 RCTs (Countries:	1690 in- fants	Very preterm or VLBW infants with or without evidence of	Systemic antifungal agent vs	Cerebral palsy ("Cerebral pal- sy" (1 RCT, 219 children); report- ed as a primary outcome)
Prophylac- tic systemic antifun- gal agents to pre- vent mor- tality and morbidi- ty in very low birth weight in-	Up-to-date: 1 Septem- ber 2015	India: 2 RCTs; Italy: 2 RCTs; Korea: 1 RCT; Saudi Ara- bia: 1 RCT; Turkey: 2 RCTs; USA: 7 RCTs Published: 2000s: 7		fungal colonisation but without evidence of invasive fungal in- fection at study entry	placebo or no drug (10 RCTs, 1371 neonates)	Other composite outcome that includes cerebral palsy as a component ("Neurodevel- opmental impairment (compos- ite)" (1 RCT, 171 children); re- ported as a primary outcome)
fants		8 RCTs)				

Neonatal care: infections: herpes simplex

Jones 2009 Antiviral agents for treatment of herpes simplex virus in- fection in neonates	Search: No- vember 2008 Up-to-date: 14 March 2009	2 RCTs (Countries: USA: 2 RCTs Published: 1980s: 1 RCT; 1990s: 1 RCT)	273 infants	Hospitalised new- born infants less than 1 month of age with virologically confirmed HSV infec- tion	Vidarabine vs placebo (1 RCT, 56 neonates) Aciclovir vs vidarabine (1 RCT, 202 neonates)	Cerebral palsy ("Cerebral pal- sy in CNS HSV neonatal infec- tion up to three years by HSV serotype: HSV-1" (1 RCT, 9 chil- dren); "Cerebral palsy in CNS HSV neonatal infection up to three years by HSV serotype: HSV-2" (1 RCT, 14 children); re- ported as primary outcomes) Other composite outcomes that include cerebral palsy as a component ("Abnormal neu- rodevelopment at one year" (1 RCT, 56 children; and 1 RCT, 202 children); "Abnormal neurode- velopment or death at approxi- mately one year of age" (1 RCT,
						velopment or death at approxi- mately one year of age" (1 RCT, 56 children; and 1 RCT, 202 chil- dren); reported as primary out-

Neonatal care: jaundice

post hoc decision to include any study that involved LBW (< 2500 g birthweight) or preterm infants

We excluded studies of infants with a known cause that can lead to significant hyperbilirubinaemia, such as ABO incompatibility, Rh incompatibility, minor blood group incompatibility, or G-6PD deficiency

Neonatal care: hypoglycaemia

Weston 2016 Oral dex- trose gel for the treat- ment of hypogly- caemia in newborn infants	29 February 2016	2 RCTs (Countries: Ireland: 1 RCT; New Zealand: 1 RCT; Published: 2000s: 1 RCT; 2010s: 1 RCT)	317 infants	We included new- born infants from birth to discharge home who were hy- poglycaemic (blood glucose concentra- tions below the nor- mal range, investi- gator defined) for any reason. We ex- cluded infants who had received prior IV treatment for main- tenance of glucose	Dextrose gel vs con- trol (2 RCTs, 317 neonates)	Cerebral palsy ("Cerebral pal- sy and severity at age 2 years or older" (1 RCT, 183 children); re- ported as a secondary outcome) Other composite outcomes that include cerebral palsy as a component ("Major neu- rosensory disability (2-year fol- low-up)" (1 RCT, 184 children); reported as a primary outcome) ("Developmental disability at age 2 years or older" (1 RCT, 184 children); reported as a sec-
				control at the time of		ondary outcome)

hypoglycaemia

Neonatal care: parenteral feeding

Moe-Byrne 2016 Glutamine supple- mentation to prevent morbidity and mor- tality in preterm in- fants	18 December 2015	12 RCTs (Countries: China; 1 RCT; Greece: 1 RCT; Malaysia: 1 RCT; Nether- lands: 1 RCT; Turkey: 1 RCT; UK: 1 RCT; USA: 4 RCTs; not re- ported; 2 RCTs; Published: 1990s: 2 RCTs; 2000s: 6 RCTs;	2877 in- fants	We included preterm infants (gestational age < 37 weeks) ad- mitted to neonatal intensive or special care units or com- parable settings af- ter birth. When par- ticipants in a trial included both term and preterm infants, we sought subgroup data from the report or from trial authors	Glutamine supple- mentation vs no sup- plemen- tation (12 RCTs, 2877 neonates)	Other composite outcome that includes cerebral palsy as a component ("Neurodevelop- mental impairment" (1 RCT, 72 children); reported as a primary outcome)
--	------------------	---	-------------------	---	---	--

Table 2. Characteristics of included reviews (Continued)

2010s: 4 RCTs)

Neonatal car	Neonatal care: other							
Osborn 2001 Thyroid hormones for prevent- ing neu- rodevelop- mental im- pairment in preterm in- fants	Search: June 2001 Up-to-date: 1 February 2009	5 RCTs (Countries: not reported; Published: 1980s: 2 RCTs; 1990s: 2 RCTs; 2000s; 1 RCT)	362 infants	Studies that enrolled and treated preterm infants in the neona- tal period	Thyroid hormones vs control (5 RCTs, 362 neonates)	Cerebral palsy ("Cerebral pal- sy in survivors" (1 RCT, 156 chil- dren); reported as a primary outcome) Cerebral palsy or death ("Death or cerebral palsy" (1 RCT, 200 children); reported as a primary outcome)		
Osborn 2007 Prophylac- tic postna- tal thyroid hormones for preven- tion of mor- bidity and mortality in preterm in- fants	Search: March 2006 Up-to-date: 12 October 2006	4 RCTs (Countries: not reported; Published: 1990s: 2 RCTs; 2000s: 2 RCTs)	318 infants	Studies that enrolled preterm infants (born < 37 completed weeks' gestation) in the neonatal period. Trials that enrolled infants on the basis of results of abnor- mal thyroid function tests (known congen- ital hypothyroidism or transient hypothy- roxinaemia), or with only respiratory dis- tress syndrome, were excluded	Prophylac- tic thyroid hormones vs no thy- roid hor- mones (4 RCTs, 318 neonates)	Cerebral palsy ("Cerebral pal- sy in survivors" (1 RCT, 156 chil- dren); reported as a primary outcome) Cerebral palsy or death ("Death or cerebral palsy" (1 RCT, 200 children); reported as a primary outcome)		
Almadhoob 2015 Sound re- duction manage- ment in the neonatal intensive care unit for preterm or very low birth weight in- fants	18 Decem- ber 2014	1 RCT (Country: USA; Published: 2009)	34 infants	Preterm infants (< 32 weeks' post-men- strual age or < 1500 g birthweight) cared for in the resusci- tation area, during transport, or once admitted to an NICU or a stepdown unit	Silicone earplugs vs no earplugs (1 RCT, 34 infants)	Cerebral palsy ("Cerebral pal- sy at 18 to 22 months' corrected age" (1 RCT, 14 children); report- ed as a primary outcome)		
Conde- Agudelo 2016 Kangaroo mother care to re- duce mor- bidity and mortality in	30 June 2016	21 RCTs (Countries: 13 RCTs in low- or middle-in- come coun- tries: Colom- bia: 1 RCT; Ecuador:	3042 in- fants	LBW infants (defined as birthweight < 2500 g) regardless of ges- tational age	Kangaroo mother care vs con- vention- al neona- tal care (20 RCTs, 2969 neonates)	Cerebral palsy ("Cerebral palsy at 12 months' corrected age" (1 RCT, 588 children); reported as a primary outcome)		

low birth- weight in- fants		1 RCT; Ethiopia: 1 RCT; Indone- sia, Mexico, Ethiopia: 1 RCT; Indone- sia: 1 RCT; In- dia: 8 RCTs; Madagas- car: 1 RCT; Malaysia: 1 RCT; Nepal: 1 RCT; 5 RCTs in high-in- come coun- tries: Aus- tralia: 1 RCT; United Kingdom: 1 RCT; Unit- ed States: 3 RCTs; Published: 1990s: 5 RCTs; 2000s: 10 RCTs; 2010s: 6 RCTs)				
Spittle 2015 Early devel- opmental interven- tion pro- grammes provided post hos- pital dis- charge to prevent motor and cognitive impairment in preterm infants	15 August 2015	25 RCTs (Countries: not reported; Published: 1970s: 1 RCT; 1980s: 5 RCTs; 1990s: 3 RCTs; 2000s: 13 RCTs; 2010s: 3 RCTs)	3615 in- fants	Preterm infants born at < 37 weeks' gesta- tional age (accord- ing to best obstetri- cal estimate at the time of delivery). We excluded studies that did not report out- comes for preterm infants separately from those for in- fants born at term	Early de- velopmen- tal inter- vention vs stan- dard fol- low-up (25 RCTs, 3615 neonates)	Cerebral palsy ("Rate of cere- bral palsy" (7 RCTs, 985 chil- dren); reported as a secondary outcome) Motor dysfunction ("Motor outcome at school age (low score on Movement ABC)" (2 RCTs, 333 children); reported as a secondary outcome)

Table 2. Characteristics of included reviews (Continued)

Abbreviations: BP: blood pressure; BPD: bronchopulmonary dysplasia; BSID: Bayley Scales of Infant Development; CNS: central nervous system; ECHO: echocardiogram; g: grams; G-6PD: glucose-6-phosphate dehydrogenase; HSV: herpes simplex virus; IPPV: intermittent positive-pressure ventilation; IV: intravenous; LBW: low birthweight; MDI: Mental Development Index; Movement-ABC: Movement Assessment Battery for Children; NICU: neonatal intensive care unit; NO: nitric oxide; PDA: patent ductus arteriosus; PDI: Psychomotor Development Index; PMA: post-menstrual age; PPHN: persistent pulmonary hypertension of the newborn; RCT: randomised controlled trial; Rh: Rhesus; SBF: systemic blood flow; SD: standard deviation; SVC: superior vena cava; VLBW: very low birthweight.

Table 3. Risk of bias assessments from included reviews

Review ID and title	Summary of trial limitations (risk of bias)*

Table 3. Risk of bias assessments from included reviews (Continued)

Neonatal care: asphyxia

Chaudhari 2012	Random sequence generation: 2 RCTs low risk; 1 RCT unclear risk
Allopurinol for preventing	Allocation concealment: 3 RCTs low risk
newborn infants with hypox-	Blinding: 2 RCTs low risk; 1 RCT high risk
ic-ischaemic encephalopathy	Incomplete outcome data: 3 RCTs low risk
	Overall: "Although small, the trials were generally of good methodological quality"
Jacobs 2013	Random sequence generation: 9 RCTs low risk; 1 RCT unclear risk; 1 RCT high risk
Cooling for newborns with hy-	Allocation concealment: 8 RCTs low risk; 2 RCTs unclear risk; 1 RCT high risk
poxic-ischaemic encephalopa- thy	Blinding (participants and personnel): 11 RCTs high risk
	Blinding (outcome assessors): 10 RCTs low risk; 1 RCT unclear risk
	Incomplete outcome data: 6 RCTs low risk; 1 RCT unclear risk; 4 RCTs high risk
	Selective reporting: 11 RCTs low risk
	Overall: "Several limitations of the available evidence should be noted"
Young 2016	Random sequence generation: 7 RCTs low risk; 2 RCTs unclear risk
Prophylactic barbiturate use	Allocation concealment: 4 RCTs low risk; 4 RCTs unclear risk; 1 RCT high risk
for the prevention of morbidity and mortality following peri-	Blinding: 4 RCTs unclear risk; 5 RCTs high risk
natal asphyxia	Incomplete outcome data: 6 RCTs low risk; 2 RCTs unclear risk; 1 RCT high risk
	Selective reporting: 9 RCTs low risk
Neonatal care: haemorrhage: p	eriventricular/intraventricular
Hunt 2010	Adequate sequence generation: 4 RCTs yes; 2 RCTs unclear; 1 RCT no
Ethamsylate for the preven-	Allocation concealment: 3 RCTs yes; 2 RCT unclear; 2 RCTs no
tion of morbidity and mortali- ty in preterm or very low birth	Blinding: 4 RCTs yes; 3 RCTs unclear
weight infants	Incomplete outcome data addressed: 5 RCTs yes; 1 RCT unclear; 1 RCT no
	Free of selective reporting: 7 RCTs yes
	Free of other bias: 7 RCTs yes
Smit 2013	Random sequence generation: 5 RCTs low risk; 6 RCTs unclear risk; 1 RCT high risk
Postnatal phenobarbital for	Allocation concealment: 4 RCTs low risk; 7 RCTs unclear risk; 1 RCT high risk
the prevention of intraventric- ular haemorrhage in preterm	Blinding (participants and personnel): 2 RCTs low risk; 10 RCTs high risk
infants	Blinding (outcome assessors): 6 RCTs low risk; 6 RCTs unclear risk
	Incomplete outcome data: 8 RCTs low risk; 4 RCTs unclear risk
	Selective reporting: 2 RCTs low risk; 10 RCTs unclear risk
Neonatal care: hypotension	

Table 3. Risk of bias assessments from included reviews (Continued) Osborn 2007b Adequate sequence generation: 1 RCT yes The effect of inotropes on Allocation concealment: 1 RCT yes morbidity and mortality in Blinding (outcomes): 1 RCT yes preterm infants with low systemic or organ blood flow Blinding (intervention): 1 RCT yes Incomplete outcome data addressed: 1 RCT yes Free of selective reporting: 1 RCT yes Free of other bias: 1 RCT yes Overall: "The study was of adequate methodology" Neonatal care: fluid therapy Adequate randomisation: 7 RCTs yes; 1 RCT unclear Osborn 2004 Early volume expansion for Allocation concealment: 7 RCTs yes; 1 RCT unclear prevention of morbidity and Blinding of intervention: 1 RCT yes; 7 RCTs no mortality in very preterm infants Blinding of measurement: 3 RCTs yes; 1 RCT unclear; 4 RCTs no Losses to follow-up: 5 RCTs none; 1 RCT unclear; 2 RCTs yes Neonatal care: patent ductus arteriosus Blinding of randomisation: 12 RCTs yes; 7 RCTs can't tell Fowlie 2010 Blinding of intervention: 16 RCTs yes; 2 RCTs can't tell; 1 RCT no Prophylactic intravenous indomethacin for preventing Blinding of outcome assessment: 16 RCTs yes; 2 RCTs can't tell; 1 RCT no mortality and morbidity in preterm infants Complete follow-up (short-term outcomes): 18 RCTs yes; 1 RCT no Overall: "Overall, the quality of the trials was good" Random sequence generation: 9 RCTs low risk; 24 RCTs unclear risk Ohlsson 2015 Ibuprofen for the treatment Allocation concealment: 18 RCTs low risk; 14 RCTs unclear risk; 1 RCT high risk of patent ductus arteriosus in Blinding: 6 RCTs low risk; 7 RCTs unclear risk; 20 RCTs high risk preterm or low birth weight (or both) infants Incomplete outcome data: 28 RCTs low risk; 3 RCTs unclear risk; 2 RCTs high risk Selective reporting: 5 RCTs low risk; 28 RCTs unclear risk Other: 29 RCTs low risk; 4 RCTs unclear risk Overall: "Study quality was variable...we identified concerns about bias in most individual studies and therefore for the group of studies included as well"

Neonatal care: blood disorders

Ohlsson 2014	Random sequence generation: 8 RCTs low: risk; 19 RCTs unclear risk
Early erythropoietin for pre-	Allocation concealment: 13 RCTs low risk; 14 RCTs unclear risk
fusion in preterm and/or low	Blinding: 12 RCTs low risk; 3 RCTs unclear risk; 12 RCTs high risk
birth weight infants	Incomplete outcome data: 23 RCTs low risk; 2 RCTs unclear risk; 2 RCTs high risk

term

Table 3. Risk of bias assessments from included reviews (Continued)

	Selective reporting: 1 RCT low risk; 26 RCTs unclear risk	
	Other: 26 RCTs low risk; 1 RCT unclear risk	
Whyte 2011	Allocation concealment: 4 RCTs low risk; 1 RCT unclear risk	
Low versus high haemoglobin	Blinding: 1 RCT unclear risk; 4 RCTs high risk	
blood transfusion for prevent-	Incomplete outcome data: 3 RCTs low risk; 1 RCT unclear risk; 1 RCT high risk	
ing morbidity and mortality in very low birth weight infants	Selective reporting: 1 RCT low risk; 3 RCTs unclear risk; 1 RCT high risk	
	Overall: "This review consists of five randomised controlled trials in which there appears to be no allocation bias; the overall level of evidence is high"	
Neonatal care: pulmonary hype	rtension	
More 2016	Random sequence generation: 1 RCT low risk; 1 RCT unclear risk	
Endothelin receptor antago-	Allocation concealment: 2 RCT unclear risk	
hypertension in term and late	Blinding (participants and personnel): 2 RCTs low risk	
preterm infants	Blinding (outcome assessors): 2 RCTs low risk	
	Incomplete outcome data: 1 RCT low risk; 1 RCT high risk	
	Selective reporting: 1 RCT low risk; 1 RCT unclear risk	
	Other: 2 RCTs low risk	
	Overall: "the quality of evidence was considered low because of the very small sample size and methodological issues in the included studies"	
Neonatal care: resuscitation		
Tan 2005	Concealment of allocation: 2 RCTs yes; 3 RCTs no	
Air versus oxygen for resuscita-	Blinding of intervention: 2 RCTs yes; 3 RCTs no	
tion of infants at birth	Blinding of outcome assessment: 2 RCTs yes; 3 RCTs no	
	Completeness of follow-up (short-term): 4 RCTs yes; 1 RCT no	
	Completeness of follow-up (long-term): 3 RCTs no; 2 RCTs unclear	
Neonatal care: nitric oxide		
Barrington 2010	Allocation concealment: 12 RCTs low risk; 2 RCTs unclear risk	
Inhaled nitric oxide for respira- tory failure in preterm infants	Blinding: 7 RCTs low risk; 7 RCTs high risk	

	Selective reporting: 8 RCTs low risk; 6 RCTs not reported	
	Other: 3 RCTs low risk; 4 RCTs high risk; 7 RCTs not reported	
Finer 2006	Masking of allocation: 10 RCTs yes; 4 RCTs cannot tell	
Nitric oxide for respiratory fail- ure in infants born at or near	Masking of intervention: 6 RCTs yes; 8 RCTs no	

Incomplete outcome data: 14 RCTs low risk

Masking of outcome assessment: 6 RCTs yes; 1 RCT can't tell; 7 RCTs no

Table 3. Risk of bias assessments from included reviews (Continued)

Completeness of follow-up: 13 RCTs yes; 1 RCT can't tell

Overall: "The overall quality of these studies is quite variable"

Neonatal care: apnoea	
Henderson-Smart 2010b	Random sequence generation: 1 RCT high risk; 5 RCTs not reported
Methylxanthine treatment for	Allocation concealment: 2 RCTs low risk; 2 RCTs unclear risk; 2 RCTs high risk
aphoea in preterm infants	Blinding: 4 RCTs low risk; 2 RCTs high risk
	Incomplete outcome data: 3 RCTs low risk; 1 RCT unclear risk; 2 RCTs high risk
	Selective reporting: 2 RCTs low risk; 1 RCT unclear risk; 2 RCTs high risk; 1 RCT not reported
	Overall: "There was variation in trial design"
Henderson-Smart 2010c	Allocation concealment: 3 RCTs low risk
Prophylactic methylxanthine	Blinding: 3 RCTs low risk
for prevention of apnoea in preterm infants	Incomplete outcome data: 3 RCTs low risk
	Selective reporting: 2 RCTs low risk; 1 RCT not reported
	Overall: "Three studies are generally of high quality"
Neonatal care: respiratory distr	ress syndrome
Howlett 2015	Random sequence generation: 1 RCT low risk; 3 RCTs unclear risk
Inositol in preterm infants at	Allocation concealment: 2 RCTs low risk; 2 RCTs unclear risk
risk for or having respiratory distress syndrome	Blinding: 2 RCTs low risk; 2 RCTs unclear risk
	Incomplete outcome data: 4 RCTs low risk
	Selective reporting: 3 RCTs low risk; 1 RCT unclear risk
	Other: 3 RCTs high risk; 1 RCT low risk
	Overall: "Study quality varied and interim analyses had occurred in all trials"
Seger 2009	Blinding of randomisation: 10 RCTs yes; 3 RCTs not described
Animal derived surfactant ex-	Blinding of intervention: 8 RCTs yes; 1 RCT not described; 4 RCTs no
tract for treatment of respira- tory distress syndrome	Blinding of outcome measurement: 6 RCTs yes; 4 RCTs not described; 2 RCTs no; 1 RCT not report- ed
	Complete follow-up (short-term): 13 RCTs yes
	Complete follow-up (long-term): 4 RCTs yes; 9 RCTs no
	Overall: "studies are of high methodological quality"
Soll 2000	Blinding of randomisation: 6 RCTs yes
Synthetic surfactant for res-	Blinding of intervention: 5 RCTs yes; 1 RCT no
piratory distress syndrome in preterm infants	Blinding of outcome measurement: 5 RCTs yes; 1 RCT no
	Complete follow-up (short term): 6 RCTs yes

Table 3. Risk of bias assessments from included reviews (Continued) Complete follow-up (long term): 80 to 100%

	Complete follow-up (long term): 80 to 100%
Soll 2010	Adequate sequence generation: 6 RCTs unclear: 1 RCT not reported
Prophylactic protein free syn-	Allocation concealment: 7 RCTs yes
ing morbidity and mortality in	Blinding of intervention: 5 RCTs yes; 1 RCT unclear; 1 RCT no
preterm infants	Blinding of outcome measurement: 6 RCTs yes; 1 RCT no
	Incomplete outcome data addressed: 5 RCTs yes; 2 RCTs unclear
	Free of selective reporting: 7 RCTs yes
	Free of other bias: 7 RCTs yes

Neonatal care: mechanical ventilation

Cools 2015	Random sequence generation: 11 RCTs low risk; 8 RCTs unclear risk
Elective high frequency os-	Allocation concealment: 7 RCTs low risk; 12 RCTs unclear risk
conventional ventilation for	Blinding of participants and personnel: 19 RCTs high risk
acute pulmonary dysfunction in preterm infants	Blinding of outcome assessment: 7 RCTs low risk; 12 RCTs unclear risk
	Incomplete outcome data: 19 RCTs low risk
	Overall: "The quality of the studies was generally high"
Ho 2015	Random sequence generation: 2 RCTs low risk; 3 RCTs unclear risk; 1 RCT high risk
Continuous distending pres-	Allocation concealment: 4 RCTs low risk; 1 RCT unclear risk; 1 RCT high risk
sure for respiratory distress in preterm infants	Blinding (intervention): 6 RCTs high risk
	Blinding (short term outcomes): 6 RCTs high risk (1 RCT low risk for long term outcomes)
	Incomplete outcome data (short term outcomes): 3 RCTs low risk; 3 RCTs unclear risk (1 RCT low risk for long-term outcomes)
	Selective reporting: 2 RCTs low risk; 4 RCTs unclear risk
	Other: 6 RCTs unclear risk
	Overall: "These data should be interpreted with caution as in the studies reviewed, the numbers of infants were small, blinding of treatment was not possible and blinding of the outcome assessment was reported in only one study for the outcomes in childhood, thus possibly introducing bias"
Henderson-Smart 2010	Sequence generation: 1 RCT low risk; 6 RCTs not reported
Prophylactic methylxanthines	Allocation concealment: 6 RCTs low risk; 1 RCT unclear risk
for endotracheal extubation in preterm infants	Blinding: 6 RCTs low risk; 1 RCT high risk
	Incomplete outcome data: 3 RCTs low risk; 3 RCTs high risk; 1 RCT not reported
	Selective reporting: 4 RCTs low risk; 2 RCTs high risk; 1 RCT not reported
	Other: 1 RCT low risk; 6 RCTs not reported
Kamlin 2003	Concealment of allocation: 1 RCT yes; 1 RCT cannot tell; 3 RCTs no
	Blinding of intervention: 5 RCTs no

Table 3. Risk of bias assessm Long versus short inspirato-	ents from included reviews (Continued) Blinding of outcome measurement: 3 RCTs no; 2 RCTs some
ry times in neonates receiving mechanical ventilation	Completeness of follow-up (short term outcomes): 5 RCTs yes
Wheeler 2010	Sequence generation: 6 RCTs low risk; 6 RCTs unclear risk
Volume-targeted versus pres- sure-limited ventilation in the neonate	Allocation concealment: 11 RCTs low risk; 1 RCT unclear risk
	Blinding: 12 RCTs high risk
	Incomplete outcome data: 12 RCTs low risk
	Selective reporting: 10 RCTs low risk; 1 RCT unclear risk; 1 RCT high risk
	Other: 5 RCTs low risk; 5 RCTs unclear risk; 2 RCTs high risk
	Overall: "There are no major concerns about the methodology used in the twelve trials included in this review"
Neonatal care: bronchopulmon	ary dysplasia
Doyle 2014b	Random sequence generation: 15 RCTs low risk; 14 RCTs unclear risk
Early (< 8 days) postnatal	Allocation concealment: 27 RCTs low risk; 2 RCTs unclear risk
corticosteroids for prevent- ing chronic lung disease in	Blinding of participants and personnel: 23 RCTs low risk; 2 RCTs unclear risk; 4 RCTs high risk
preterm infants	Blinding of outcome assessment: 23 RCTs low risk; 2 RCTs unclear risk; 4 RCTs high risk
	Incomplete outcome data: 28 RCTs low risk; 1 RCT unclear risk
	Overall: "Overall the risk of bias was low for most studies"
Halliday 2003	Blinding of randomisation/allocation concealment: 7 RCTs yes/low risk
Moderately early (7-14 days)	Blinding of intervention: 5 RCTs yes; 2 RCTs no
postnatal corticosteroids for preventing chronic lung dis-	Blinding of outcome measurement: 5 RCTs yes; 1 RCT some; 1 RCT cannot tell
ease in preterm infants	Complete follow-up: 6 RCTs yes/almost; 1 RCT no
	Overall: "the methodological quality of the studies to determine long-term outcome is limited in some cases"
Doyle 2014	Random sequence generation: 12 RCTs low risk; 9 RCTs unclear risk
Late (> 7 days) postnatal corti-	Allocation concealment: 17 RCTs low risk; 4 RCTs unclear risk
costeroids for chronic lung dis- ease in preterm infants	Blinding of participants and personnel: 15 RCTs low risk; 4 RCTs unclear risk; 2 RCTs high risk
	Blinding of outcome assessment: 16 RCTs low risk; 4 RCTs unclear risk; 1 RCT high risk
	Incomplete outcome data: 20 RCTs low risk; 1 RCT unclear risk
	Overall: "Overall the risk of bias was low for most studies"
Shah 2012	Random sequence generation: 7 RCTs unclear risk
Early administration of inhaled	Allocation concealment: 7 RCTs low risk
chronic lung disease in ven-	Blinding of participants and personnel: 7 RCTs low risk
tilated very low birth weight preterm neonates	Blinding of outcome assessment: 1 RCT low risk; 6 RCTs unclear risk
F	Incomplete outcome data: 6 RCTs low risk: 1 RCT unclear risk

Table 3. Risk of bias assessments from included reviews (Continued)

TADIE 5. RISK OF DIAS ASSESSI	Overall: "Overall, the studies included for this review were of high methodological quality"
Darlow 2016	Random sequence generation: 9 RCTs low risk; 2 RCTs unclear risk
Vitamin A supplementation to	Allocation concealment: 8 RCTs low risk; 3 RCTs unclear risk
and long-term morbidity in	Blinding: 6 RCTs low risk; 2 RCTs unclear risk; 3 RCTs high risk
very low birth weight infants	Incomplete outcome data: 9 RCTs low risk; 1 RCT unclear risk; 1 RCT high risk
	Selective reporting: 8 RCTs low risk; 2 RCTs unclear risk; 1 RCT high risk
	Other: 2 RCTs low risk; 6 RCTs unclear risk; 2 RCTs high risk; 1 RCT not reported

Neonatal care: infections: necrotising enterocolitis

AlFaleh 2014	Random sequence generation: 15 RCTs low risk; 8 RCTs unclear risk; 1 RCT high risk	
Probiotics for prevention of	Allocation concealment: 11 RCTs low risk; 12 RCTs unclear risk; 1 RCT high risk	
preterm infants	Blinding: 15 RCTs low risk; 9 RCTs unclear risk	
	Incomplete outcome data: 21 RCTs low risk; 2 RCTs unclear risk; 1 RCT high risk	
	Selective reporting: 17 RCTs low risk; 6 RCTs high risk; 1 RCT not reported	
	Other: 14 RCTs low risk; 10 RCTs not reported	
	Overall: "Eleven of our included trials were classified as high quality trials"	
Shah 2007	Masking of randomisation: 1 RCT yes	
Arginine supplementation for	Masking of intervention: 1 RCT yes	
rocolitis in preterm infants	Masking of outcome assessment: 1 RCT yes	
	Completeness of follow-up: 1 RCT yes	
	Overall: "The methodological quality of the included study was good"	
Neonatal care: infections: funga	linfections	
Cleminson 2015	Allocation concealment: 12 RCTs low risk; 3 RCTs unclear risk	
Prophylactic systemic antifun-	Blinding of participants and personnel: 10 RCTs low risk; 3 RCTs unclear risk; 2 RCTs high risk	
and morbidity in very low birth	Blinding of outcome assessment: 10 RCTs low risk; 3 RCTs unclear risk; 2 RCTs high risk	
weight infants	Incomplete outcome data: 15 RCTs low risk	
	Overall: "The included trials were generally of good methodological quality"	
Neonatal care: infections: herpes simplex		
Jones 2009	Allocation concealment: 1 RCT unclear; 1 RCT inadequate	
Antiviral agents for treatment of herpes simplex virus infec-	Overall: "The two trials have a number of methodological flaws"	

tion in neonates Neonatal care: jaundice Okwundu 2012 Random sequence generation: 4 RCTs low risk; 3 RCTs unclear risk; 2 RCTs high risk

Table 3. Risk of bias assessm Prophylactic phototherapy for	ents from included reviews (Continued) Allocation concealment: 3 RCTs low risk; 4 RCTs unclear risk; 2 RCTs high risk
preventing jaundice in preterm or low birth weight infants	Blinding: 1 RCT low risk; 2 RCTs unclear risk; 6 RCTs high risk
C C	Incomplete outcome data: 8 RCTs low risk; 1 RCT high risk
	Selective reporting: 2 RCTs low risk; 7 RCTs unclear risk
	Other: 7 RCTs low risk
	Overall: "In general, the overall methodological quality of the included studies was acceptable"
Neonatal care: hypoglycaemia	
Weston 2016	Random sequence generation: 1 RCT low risk; 1 RCT unclear risk
Oral dextrose gel for the treat-	Allocation concealment: 1 RCT low risk; 1 RCT unclear risk
newborn infants	Blinding of participants and personnel: 1 RCT low risk; 1 RCT unclear risk
	Blinding of outcome assessors: 1 RCT low risk; 1 RCT unclear risk
	Incomplete outcome data: 1 RCT low risk; 1 RCT high risk
	Selective reporting: 1 RCT low risk; 1 RCT unclear risk
	Other: 1 RCT low risk; 1 RCT unclear risk
Neonatal care: parenteral feedi	ng
Moe-Byrne 2016	Random sequence generation: 8 RCTs low risk; 3 RCTs unclear risk; 1 RCT high risk
Glutamine supplementation to	Allocation concealment: 8 RCTs low risk; 2 RCTs unclear risk; 2 RCTs high risk
ity in preterm infants	Blinding: 10 RCTs low risk; 2 RCTs unclear risk
	Incomplete outcome data: 8 RCTs low risk; 2 RCTs unclear risk; 2 RCTs high risk
	Overall: "in general the trials were of good quality"
Neonatal care: other	
Osborn 2001	Blinding of randomisation/allocation concealment: 4 RCTs yes; 1 RCT no
Thyroid hormones for prevent-	Blinding of intervention: 4 RCTs yes; 1 RCT no
pairment in preterm infants	Blinding of outcome assessment: 4 RCTs yes; 1 RCT not stated
	Complete follow-up: 2 RCTs yes; 3 RCTs no
	Overall: "four studies were of good methodology"
Osborn 2007	Allocation concealment: 4 RCTs low risk
Prophylactic postnatal thy-	Blinding of intervention: 4 RCTs yes
of morbidity and mortality in	Blinding of outcome assessment: 3 RCTs yes; 1 RCT probably
preterm infants	Complete follow-up: 3 RCTs yes; 1 RCT no
	Overall: "All studies were of adequate methodology"
Almadhoob 2015	Random sequence generation: 1 RCT low risk
	Allocation concealment: 1 RCT low risk

Table 3. Risk of bias assessm	nents from included reviews (Continued) Blinding of participants and personnel: 1 RCT high risk						
in the neonatal intensive care	Blinding of outcome assessment: 1 RCT low risk						
birth weight infants	Incomplete outcome data: 1 RCT low risk						
	Selective reporting: 1 RCT low risk						
	Other: 1 RCT low risk						
	Overall: "We considered the overall risk of bias to be low"						
Conde-Agudelo 2016	Random sequence generation: 21 RCTs low risk						
Kangaroo mother care to re-	Allocation concealment: 10 RCTs low risk; 11 RCTs unclear risk						
duce morbidity and mortality in low birthweight infants	Blinding of participants and personnel: 21 RCTs high risk						
	Blinding of outcome assessment: 2 RCTs low risk; 15 RCTs unclear risk; 4 RCTs high risk						
	Incomplete outcome data: 14 RCTs low risk; 3 RCTs unclear risk; 4 RCTs high risk						
	Selective reporting: 16 RCTs low risk; 3 RCTs unclear risk; 2 RCTs high risk						
	Other: 15 RCTs low risk; 3 RCTs unclear risk; 3 RCTs high risk						
	Overall: "The methodological quality of the included trials was mixed"						
Spittle 2015	Random sequence generation: 11 RCTs low risk; 8 RCTs unclear risk; 5 RCTs high risk; 1 RCT not re- ported						
tion programmes provided	Allocation concealment: 11 RCTs low risk; 9 RCTs unclear risk; 5 RCTs high risk						
post hospital discharge to pre- vent motor and cognitive im-	Blinding of participants and personnel: 2 RCTs low risk; 4 RCTs unclear risk; 19 RCTs high risk						
pairment in preterm infants	Blinding of outcome assessment: 21 RCTs low risk; 3 RCTs unclear risk; 1 RCT high risk						
	Incomplete outcome data: 12 RCTs low risk; 4 RCTs unclear risk; 9 RCT high risk						
	Selective reporting: 3 RCTs unclear risk; 6 RCT high risk; 16 RCTs not reported						
	Overall: "The methodological quality of included studies was variable"						

Abbreviations: RCT: randomised controlled trial.

*We have reported only the risk of bias components assessed and reported in the included reviews.

Review ID	AMSTAR c	riteria										TOTAL SCOR
	'A priori' design	Dupli- cate se- lection and ex- traction	Compre- hensive search	Grey lit- erature consid- ered	Includ- ed and exclud- ed stud- ies lists	Char- acteris- tics of included studies	Quali- ty as- sessed and doc- ument- ed	Quality consid- ered for conclu- sions	Methods for com- bining studies appro- priate	Publica- tion bias consid- ered or as- sessed	Con- flicts stated	_
Neonatal care: a	isphyxia											
Chaudhari 2012	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11 HIGH QUALITY
Jacobs 2013	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	\checkmark	10/11 HIGH QUALIT
Young 2016	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11 HIGH QUALIT
Neonatal care: h	aemorrhage	e: periventri	cular/intrave	entricular								
Hunt 2010	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11 HIGH QUALIT
Smit 2013	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11 HIGH QUALIT
Neonatal care: h	ypotension											
Osborn 2007b	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	N/A	\checkmark	#	9/10 HIGH QUALIT
Neonatal care: f	luid therapy											

Cochrane Library

Fowlie 2010	\checkmark	#	#	9/11								
												HIGH QUALITY
Ohlsson 2015	\checkmark	#	10/11									
												HIGH QUALIT
Neonatal care: b	lood diso	rders										
Ohlsson 2014	\checkmark	#	10/11									
												HIGH QUALITY
Whyte 2011	\checkmark	#	10/11									
												HIGH QUALITY
Neonatal care: p	ulmonary	/ hypertensi	ion									
More 2016	\checkmark	N/A	\checkmark	#	9/10							
												HIGH QUALITY
Neonatal care: re	esuscitat	ion										
Tan 2005	\checkmark	#	#	9/11								
												HIGH QUALITY
Neonatal care: n	itric oxid	e										
Barrington 2010	\checkmark	?	\checkmark	#	#	8/11						
												HIGH QUALIT
Finer 2006	\checkmark	\checkmark	#	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	8/11

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

 Table 4. AMSTAR assessments for included reviews (Continued)

Cochrane Library

Hender- son-Smart 2010b	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11 HIGH QUALITY
Hender- son-Smart 2010c	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11 HIGH QUALITY
Neonatal care: r	espirator	y distress sy	ndrome									
Howlett 2015	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11 HIGH QUALITY
Seger 2009	?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	8/11 HIGH QUALITY
Soll 2000	?	?	\checkmark	\checkmark	\checkmark	√	√	\checkmark	?	#	#	6/11 MODERATE QUALITY
Soll 2010	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11 HIGH QUALITY
Neonatal care: n	nechanico	al ventilatio	n									
Cools 2015	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11 HIGH QUALITY
Ho 2015	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11 HIGH QUALITY
Hender- son-Smart 2010	\checkmark	\checkmark	\checkmark	\checkmark	#	\checkmark	\checkmark	\checkmark	\checkmark	#	#	8/11 HIGH QUALITY
Kamlin 2003	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11 HIGH QUALITY

Cochrane Database of Systematic Reviews

Cochrane Library

Wheeler 2010	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11
												HIGH QUALI
Neonatal care: I	bronchopu	ılmonary dy	splasia									
Doyle 2014b	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11
												HIGH QUALI
Halliday 2003	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	#	#	7/11
												MODERATE QUALITY
Doyle 2014	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11
												HIGH QUAL
Shah 2012	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11
												HIGH QUAL
Darlow 2016	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11
												HIGH QUAL
Neonatal care: i	infections:	necrotising	enterocolit	is								
AlFaleh 2014	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	#	9/11
												HIGH QUAL
Shah 2007	\checkmark	\checkmark	\checkmark	\checkmark	?	\checkmark	\checkmark	\checkmark	N/A	#	#	7/10
												HIGH QUAL
Neonatal infect	ions: fung	al infections	;									
Cleminson 2015	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	#	10/11
												HIGH QUAL

Cochrane Library

Jones 2009	\checkmark	N/A	#	#	8/10 HIGH QUALITY							
Neonatal care: ja	undice											
Okwundu 2012	\checkmark	?	#	#	8/11							
												HIGH QUALITY
Neonatal care: h	ypoglyca	emia										
Weston 2016	\checkmark	11/11										
												HIGH QUALITY
Neonatal care: p	arentera	lfeeding										
Moe-Byrne 2016	\checkmark	#	10/11									
												HIGH QUALITY
Neonatal care: o	ther											
Osborn 2001	\checkmark	?	\checkmark	#	#	8/11						
												HIGH QUALITY
Osborn 2007	\checkmark	#	#	9/11								
												HIGH QUALITY
Almadhoob	\checkmark	N/A	\checkmark	#	9/10							
2015												HIGH QUALITY
Conde-Agudelo	\checkmark	#	10/11									
2010												HIGH QUALITY
Spittle 2015	\checkmark	#	#	9/11								
												HIGH QUALITY

64

Cochrane Database of Systematic Reviews

Cochrane Library

Table 5. ROBIS assessments for included reviews

Review ID	ROBIS domains				OVERALL RISK
	Study eligibility criteria	Identification and selection of studies	Data collection and study ap- praisal	Synthesis and findings	
Neonatal care: asphyxia					
Chaudhari 2012	Low risk	Low risk	Low risk	Low risk	LOW RISK
Jacobs 2013	Low risk	Low risk	Low risk	Low risk	LOW RISK
Young 2016	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: haemorrho	ige: periventricular/i	ntraventricular			
Hunt 2010	Low risk	Low risk	Low risk	Low risk	LOW RISK
Smit 2013	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: hypotensio	n				
Osborn 2007b	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: fluid thera	ру				
Osborn 2004	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: patent duc	tus arteriosus				
Fowlie 2010	Low risk	Low risk	Low risk	Low risk	LOW RISK
Ohlsson 2015	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: blood disor	rders				
Ohlsson 2014	Low risk	Low risk	Low risk	Low risk	LOW RISK
Whyte 2011	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: pulmonary	hypertension				
More 2016	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: resuscitati	on				
Tan 2005	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: nitric oxide	2				
Barrington 2010	Low risk	Low risk	Low risk	Low risk	LOW RISK
Finer 2006	Low risk	Unclear risk	Low risk	Low risk	UNCLEAR RISK
Neonatal care: apnoea					

LOW RISK

Low risk

Table 5. ROBIS assessments for included reviews (Continued) Henderson-Smart 2010b Low risk Low risk Low risk Henderson-Smart 2010c Low risk Low risk Low risk

Henderson-Smart 2010c	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: respiratory	v distress syndrome				
Howlett 2015	Low risk	Low risk	Low risk	Low risk	LOW RISK
Seger 2009	Unclear risk	Low risk	Low risk	Low risk	LOW RISK
Soll 2000	Unclear risk	Unclear risk	Unclear risk	Unclear risk	UNCLEAR RISK
Soll 2010	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: mechanica	l ventilation				
Cools 2015	Low risk	Low risk	Low risk	Low risk	LOW RISK
Но 2015	Low risk	Low risk	Low risk	Low risk	LOW RISK
Henderson-Smart 2010	Low risk	Low risk	Low risk	Low risk	LOW RISK
Kamlin 2003	Low risk	Low risk	Low risk	Low risk	LOW RISK
Wheeler 2010	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: bronchopu	lmonary dysplasia				
Doyle 2014b	Low risk	Low risk	Low risk	Low risk	LOW RISK
Halliday 2003	Low risk	Unclear risk	Unclear risk	Unclear risk	LOW RISK
Doyle 2014	Low risk	Low risk	Low risk	Low risk	LOW RISK
Shah 2012	Low risk	Low risk	Low risk	Low risk	LOW RISK
Darlow 2016	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal infections: necro	tising enterocolitis				
AlFaleh 2014	Low risk	Low risk	Low risk	Low risk	LOW RISK
Shah 2007	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal infections: funga	l infections				
Cleminson 2015	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal infections: herpe	es simplex				
Jones 2009	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: jaundice					
Okwundu 2012	Low risk	Low risk	Low risk	Unclear risk	LOW RISK

Table 5. ROBIS assessments for included reviews (Continued)

Neonatal care: hypoglycaemia

Weston 2016	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: parenteral	feeding				
Moe-Byrne 2016	Low risk	Low risk	Low risk	Low risk	LOW RISK
Neonatal care: other					
Osborn 2001	Low risk	Unclear risk	Unclear risk	Low risk	UNCLEAR RISK
Osborn 2007	Low risk	Low risk	Low risk	Low risk	LOW RISK
Almadhoob 2015	Unclear risk	Low risk	Low risk	Low risk	LOW RISK
Conde-Agudelo 2016	Low risk	Low risk	Low risk	Low risk	LOW RISK
Spittle 2015	Low risk	Low risk	Low risk	Low risk	LOW RISK

Intervention and com- parison	Outcome	Assumed risk with com- parator	Correspond- ing risk with intervention	Relative ef- fect (95% CI)	Number of participants (trials)	Quality of the evidence (GRADE)	Comments
Neonatal care: asphyxia							
Therapeutic hypother- mia vs standard care for newborns with hypoxic-is- chaemic encephalopathy (Jacobs 2013)	Cerebral palsy in survivors as- sessed at 18 to 24 months	352 per 1000 (143/406)	232 per 1000 (190 to 289)	RR 0.66 (0.54 to 0.82)	881 (7 RCTs)	HIGH	Not downgraded
Barbiturates (phenobarbi-	Cerebral palsy at 6 to 7 years	288 per 1000 (15/52)	173 per 1000 (89 to 340)	RR 0.60 (0.31 to 1.18)	121 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 RCT with small sample size
Barbiturates (phenobarbi- tal) vs conventional thera- py for prevention of mor- bidity and mortality fol- lowing perinatal asphyxia (Young 2016)	Cerebral palsy at 3 to 6 years	242 per 1000 (8/33)	141 per 1000 (46 to 412)	RR 0.58 (0.19 to 1.70)	69 (2 RCTs)	VERY LOW	Study limitations (-1): unblinded studies; concern regarding per- formance bias and detection bias
							Imprecision (-1): 95% Cls were wide and imprecise
							Inconsistency (-1): clinically im- portant heterogeneity noted
							(GRADED by review authors them- selves)
Neonatal care: haemorrhag	ge: periventricular/in	traventricular					
Ethamsylate vs placebo or prevention of mor- pidity and mortality in preterm or very low birth- weight infants (Hunt 2010)	Cerebral palsy in surviving children available for fol- low-up at 2 years up to 3.5 to 4.2 years (only cere- bral palsy signif- icant enough to cause moderate or severe impair- ment was includ- ed)	78 per 1000 (21/270)	88 per 1000 (50 to 156)	RR 1.13 (0.64 to 2.00)	532 (3 RCTs)	MODERATE	Imprecision (-1): wide CI crossing line of no effect

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cochrane Database of Systematic Reviews

Cochrane Library

Table 6. Cerebral palsy (d	Continued)						
Dobutamine vs dopamine in preterm infants with low superior vena cava flow (Osborn 2007b)	Cerebral palsy at 3 years in sur- vivors assessed	429 per 1000 (3/7)	69 per 1000 (4 to 1131)	RR 0.16 (0.01 to 2.64)	13 (1 RCT)	VERY LOW	Study limitations (-1): 5/18 sur- viving infants were not assessed at 3 years of age Imprecision (-2): wide CI crossing line of no effect; 1 RCT with very small sample size
Neonatal care: fluid therap	y						
Volume vs no treatment for prevention of morbid- ity and mortality in very preterm infants (Osborn 2004)	Cerebral palsy in survivors at 2 years	132 per 1000 (27/205)	100 per 1000 (63 to 158)	RR 0.76 (0.48 to 1.20)	604 (1 RCT)	MODERATE	Imprecision (-1): wide CI crossing line of no effect
Gelatin vs fresh frozen plasma for prevention of morbidity and mortality in very preterm infants (Os- born 2004)		103 per 1000 (21/203)	97 per 1000 (54 to 175)	RR 0.94 (0.52 to 1.69)	399 (1 RCT)	MODERATE	Imprecision (-1): wide CI crossing line of no effect
Neonatal care: patent duct	us arteriosus						
Prophylactic in- domethacin vs placebo for preventing mortality and	Cerebral palsy at 18 to 54 months	111 per 1000 (77/694)	115 per 1000 (85 to 155)	RR 1.04 (0.77 to 1.40)	1372 (4 RCTs)	MODERATE	Imprecision (-1): wide CI crossing line of no effect
morbidity in preterm in- fants (Fowlie 2010)	Cerebral palsy at 8 years	76 per 1000 (11/145)	94 per 1000 (45 to 199)	RR 1.24 (0.59 to 2.62)	304 (1 RCT)	MODERATE	Imprecision (-1): wide CI crossing line of no effect
Oral ibuprofen vs intra- venous ibuprofen for treatment of patent duc- tus arteriosus in preterm or low birthweight (or	Moderate or se- vere cerebral palsy at 18 to 24 months	74 per 1000 (2/27)	100 per 1000 (18 to 554)	RR 1.35 (0.24 to 7.48)	57 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at unclear risk of selection and re- porting bias; high risk of perfor- mance, detection, and attrition bias
2015)							Imprecision (-2): wide CI cross- ing line of no effect; small sample size and few events

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cochrane Library

Table 6. Cerebral palsy (d	Continued)						
Erythropoietin vs placebo for preventing red blood cell transfusion in preterm and/or low birthweight in- fants (Ohlsson 2014)	Cerebral palsy at 18 to 22 months' corrected age (in children exam- ined)	187 per 1000 (14/75)	123 per 1000 (58 to 256)	RR 0.66 (0.31 to 1.37)	153 (2 RCTs)	VERY LOW	Study limitations (-1): 1 RCT at unclear risk of selection bias an high risk of attrition bias (~73% follow-up)
							Inconsistency (-1): I ² = 72%
							Imprecision (-2): wide CI cross- ing line of no effect; small samp sizes
Darbepoetin alfa vs place-	-	208 per 1000	17 per 1000 (0	RR 0.08 (0.00	51 (1 RCT)	LOW	Imprecision (-2): wide CI crossi
bo for preventing red blood cell transfusion in preterm and/or low birth- weight infants (Ohlsson 2014)		(5/24)	to 292)	to 1.40)			line of no effect; 1 RCT with sma sample size and few events
Transfusion at a restrictive vs a liberal haemoglobin threshold for preventing morbidity and mortality in very low birthweight in- fants (Whyte 2011)	Cerebral palsy at 18 to 21 months' follow-up among survivors	52 per 1000 (9/172)	68 per 1000 (29 to 159)	RR 1.29 (0.55 to 3.03)	335 (1 RCT)	LOW	Study limitations (-1): 1 RCT at high risk of performance bias a unclear risk of reporting bias
							Imprecision (-1): wide CI crossii line of no effect
Neonatal care: pulmonary h	hypertension						
Endothelin receptor an- tagonists vs placebo for persistent pulmonary hy- pertension in term and late preterm infants (More 2016)	Cerebral palsy at 6 months (de- layed motor de- velopment and spasticity)	214 per 1000 (3/14)	19 per 1000 (0 to 345)	RR 0.09 (0.00 to 1.61)	37 (1 RCT)	LOW	Study limitation (-1): 8/23 infan in the placebo group were ex- cluded from analysis
							Imprecision (-1): 1 RCT; small sample size
							(GRADED by review authors then selves)
Neonatal care: resuscitation	n						
Room air vs 100% oxygen for resuscitation of infants at birth (Tan 2005)	Cerebral palsy in those followed up at 18 to 24 months	74 per 1000 (9/122)	99 per 1000 (41 to 239)	RR 1.34 (0.55 to 3.24)	213 (1 RCT)	VERY LOW	Study limitations (-2): 1 qRCT with no blinding and < 70% fol- low-up
							Imprecision (-1): wide CI crossi line of no effect

Cochrane Library
Table 6. Cerebral palsy (Neonatal care: nitric oxide	Continued)						
Inhaled NO vs placebo for respiratory failure in preterm infants (entry before 3 days based on oxygenation) (Barrington 2010)	Cerebral palsy at 18 to 22 months (moderate/se- vere or disabling)	100 per 1000 (11/110)	185 per 1000 (93 to 371)	RR 1.85 (0.93 to 3.71)	209 (2 RCTs)	LOW	Imprecision (-2): wide CI cross- ing line of no effect; small sample sizes
Inhaled NO vs placebo or no treatment for respira- tory failure in preterm in- fants (entry after 3 days based on BPD risk) (Bar- rington 2010)	Cerebral palsy at 2 years' corrected age or 30 months (1 RCT all severi- ties; 1 RCT mod- erate/severe or disabling)	56 per 1000 (14/248)	62 per 1000 (30 to 126)	RR 1.10 (0.54 to 2.23)	498 (2 RCTs)	LOW	Study limitations (-1): 1 RCT with no blinding of intervention or outcome measurement Imprecision (-1): wide CI cross- ing line of no effect; small sample sizes
Inhaled NO vs placebo for respiratory failure in preterm infants (studies of routine use in intubated preterm infants) (Barring- ton 2010)	Cerebral palsy at 1 or 2 years' corrected age (1 RCT all severi- ties; 1 RCT mod- erate/severe or disabling)	70 per 1000 (20/286)	66 per 1000 (36 to 119)	RR 0.94 (0.51 to 1.70)	593 (2 RCTs)	LOW	Study limitations (-1): 2 RCTs with 74%-82% follow-up Imprecision (-1): wide CI crossing line of no effect
Inhaled nitric oxide vs placebo for respiratory failure in infants born at or near term (Finer 2006)	Cerebral palsy among survivors at 13 or 18 to 24 months	89 per 1000 (16/179)	91 per 1000 (44 to 191)	RR 1.02 (0.49 to 2.14)	299 (2 RCTs)	LOW	Study limitations (-1): 1 RCT masking of allocation, masking of outcomes. and completeness of follow-up Imprecision (-1): wide CI crossing line of no effect
	"This group has no comes, which were inal trial. The inter cerebral palsy [was sible to add any of dence of neurodev	w published follo obtained by tele view was conduc s] reported it is ur these data to the elopmental impa	ow up data, includ phone interview of ted between one a nclear how [it] was meta-analysis, bu irment due to inh	ling neurodevelop of 60 of the 83 sur and four years of a s defined It is no ut they do appear aled nitric oxide t	omental out- vivors of the orig- age Although t, therefore, pos- to show no evi- herapy"	NOT GRADED	
Inhaled nitric oxide vs placebo for respirato- ry failure in infants with diaphragmatic hernias	Cerebral pal- sy among sur- vivors at 18 to 24 months	(0/14)	(2/8)	RR 8.33 (0.45 to 154.78)	22 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with 76% follow-up of survivors Imprecision (-2): wide CI crossing line of no effect; 1 small RCT

Cochrane Library

Table 6. Cerebral palsy (Continued) born at or near term (Finer

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

,							
Neonatal care: apnoea							
Caffeine vs placebo for treatment of apnoea in preterm infants (Hender- son-Smart 2010b)	Cerebral palsy at 18 to 21 months' corrected age	50 per 1000 (18/361)	30 per 1000 (14 to 62)	RR 0.60 (0.29 to 1.25)	729 (1 RCT)	LOW	Study limitations (-1): results based on 1 RCT subgroup from post hoc subgroup analyses (ran- domisation not stratified accord- ing to indication for inclusion)
							Imprecision (-1): wide CI crossing line of no effect
Caffeine vs placebo for prevention of apnoea in preterm infants (Hender- son-Smart 2010c)	Cerebral palsy at 18 to 21 months' corrected age	45 per 1000 (9/200)	46 per 1000 (19 to 112)	RR 1.03 (0.43 to 2.49)	415 (1 RCT)	LOW	Study limitations (-1): results based on 1 RCT subgroup from post hoc subgroup analyses (ran- domisation not stratified accord- ing to indication for inclusion)
							Imprecision (-1): wide CI crossing line of no effect
Neonatal care: respiratory	distress syndrome						
Animal-derived surfactant extract vs no treatment for treatment of respiratory distress syndrome (Seger	Cerebral palsy at 1 and 2 years' corrected age	207 per 1000 (6/29)	182 per 1000 (70 to 470)	RR 0.88 (0.34 to 2.27)	73 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with no blinding of intervention; and blinding of outcome measure- ment not reported
2009)							Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Synthetic surfactant vs	Cerebral palsy in	96 per 1000	73 per 1000	RR 0.76 (0.55	1557 (5 RCTs)	MODERATE	Imprecision (-1): wide CI crossing
ry distress syndrome in preterm infants (Soll 2000)	ined at 1 year (in 4 of the 5 RCTs)	(74/767)	(53 to 101)	10 1.05)			the line of no effect
Prophylactic protein-free synthetic surfactant vs placebo for preventing morbidity and mortality in preterm infants (Soll 2010)	Cerebral palsy at 1 or 2 years	153 per 1000 (49/320)	142 per 1000 (52 to 204)	RR 0.93 (0.64 to 1.33)	670 (4 RCTs)	LOW	Study limitations (-1): "Some- what fewer infants who received surfactant failed to return for fol- low-up evaluation (typical rela- tive risk 0.63, 95% CI 0.48, 0.82; typical risk difference -0.10, 95% CI -0.15, -0.04)"

Neonatal ii Copyright (Table 6. Cerebral palsy (Continued)
nterver © 2018 T	Neonatal care: mechanical	ventilation
tions for preventing cerebral palsy: an overview of Cochran he Cochrane Collaboration. Published by John Wiley & Sons, Lt	Elective high-frequency oscillatory ventilation vs conventional ventilation for acute pulmonary dys- function in preterm in- fants (Cools 2015)	Cerebral p
Systematic Reviews (R d.	Continuous distending pressure vs standard care for respiratory distress in preterm infants (Ho 2015)	Cerebral p 9 to 15 yea
eview)	Prophylactic methylxan-	Cerebral p

Cerebral palsy

conventional ventilation for acute pulmonary dys- function in preterm in- fants (Cools 2015)		HFOV & 201 C vous system in both group 2. "Moriette 200 age of two ye questionnaire cantly lower OR 0.87, 95% ple factors. S more likely i 95% CI 1.04 to 3. "Sun 2014 months of co survivors) an Cerebral pal (3% versus 10	IV) using Bayley ps examinations The ps" D1 assessed neuro ears in 192 of 212 e the risk of sp for infants vention of CI 0.79 to 0.96), urvival without of in the HFOV grou o 3.44)" assessed neurod rrected age in 145 d in 143 infants of sy occurred sign 0% in the CV group	sychometric tests is ne rate of cerebral pomotor outcome a survivors (90%) us astic cerebral pa lated with HFOV (even after adjust cerebral palsy wa p than in the CV is evelopmental ou infants of the HFO f the CV group (86 ificantly less in the p, P = 0.03)"	and central ner- l palsy was 11% at the corrected sing a physician lsy was signifi- (4% versus 17%; ment for multi- as significantly group (OR 1.89, utcomes at 18 V group (84% of % of survivors). he HFOV group		the results were presented in the text and not included in a meta- analysis"
Continuous distending pressure vs standard care for respiratory distress in preterm infants (Ho 2015)	Cerebral palsy at 9 to 15 years	(0/18)	(2/18)	RR 5.0 (0.26 to 97.37)	36 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at unclear risk of selection and attri- tion bias and high risk of perfor- mance bias
							Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Prophylactic methylxan- thines (caffeine) vs place- bo for endotracheal extu- bation in preterm infants (Henderson-Smart 2010)	Cerebral palsy at 18 to 21 months' corrected age	115 per 1000 (39/339)	62 per 1000 (37 to 106)	RR 0.54 (0.32 to 0.92)	644 (1 RCT)	MODERATE	Study limitations (-1): results based on 1 RCT subgroup from post hoc subgroup analyses (ran- domisation not stratified accord- ing to indication for inclusion)
Long vs short inspiratory times in neonates receiv- ing mechanical ventilation (Kamlin 2003)	Cerebral palsy in survivors less than 33 weeks' gestation at birth at 18 months	133 per 1000 (12/90)	387 per 1000 (129 to 1153)	RR 2.9 (0.97 to 8.65)	177 (1 RCT)	VERY LOW	Study limitations: 1 RCT at high risk of performance bias; fol- low-up of subset (< 33 weeks on- ly)

1. "Neurodevelopmental status was assessed at 16 to 24 months NOT GRADED

corrected age in 77% of survivors of the HIFI 1989 study (185

•<u>1111</u>• Cochrane Library

Imprecision (-1): wide CI crossing

"The age and methods of assess-

ment varied between studies so

the line of no effect

Imprecision (-2): wide CI crossing line of no effect; 1 small RCT

Cochrane Database of Systematic Reviews

Neonatal care: bronchopul	monary dysplasia						
Early (< 8 days) postnatal corticosteroids vs placebo or no treatment for pre- venting chronic lung dis- ease in preterm infants (Dovle 2014b)	Cerebral palsy at 11 months to 7 to 9 years	88 per 1000 (63/715)	128 per 1000 (93 to 174)	RR 1.45 (1.06 to 1.98)	1452 (12 RCTs)	MODERATE	Study limitations (-1): 4 RCTs at unclear risk of selection bias; 2 RCTs at high risk of performance and detection bias; 2 RCTs had 13%-53% follow-up overall
	Cerebral pal- sy in survivors assessed at 11 months to 7 to 9 years	134 per 1000 (63/470)	201 per 1000 (151 to 268)	RR 1.50 (1.13 to 2.00)	959 (12 RCTs)	MODERATE	Study limitations (-1): 4 RCTs at unclear risk of selection bias; 2 RCTs at high risk of performance and detection bias; 2 RCTs had 13%-53% follow-up overall
Moderately early (7-14 days) postnatal corticos- teroids vs placebo or no treatment for preventing chronic lung disease in preterm infants (Halliday 2003)	Cerebral palsy at 12 months' cor- rected age up to 90 months	105 per 1000 (10/95)	108 per 1000 (49 to 236)	RR 1.03 (0.47 to 2.24)	204 (4 RCTs)	VERY LOW	Study limitations (-1): 2 RCTs with 68%-70% follow-up; 1 RCT with unclear blinding of outcome as- sessment Imprecision (-2): wide CI cross- ing line of no effect; small sample sizes
	Cerebral pal- sy in survivors assessed at 12 months' correct- ed age up to 90 months	175 per 1000 (10/57)	146 per 1000 (68 to 305)	RR 0.83 (0.39 to 1.74)	130 (4 RCTs)	VERY LOW	Study limitations (-1): 2 RCTs with 68%-70% follow-up; 1 RCT with unclear blinding of outcome as- sessment Imprecision (-2): wide CI cross- ing line of no effect; small sample sizes
Late (> 7 days) postnatal corticosteroids vs placebo or no treatment for chron- ic lung disease in preterm infants (Doyle 2014)	Cerebral palsy at 1 to 3 years	127 per 1000 (55/433)	135 per 1000 (97 to 191)	RR 1.06 (0.76 to 1.50)	876 (14 RCTs)	LOW	Study limitations (-1): 5 RCTs un- clear risk of selection bias; 5 RCTs with follow-up from 32% to 78% Imprecision (-1): wide CI crossing line of no effect
	Cerebral palsy at 1 to 3 years	172 per 1000	180 per 1000 (129 to 252)	RR 1.05 (0.75 to 1.47)	631 (14 RCTs)	LOW	Study limitations (-1): 5 RCTs un- clear risk of selection bias; 5 RCTs

(53/309)

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

	in survivors as- sessed						with follow-up between 32% and 78%
							Imprecision (-1): wide CI crossing line of no effect
	Cerebral palsy at latest reported age (from 1 year up to 17 years)	121 per 1000 (51/423)	135 per 1000 (95 to 193)	RR 1.12 (0.79 to 1.60)	855 (15 RCTs)	LOW	Study limitations (-1): 5 RCTs un- clear risk of selection bias; 7 RCTs with follow-up between 32% and 78%
							Imprecision (-1): wide CI crossing line of no effect
	Cerebral palsy at latest reported age in survivors assessed (from	170 per 1000 (49/289)	190 per 1000 (134 to 268)	RR 1.12 (0.79 to 1.58)	591 (15 RCTs)	LOW	Study limitations (-1): 5 RCTs un- clear risk of selection bias; 7 RCTs with follow-up between 32% and 78%
	years)						Imprecision (-1): wide CI crossing line of no effect
Early inhaled corticos- eroids vs placebo for pre- venting chronic lung dis- ease in ventilated very	Cerebral palsy (age not report- ed in review; from trial manuscript:	107 per 1000 (3/28)	143 per 1000 (35 to 581)	RR 1.33 (0.33 to 5.42)	56 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at unclear risk of selection bias and detection bias
ow birthweight preterm neonates (Shah 2012)	3 years)						Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Neonatal care: necrotising	enterocolitis						
Arginine supplementa- tion vs placebo for pre- vention of necrotising en- terocolitis in preterm in- fants (Shah 2007)	Cerebral palsy at 36 months' post- menstrual age	55 per 1000 (4/73)	48 per 1000 (12 to 208)	RR 0.88 (0.21 to 3.80)	135 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Neonatal care: fungal infec	tions						
Systemic antifungal agent vs placebo to prevent nortality and morbidity n very low birthweight in- cants (Cleminson 2015)	Cerebral palsy at 18 to 22 months post term	112 per 1000 (12/107)	108 per 1000 (50 to 228)	RR 0.96 (0.45 to 2.03)	219 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT

Neonatal care: herpes simp	olex						
Aciclovir vs vidarabine for treatment of herpes simplex virus infection in	Cerebral palsy in CNS HSV neona- tal infection up	(0/4)	(0/5)	Not estimable	9 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with design limitations (inadequate allocation concealment)
neonates (Jones 2009)	to 3 years by HSV serotype: HSV-1						Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
	Cerebral palsy in CNS HSV neona-	625 per 1000	669 per 1000 (306 to 1456)	RR 1.07 (0.49 to 2.33)	14 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with design limitations (inadequate
	to 3 years by HSV	(3/0)	(4/6)				allocation concealment)
	serotype: HSV-2						Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Neonatal care: jaundice							
Prophylactic photother- apy vs standard care for preventing jaundice in preterm or low birth- int 1 year or 2	Cerebral palsy in all infants (birth- weight < 2500 g) at 1 year or 18	Medium risk population: 84 per 1000	Medium risk population: 81 per 1000	RR 0.96 (0.50 to 1.85)	756 (2 RCTs)	MODERATE	Study limitations (-1): "There was no mention of blinding of the outcome assessors in two of the studies"
weight infants (Okwundu 2012)	months	(18/394)	(42 to 155)				(GRADED by review authors them- selves)
	Cerebral palsy in all infants (birth-	250 per 1000	72 per 1000 (10 to 568)	RR 0.29 (0.04 to 2.27)	30 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with no blinding
	weight < 1000 g) at 18 months	(4/16)					Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
	Cerebral palsy at 6 years	"Secondary rep low-up also sho the rate of cere group"	ports emanating f owed that there w bral palsy betwee	rom Brown 1985 a vas no significant d en the phototherap	t six-year fol- lifference in by and control	NOT GRADED	
Neonatal care: hypoglycae	mia						
Dextrose gel vs placebo Cere or treatment of hypogly- age	Cerebral palsy at age 2 years	(0/93)	(2/90)	RR 5.16 (0.25 to 106.12)	183 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with 78% follow-up
caemia in newborn infants (Weston 2016)							Imprecision (-2): wide CI crossing line of no effect; 1 small RCT

Cochrane Library

Glutamine supplementa- tion vs placebo to prevent morbidity and mortality in preterm infants (Moe- Byrne 2016)	Cerebral palsy at 2 years	"van den Berg infants aged tw incidence of ce the glutamine these individua	2005 reported neu vo years post term erebral palsy No s and the control gr al outcomes"	rodevelopmental . Outcomes assess significant differer oups were reporte	outcomes for sed included nces between ed for any of	NOT GRADED		
Neonatal care: other								
Thyroid hormones vs placebo for preventing neurodevelopmental im- pairment in preterm in- fants (Osborn 2001)	Cerebral palsy at 5.7 years	120 per 1000 (9/75)	86 per 1000 (34 to 221)	RR 0.72 (0.28 to 1.84)	156 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT	
Prophylactic thyroid hor- mones vs placebo for pre- vention of morbidity and mortality in preterm in- fants (Osborn 2007)	-							
Silicone earplugs vs no earplugs in the neona- tal intensive care unit for preterm or very low birth- weight infants (Almad-	Cerebral palsy at 18 to 22 months' corrected age	(0/7)	(1/7)	RR 3.0 (0.14 to 63.15)	14 (1 RCT)	VERY LOW	Study limitations (-1): "Because of funding restraints only the ELBW infants could be followed at 18 to 22 months corrected age" (14/24 survivors)	
nood 2015)							Imprecision (-1): wide CI crossin line of no effect; 1 small RCT	
Kangaroo mother care vs conventional neonatal care to reduce morbidity and mortality in low birth-	Cerebral palsy at 12 months' cor- rected age	25 per 1000 (7/280)	16 per 1000 (5 to 51)	RR 0.65 (0.21 to 2.02)	588 (1 RCT)	LOW	Study limitation (-1): 1 RCT with unclear risk of selection bias; high risk of performance and de- tection bias	
weight infants (Conde- Agudelo 2016)							Imprecision (-1): wide CI crossing line of no effect	
Early developmental in- tervention vs standard fol- low-up post hospital dis- charge to prevent motor and cognitive impairment	Cerebral palsy at 18 months to 6 years	79 per 1000 (32/405)	65 per 1000 (41 to 100)	RR 0.82 (0.52 to 1.27)	985 (7 RCTs)	LOW	Study limitations (-1): 7 RCTs at unclear/high risk of performance bias; 2 RCTs at unclear/high risk of selection bias and un-	

Cochrane Library

RCT at unclear risk of detection bias

Imprecision (-1): wide CI crossing line of no effect

Abbreviations: BPD: bronchopulmonary dysplasia; CI: confidence interval; CNS: central nervous system; CV: conventional ventilation; ELBW: extremely low birthweight; g: grams; GRADE: Grades of Recommendation, Assessment, Development and Evaluation; HFOV: high-frequency oscillatory ventilation; HSV: herpes simplex virus; NO: nitric oxide; OR: odds ratio; P: P value; qRCT: quasi-randomised controlled trial; RCT: randomised controlled trial; RR: risk ratio.

Table 7. Cerebral palsy: subgroup or sensitivity analyses

Intervention and comparison	Outcome	Subgroup or	sensitivity analysis	Assumed risk with comparator	Correspond- ing risk with intervention	Relative ef- fect (95% CI)	Number of partici- pants (tri- als)	Test for subgroup differences
Neonatal care: asphyxia								
Therapeutic hypothermia vs stan- dard care for newborns with hy- poxic-ischaemic encephalopathy	Cerebral palsy in sur- vivors as-	Method of cooling	Selective head cooling with mild hypothermia	338 per 1000 (49/145)	220 per 1000 (155 to 318)	RR 0.65 (0.46 to 0.94)	312 (3 RCTs)	Chi ² = 0.01, df = 1 (P = 0.93), I^2 =
(580052013)	18 to 24 months		Whole body cool- ing	360 per 1000 (94/261)	241 per 1000 (187 to 310)	RR 0.67 (0.52 to 0.86)	569 (4 RCTs)	- 0.070
Neonatal care: haemorrhage: periv	entricular/intra	iventricular						
Ethamsylate vs placebo for preven- tion of morbidity and mortality in preterm or very low birthweight in- fants (Hunt 2010)	Cerebral palsy in sur- viving chil- dren avail- able for fol- low-up at 3 years up to 3.5 to 4.2 years	Infants < 31 c 1500 g	ompleted weeks or <	84 per 1000 (14/167)	69 per 1000 (32 to 147)	RR 0.82 (0.38 to 1.75)	328 (2 RCTs)	Not applica- ble
Neonatal care: fluid therapy								
Volume vs no treatment for pre- vention of morbidity and mortali-	Cerebral palsy in sur-	Type of vol- ume used	Fresh frozen plas- ma	132 per 1000	104 per 1000 (61 to 177)	RR 0.79 (0.46 to 1.34)	408 (1 RCT)	Not per- formed <i>(as</i>

ty in very preterm infants (Osborn 2004)	vivors at 2 years			(27/205)	conducted — as separate			
	,		Gelatin	132 per 1000 (27/205)	97 per 1000 (53 to 169)	RR 0.74 (0.42 to 1.28)	401 (1 RCT)	comparison)
		Timing of treatment	Early treatment (< 24 hours age)	132 per 1000 _ (27/205)	100 per 1000 (63 to 158)	RR 0.76 (0.48 to 1.20)	604 (1 RCT)	Not applica ble
		Types of infant en- rolled	Unselected preterm infants (not selected on the basis of cardio- vascular compro- mise)					
		Method- ological quality	Complete fol- low-up for neu- rodevelopmental outcomes	-				
Neonatal care: respiratory distress	syndrome							
Animal-derived surfactant extract vs no treatment for treatment of respiratory distress syndrome (Seger 2009)	Cerebral palsy at 1 and 2 years' corrected age	Surfactant product	Porcine surfactant extract	207 per 1000 (6/29)	182 per 1000 (70 to 470)	RR 0.88 (0.34 to 2.27)	73 (1 RCT)	Not applica ble
Prophylactic protein-free synthet- ic surfactant vs placebo for pre- venting morbidity and mortality in	Cerebral palsy at 1 or 2 years	Surfactant product	Exosurf Neonatal	158 per 1000 (44/279)	144 per 1000 (98 to 211)	RR 0.91 (0.62 to 1.34)	591 (3 RCTs)	Not applied in review
preterm infants (Soli 2010)	DPPC/HDL		DPPC/HDL	122 per 1000 (5/41)	132 per 1000 (41 to 420)	RR 1.08 (0.34 to 3.44)	79 (1 RCT)	_
Neonatal care: mechanical ventilat	ion							
Continuous distending pressure vs standard care for respiratory dis- tress in preterm infants (Ho 2015)	Cerebral palsy at 9 to 15 years	Type of con- tinuous dis- tending pressure	Continuous nega- tive pressure	(0/18)	(2/18)	RR 5.0 (0.26 to 97.37)	36 (1 RCT)	Not applica ble

Cochrane Database of Systematic Reviews

Cochrane Library

Table 7. Cerebral palsy: subgroup or sensitivity analyses (Continued)

Neonatal care: bronchopulmonary dysplasia

Early (< 8 days) postnatal corticos- teroids vs placebo or no treatment for preventing chronic lung disease in preterm infants (Doyle 2014b)	Cerebral palsy at 11 months to 7	Type of cor- ticosteroid used	Dexamethasone	89 per 1000 (40/449)	156 per 1000 (107 to 227)	RR 1.75 (1.20 to 2.55)	921 (7 RCTs)	Chi ² = 2.96, df = 1 (P = 0.09), l ² =
in preterm infants (Doyle 2014b)	to 9 years		Hydrocortisone	86 per 1000	84 per 1000	RR 0.97 (0.55	531 (5 RCTs)	66%
				(23/266)	(48 to 146)	to 1.69)		
	Cerebral	Type of cor- ticosteroid used	Dexamethasone	139 per 1000	253 per 100	RR 1.82 (1.29	586 (7 RCTs)	Chi ² = 3.99,
	vivors as-			(40/288)	(179 to 357)	to 2.57)		$df = 1 (P = 0.05), I^2 = 0.05$
	sessed at 11 months to 7		Hydrocortisone	126 per 1000	120 per 1000	RR 0.95 (0.56	373 (5 RCTs)	- 75%
	to 9 years			(23/182)	(71 to 206)	to 1.63)		
Neonatal care: other								
Prophylactic thyroid hormones vs	Cerebral	Dosing	T4 8 mcg/kg/d, day	120 per 1000	86 per 1000	RR 0.72 (0.28	156 (1 RCT)	Not applica-
ty and mortality in preterm infants	years	strategy	1 t0 42	_ (9/75)	(34 to 221)	10 1.84)		DIE
(Osborn 2007)		Timing	Commenced < 48 hours					
		Method- ological quality	Studies with ade- quate methods	-				
Early developmental intervention	Cerebral	Commence-	Inpatient	79 per 1000	74 per 1000	RR 0.94 (0.46	354 (3 RCTs)	Not applied
vs standard follow-up post hospi- tal discharge to prevent motor and	palsy at 18 months to 6	ment of in- tervention		(12/152)	(36 to 152)	to 1.93)		in review
cognitive impairment in preterm infants (Spittle 2015)	years		Post hospital dis-	79 per 1000	59 per 1000	RR 0.75 (0.43	631 (4 RCTs)	-
			charge	(20/253)	(34 to 105)	to 1.33)		
		Focus of in-	Parent-infant rela-	77 per 1000	52 per 1000	RR 0.67 (0.38	716 (4 RCTs)	Not applied
		tervention	tionship and Infant development	(21/272)	(29 to 90)	to 1.17)		in review
	 In m		Infant develop- ment	83 per 1000	97 per 1000 (46 to 203)	RR 1.17 (0.56 to 2.46)	269 (3 RCTs)	-

6,

Cochrane Library

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Table 7. Cerebral palsy: subgroup or sensitivity analyses (Continued)

		(11/133)				
Quality of studies	Higher-quality studies	82 per 1000 (25/304)	72 per 1000 (44 to 116)	RR 0.87 (0.53 to 1.41)	776 (5 RCTs)	Not applied in review
-	Lower-quality stud- ies	69 per 1000 (7/101)	43 per 1000 (14 to 130)	RR 0.62 (0.20 to 1.87)	209 (2 RCTs)	-

Abbreviations: CI: confidence interval; DPPC/HDL: dipalmitoylphosphatidylcholine/high-density lipoprotein; g: grams; P: P value; RCT: randomised controlled trial; RR: risk ratio; T4: thyroxine.

Table 8. Cerebral palsy or death

Intervention and compari- son	Outcome	Assumed risk with com- parator	Correspond- ing risk with intervention	Relative ef- fect (95% CI)	Number of participants (trials)	Quality of the evidence (GRADE)	Comments
Neonatal care: bronchopulmo	nary dysplasia						
Early (< 8 days) postnatal cor- ticosteroids vs placebo or no treatment for prevent- ing chronic lung disease in preterm infants (Doyle 2014b)	Cerebral palsy or death at 11 months to 7 to 9 years	352 per 1000 (252/715)	384 per 1000 (334 to 441)	RR 1.09 (0.95 to 1.25)	1452 (12 RCTs)	MODERATE	Study limitations (-1): 4 RCTs at unclear risk of selection bias; 2 RCTs at high risk of performance and detection bias; 2 RCTs had 13% to 53% follow-up overall
Moderately early (7-14 days) postnatal corticosteroids vs placebo or no treatment for preventing chronic lung dis-	Cerebral palsy or death at 12 months' cor- rected age up	316 per 1000 (30/95)	262 per 1000 (174 to 388)	RR 0.83 (0.55 to 1.23)	204 (4 RCTs)	VERY LOW	Study limitations (-1): 2 RCTs with 68% to 70% follow-up; 1 RCT with unclear blinding of outcome as- sessment
day 2003)	10 30 11011115						Imprecision (-2): wide CI cross- ing line of no effect; small sample sizes
Late (> 7 days) postnatal cor-	Cerebral palsy	328 per 1000	302 per 1000	RR 0.92 (0.76	876 (14 RCTs)	LOW	Study limitations (-1): 5 RCTs un-
ticosteroids vs placebo or no treatment for chronic lung disease in preterm infants	or death at 1 to 3 years	(142/433)	(249 to 367)	to 1.12)			clear risk of selection bias; 5 RCTs with follow-up between 32% and 78%
(υογιε 2014)							Imprecision (-1): wide CI crossing line of no effect

444

Cochrane Library

	Cerebral pal- sy or death at latest report- ed age (from 1 year up to 17 years)	312 per 1000 (132/423)	296 per 1000 (240 to 362)	RR 0.95 (0.77 to 1.16)	855 (15 RCTs)	LOW	Study limitations (-1): 5 RCTs un- clear risk of selection bias; 7 RCTs with follow-up between 32% and 78% Imprecision (-1): wide CI crossing line of no effect
eonatal care: other							
Thyroid hormones vs place- to for preventing neurode- velopmental impairment in preterm infants (Osborn 200	Cerebral palsy or death at 5.7 years	300 per 1000 (30/100)	210 per 1000 (129 to 342)	RR 0.70 (0.43 to 1.14)	200 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
rophylactic thyroid hor-							
nones vs placebo for preve ion of morbidity and morta y in preterm infants (Osbor 2007)	n- li- n						
nones vs placebo for preve ion of morbidity and morta y in preterm infants (Osbor 2007) obreviations: CI: confidence able 9. Severity of cere	n- li- n interval; GRADE: Gra bral palsy	ides of Recomme	endation, Assessm	ient, Developmen	t and Evaluation;	RCT: randomised	controlled trial; RR: risk ratio.
nones vs placebo for preve ion of morbidity and morta y in preterm infants (Osbor 2007) obreviations: CI: confidence able 9. Severity of cere ntervention and com- parison	n- lii- n interval; GRADE: Gra bral palsy Outcome	des of Recomme Assumed risk with com- parator	endation, Assessm Correspond- ing risk with intervention	ent, Developmen Relative ef- fect (95% Cl)	t and Evaluation; Number of participants (trials)	RCT: randomised Quality of the evidence (GRADE)	controlled trial; RR: risk ratio.
nones vs placebo for preve ion of morbidity and morta y in preterm infants (Osbor 2007) obreviations: CI: confidence able 9. Severity of cere ntervention and com- parison	n- li- n interval; GRADE: Gra bral palsy Outcome	des of Recomme Assumed risk with com- parator	endation, Assessm Correspond- ing risk with intervention	ent, Developmen Relative ef- fect (95% CI)	t and Evaluation; Number of participants (trials)	RCT: randomised Quality of the evidence (GRADE)	controlled trial; RR: risk ratio.
nones vs placebo for preve ion of morbidity and morta y in preterm infants (Osbor 2007) obreviations: CI: confidence able 9. Severity of cere ntervention and com- parison Veonatal care: asphyxia	n- li- n interval; GRADE: Gra bral palsy Outcome Severe quadri- plegia in surviv	des of Recomme Assumed risk with com- parator 343 per 1000	Correspond- ing risk with intervention	RR 0.59 (0.28	t and Evaluation; Number of participants (trials) 73 (3 RCTs)	RCT: randomised Quality of the evidence (GRADE) VERY LOW	controlled trial; RR: risk ratio. Comments Study limitations (-1): 1 RCT with
nones vs placebo for preve ion of morbidity and morta by in preterm infants (Osbor 2007) obreviations: CI: confidence able 9. Severity of cere ntervention and com- barison Veonatal care: asphyxia Allopurinol vs placebo or no drug for preventing nortality and morbidity n newborn infants with	n- li- n interval; GRADE: Gra bral palsy Outcome Severe quadri- plegia in surviv- ing infants (18 months and 4	des of Recomme Assumed risk with com- parator 343 per 1000 (12/35)	endation, Assessm Correspond- ing risk with intervention 202 per 1000 (96 to 435)	Relative ef- fect (95% CI) RR 0.59 (0.28 to 1.27)	t and Evaluation; Number of participants (trials) 73 (3 RCTs)	RCT: randomised Quality of the evidence (GRADE) VERY LOW	controlled trial; RR: risk ratio. Comments Study limitations (-1): 1 RCT with unclear risk of selection bias and high risk of performance/detection bias

Synthetic surfacta	ant vs	Moderate to se-	55 per 1000) 41 per 100	0 RR 0.75 (0.4	48 1557 (5 RC	Ts) MODERAT	E Imprecisio	on (-1): wide CI crossing
placebo for respira ry distress syndroi preterm infants (S	ato- me in Soll 2000)	vere cerebral palsy in sur- vivors exam- ined at 1 year (in 4 of the 5 RCTs)	(42/767)	(26 to 64)	to 1.16)			the line of	f no effect
Prophylactic prote synthetic surfacta placebo for prever morbidity and mo preterm infants (S	ein-free ant vs nting ortality in Soll 2010)	Moderate/se- vere cerebral palsy at 1 or 2 years	75 per 1000 (24/320)	0 69 per 100 (40 to 119)	0 RR 0.92 (0.1 to 1.59)	53 670 (4 RCT	s) LOW	Study limi fewer infa tant failec evaluation 0.63, 95% risk differ -0.04)"	itations (-1): "Somewhat Ints who received surfac I to return for follow-up n (typical relative risk CI 0.48, 0.82; typical ence -0.10, 95% CI -0.15,
								Imprecision the line of	on (-1): wide CI crossing f no effect
bbreviations: CI: co	onfidence composi	interval; GRADE: Gr te outcomes tha	rades of Reco t include ce	mmendation, Ass rebral palsy as	essment, Develop a component	oment and Evalua	tion; RCT: randor	nised controlled t	rial; RR: risk ratio.
obreviations: CI: co able 10. Other Intervention and compari- son	onfidence composit	interval; GRADE: Gr te outcomes tha e	rades of Reco t include ce	mmendation, Ass rebral palsy as Assumed risk with com- parator	essment, Develop a component Correspond- ing risk with intervention	Relative ef- fect (95% CI)	tion; RCT: randor Number of participants (trials)	nised controlled t Quality of the evidence (GRADE)	rial; RR: risk ratio. Comments
obreviations: CI: co able 10. Other Intervention and compari- son Neonatal care: as	onfidence composit Outcome	interval; GRADE: Gr te outcomes tha e	rades of Reco t include ce	mmendation, Ass rebral palsy as Assumed risk with com- parator	essment, Develop a component Correspond- ing risk with intervention	ment and Evalua Relative ef- fect (95% CI)	tion; RCT: randor Number of participants (trials)	nised controlled t Quality of the evidence (GRADE)	rial; RR: risk ratio. Comments

Cochrane Library

Therapeutic hy- pothermia vs standard care for newborns with hypoxic-is- chaemic en- cephalopathy (Jacobs 2013)	Death or major disability in survivors assessed at 18 to 24 months (defined as cerebral palsy, developmental de- lay (BSID or GMDS assessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), sensorineural deafness requiring am- plification)	614 per 1000 (409/666)	461 per 1000 (418 to 510)	RR 0.75 (0.68 to 0.83)	1344 (8 RCTs)	HIGH	Not downgraded
	Major neurodevelopmental disabili- ty at 18 to 24 months (defined as cere- bral palsy, developmental delay (BSID or GMDS assessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), sensorineural deaf- ness requiring amplification)	249 per 1000 (166/666)	192 per 1000 (157 to 234)	RR 0.77 (0.63 to 0.94)	1344 (8 RCTs)	HIGH	Not downgraded
	Major neurodevelopmental disabil- ity in survivors assessed at 18 to 24 months (defined as cerebral palsy, de- velopmental delay (BSID or GMDS as- sessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD be- low mean), blindness (vision < 6/60 in both eyes), sensorineural deafness re- quiring amplification)	393 per 1000 (166/422)	264 per 1000 (216 to 315)	RR 0.67 (0.55 to 0.80)	917 (8 RCTs)	HIGH	Not downgraded
	Death or moderate to severe disabil- ity at 6 to 7 years (defined as IQ ≥ 2 SD below the mean, a GMF level of 3 or greater, bilateral deafness (with or without amplification), bilateral blind- ness, or refractory epilepsy)	645 per 1000 (60/93)	523 per 1000 (413 to 671)	RR 0.81 (0.64 to 1.04)	190 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 RCT with small sample size
	Moderate-to-severe disability at 6 to 7 years (defined as IQ ≥ 2 SD below the mean, a GMF level of 3 or greater, bilat- eral deafness (with or without amplifi- cation), bilateral blindness or refracto- ry epilepsy)	380 per 1000 (19/50)	350 per 1000 (217 to 562)	RR 0.92 (0.57 to 1.48)	119 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 RCT with small sample size

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cochrane Library

Barbiturates	Death or major neurodevelopmental	813 per 1000	268 per 1000	RR 0.33	31 (1 RCT)	VERY LOW	Study limitations (-1):
(phenobarbital) vs conventional therapy for pre- vention of mor- bidity and mor- tality follow- ing perinatal as- physia (Young	disability follow-up: > 12 months (3 years) (defined as cerebral palsy, de- velopmental delay (BSID or GMDS as- sessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD be- low mean), blindness (vision < 6/60 in both eyes), or sensorineural deafness requiring amplification)	(13/16)	(114 to 634)	(0.14 to 0.78)			unblinded study; con- cern regarding perfor- mance bias, detection bias, and incomplete follow-up Imprecision (-2): 95% CIs were wide and im-
2016)	· · · · · · · · · · · · · · · · · · ·						precise
							(graded by review au- thors themselves)
	Major neurodevelopmental disability follow-up: > 12 months (3 years) (de- fined as cerebral palsy, developmen- tal delay (BSID or GMDS assessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes),	563 per 1000 (9/16)	135 per 1000 (34 to 518)	RR 0.24 (0.06 to 0.92)	31 (1 RCT)	VERY LOW	Study limitations (-1): unblinded study; con- cern regarding perfor- mance bias, detection bias, and incomplete follow-up
	or sensorineural deafness requiring amplification)						Imprecision (-2): 95% CIs were wide and im- precise
							(graded by review au- thors themselves)
Neonatal care: ho	aemorrhage: periventricular/intraventric	cular					
Ethamsylate vs placebo for prevention of morbidity and mortality in preterm or very low birthweight infants (Hunt 2010)	Neurodevelopmental disability at 2 years of age in surviving children avail- able for follow-up (defined as cerebral palsy on clinical examination, devel- opmental delay > 2 SD below popula- tion mean on any standard test of de- velopment, or blindness (VA < 6/60), or deafness (any hearing impairment re- quiring amplification) at any time after 2 years' corrected age)	170 per 1000 (46/270)	135 per 1000 (90 to 199)	RR 0.79 (0.53 to 1.17)	532 (3 RCTs)	MODERATE	Imprecision (-1): wide CI crossing line of no effect
	Death or any disability by 2 years of age in children with known outcome at any point in time (not defined in re- view)	338 per 1000 (233/690)	324 per 1000 (277 to 375)	RR 0.96 (0.82 to 1.11)	1334 (7 RCTs)	LOW	Study limitations (-1): 4 RCTs at unclear risk of selection bias; 3 RCTs at unclear risk

Cochrane Library

	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	•	· · · · ,			of bias due to lack of blinding
							Imprecision (-1): wide CIs crossing line of no effect
Phenobarbi- al vs no treat- nent for pre- rention of in- raventricular	Severe neurodevelopmental impair- ment at 27 months (defined as clinical cerebral palsy or DQ below the range that can be measured)	74 per 1000 (4/54)	107 per 1000 (30 to 373)	RR 1.44 (0.41 to 5.04)	101 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at high risk of performance bias) and unclear risk of other bias
haemorrhage in preterm infants (Smit 2013)							Imprecision (-2): wide CI crossing line of no effect; small sample size, low event rate
	Mild neurodevelopmental impairment at 27 months (defined as DQ < 80 or motor abnormality on examination)	111 per 1000 (6/54)	63 per 1000 (17 to 241)	RR 0.57 (0.15 to, 2.17)	101 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at high risk of performance bias) and unclear risk of other bias
							Imprecision (-2): wide CI crossing line of no effect; small sample size, low event rate
Neonatal care: h	ypotension						
Dobutamine vs dopamine in preterm infants with low supe-	Disability at 3 years in survivors (de- fined as GMDS quotient ≤ 70, cerebral palsy, blind (VA < 6/60) or deaf (hear- ing aids))	714 per 1000 (5/7)	71 per 1000 (7 to 1114)	RR 0.10 (0.01 to 1.56)	13 (1 RCT)	VERY LOW	Study limitations (-1): 5/18 surviving infants were not assessed at 3 years
flow (Osborn 2007b)							Imprecision (-2): wide CI crossing line of no effect; 1 RCT with very small sample size
	Death or disability at 3 years (defined as GMDS quotient ≤ 70, cerebral palsy, blind (VA < 6/60) or deaf (hearing aids))	882 per 1000 (15/17)	697 per 1000 (503 to 979)	RR 0.79 (0.57 to 1.11)	37 (1 RCT)	VERY LOW	Study limitations (-1): 5/18 surviving infants were not assessed at 3 years

							Imprecision (-2): wide CI crossing line of no effect; 1 RCT with very small sample size
	Death or disability at latest follow-up (1 to 3 years) (defined as GMDS quo- tient ≤ 70, cerebral palsy, blind (VA < 6/60) or deaf (hearing aids))	750 per 1000 (15/20)	713 per 1000 (495 to 1035)	RR 0.95 (0.66 to 1.38)	41 (1 RCT)	VERY LOW	Study limitations (-1): 5/18 surviving infants were not assessed at 3 years
							Imprecision (-2): wide CI crossing line of no effect; 1 RCT with very small sample size
Veonatal care: fl	uid therapy						
Volume vs no treatment for prevention of morbidity and mortality in very preterm in- fants (Osborn 2004)	Severe neurodevelopmental disabil- ity in survivors at 2 years (defined as blind, dead, unable to walk, DQ > 3 SD below the mean, or another severe disability)	141 per 1000 (29/205)	113 per 1000 (74 to 174)	RR 0.80 (0.52 to 1.23)	604 (1 RCT)	MODERATE	Imprecision (-1): wide CI crossing line of no effect
Gelatin vs fresh frozen plasma for prevention of morbidity and mortality in very preterm infants (Osborn 2004)	-	113 per 1000 (23/203)	112 per 1000 (65 to 195)	RR 0.99 (0.57 to 1.72)	399 (1 RCT)	MODERATE	Imprecision (-1): wide CI crossing line of no effect
Volume vs no reatment for prevention of norbidity and nortality in very preterm in- ants (Osborn 2004)	Death or severe neurodevelopmental disability in survivors at 2 years (de- fined as blind, dead, unable to walk, DQ > 3 SD below the mean, or another severe disability)	318 per 1000 (82/258)	318 per 1000 (254 to 394)	RR 1.00 (0.80 to 1.24)	776 (1 RCT)	MODERATE	Imprecision (-1): wide CI crossing line of no effect

Gelatin vs fresh		300 per 1000	333 per 1000	RR 1.11 (0.86	518 (1 RCT)	MODERATE	Imprecision (-1): wide
for prevention of morbidity and mortality in very preterm infants (Osborn 2004)		(77/257)	(230 10 420)	10 1.43)			effect
Neonatal care: po	atent ductus arteriosus						
Prophylactic in- domethacin vs placebo for pre- venting mortal- ity and morbid- ity in preterm infants (Fowlie 2010)	Death or severe neurodevelopmental disability at 18 to 36 months (defined as any 1 or a combination of the fol- lowing: non-ambulant cerebral palsy, developmental delay (DQ < 70), audi- tory and visual impairment)	400 per 1000 (299/748)	407 per 1000 (360 to 460)	RR 1.02 (0.90 to 1.15)	1491 (3 RCTs)	MODERATE	Study limitations (-1): 2 RCTs at unclear risk of attrition bias (> 25% loss to follow-up)
Neonatal care: bl	lood disorders						
Erythropoi- etin vs placebo for preventing red blood cell transfusion in preterm and/or	Any neurodevelopmental impairment at 18 to 22 months' corrected age (in children examined) (not defined in re- view; <i>definition from trial manuscript:</i> 1 of the following: MDI < 70, PDI < 70, moderate or severe cerebral palsy,	451 per 1000 (23/51)	437 per 1000 (280 to 681)	RR 0.97 (0.62 to 1.51)	99 (1 RCT)	VERY LOW	Study limitations: 1 RCT at unclear risk of selection bias and hig risk of attrition bias (~73% follow-up)
low birthweight infants (Ohls- son 2014)	blindness, or deafness)						CI crossing line of no effect; 1 RCT with small sample size
Transfusion at a restrictive vs a liberal haemo- globin thresh- old for prevent-	Any neurosensory impairment at 18 to 21 months' follow-up among survivors (defined as cognitive delay (MDI < 70), cerebral palsy, severe visual impair- ment, severe hearing impairment)	220 per 1000 (37/168)	289 per 1000 (198 to 418)	RR 1.31 (0.90 to 1.90)	328 (1 RCT)	LOW	Study limitations (-1): 1 RCT at high risk of performance bias and unclear risk of report- ing bias
ng morbidity and mortality in very low birth- weight infants							Imprecision (-1): wide CI crossing line of no effect
Whyte 2011)	Death or severe morbidity at 18 to 21 months' follow-up (defined as cogni-	385 per 1000	450 per 1000 (362 to 566)	RR 1.17 (0.94 to 1.47)	421 (1 RCT)	LOW	Study limitations (-1): 1 RCT at high risk of

Cochrane Library

Table 10. Other	composite outcomes that include co tive delay (MDI < 70), cerebral palsy, severe visual impairment, severe hear- ing impairment)	erebral palsy as (82/213)	s a component	(Continued)			performance bias and unclear risk of report- ing bias Imprecision (-1): wide
	Death or severe morbidity at 18 to 21 months' follow-up (defined as cogni- tive delay (MDI < 85), cerebral palsy, severe visual impairment, severe hear- ing impairment)	498 per 1000 (106/213)	602 per 1000 (503 to 717)	RR 1.21 (1.01 to 1.44)	421 (1 RCT)	MODERATE	CI crossing line of no effect Study limitations (-1): 1 RCT at high risk of performance bias and unclear risk of report- ing bias
Neonatal care: n	itric oxide						
Inhaled NO vs placebo for res- piratory fail- ure in preterm infants (entry before 3 days based on oxy- genation) (Bar- rington 2010)	Neurodevelopmental disability at 18 to 22 months (defined as moderate or severe cerebral palsy, blind, deaf, BSID MDI < 70, or PDI < 70)	455 per 1000 (50/110)	477 per 1000 (355 to 636)	RR 1.05 (0.78 to 1.40)	208 (2 RCTs)	LOW	Imprecision (-2): wide CI crossing line of no effect; small sample sizes
Inhaled NO vs placebo or no treatment for respiratory fail- ure in preterm infants (entry after 3 days based on BPD risk) (Barring- ton 2010)	Neurodevelopmental disability at 2 years' corrected age or 30 months (de- fined as 1 RCT: moderate or severe cerebral palsy, blind, deaf, BSID MDI < 70, or PDI < 70; 1 RCT: cerebral palsy, BSID MDI or PDI < 71, or sensorineural impairment)	480 per 1000 (119/248)	432 per 1000 (355 to 523)	RR 0.90 (0.74 to 1.09)	498 (2 RCTs)	LOW	Study limitations (-1): 1 RCT with no blinding of intervention or out- come measurement Imprecision (-1): wide CI crossing line of no effect; small sample sizes
Inhaled NO vs placebo for res- piratory fail- ure in preterm infants (stud- ies of routine use in intubat- ed preterm in-	Neurodevelopmental disability at 1 or 2 years' corrected age (defined as 1 RCT: cerebral palsy, blind, severe hear- ing loss, BSID MDI < 70, or PDI < 70; 1 RCT: cerebral palsy, bilateral blind- ness, bilateral hearing loss, or BSID score > 2 SD below the mean)	364 per 100 (104/286)	327 per 1000 (262 to 411)	RR 0.90 (0.72 to 1.13)	593 (2 RCT)	VERY LOW	Study limitations (-1): 2 RCTs with 74% to 82% follow-up Imprecision (-1): wide CI crossing line of no effect

nhaled nitric xide vs control or respirato- y failure in in- ants born at or ear term (Finer 006) leonatal care: api caffeine vs lacebo for ap-	Neurodevelopmental disability among survivors at 13 or 18 to 24 months (de- fined as 1 RCT: cerebral palsy, BSID MDI or PDI < 2 SD below the mean, blind or hearing impaired; or 1 RCT: cerebral palsy, > 2 mild (mild neu- rological abnormalities; mild reduc- tions in BSID scores 1 to 2 SD below the mean), or at least 1 severe impair- ment)	265 per 1000 (48/181)	257 per 1000 (175 to 382)	RR 0.97 (0.66 to 1.44)	301 (2 RCTs)	LOW	Study limitations (-1): 1 RCT masking of allo- cation, masking of out- comes, and complete- ness of follow-up 'can't
leonatal care: api affeine vs lacebo for ap-	noea						tell' Imprecision (-1): wide CI crossing line of no effect
affeine vs Iacebo for ap-							
oea in preterm nfants (Hen- erson-Smart 010b)	Death or major disability at 18 to 21 months' corrected age (defined as cognitive delay, cerebral palsy, deaf- ness, or blindness)	417 per 1000 (153/367)	354 per 1000 (296 to 421)	RR 0.85 (0.71 to 1.01)	767 (1 RCT)	LOW	Study limitations (-1): results based on 1 RCT subgroup from post hoc subgroup analy- ses (randomisation not stratified according to indication for inclu- sion) Imprecision (-1): wide Cl crossing line of no
affeine vs lacebo for pre- ention of ap- oea in preterm nfants (Hen- lerson-Smart 010c)	Death or major disability at 18 to 21 months' corrected age (not defined in review; <i>definition from trial manu-</i> <i>script</i> : cerebral palsy, cognitive delay, severe hearing loss, or bilateral blind- ness)	431 per 1000 (88/204)	431 per 1000 (345 to 535)	RR 1.00 (0.80 to 1.24)	423 (1 RCT)	LOW	effect Study limitations (-1): results based on 1 RCT subgroup from post hoc subgroup analy- ses (randomisation not stratified according to indication for inclu- sion) Imprecision (-1): wide

Inositol sup-	Major neural developmental impair-	178 per 1000	94 per 1000	RR 0.53 (0.24	169 (1 RCT)	VERY LOW	Study limitations (-1):
olementation repeat dos- es) vs placebo n preterm in- rants at risk for or having res-	ment at 1 year corrected age (defined as sensory deficit, cerebral palsy, de- velopmental delay, severe hypotonia)	(13/73)	(43 to 207)	to 1.16)			1 RCT at unclear risk of selection, perfor- mance, detection, an reporting bias, and at high risk of other bias
piratory dis- cress syndrome (Howlett 2015)							Imprecision (-2): wide Cl crossing line of no effect; 1 RCT with small sample size
Animal-de- rived surfactant extract vs no treatment for treatment of respiratory dis-	Major developmental disability in sur- vivors at 1 and 2 years' corrected age (defined as severe forms of cerebral palsy, blindness, deafness requiring hearing aids, or GMDS DQ < 70)	34 per 1000 (1/29)	114 per 1000 (5 to 923)	RR 3.30 (0.14 to 26.78)	73 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with no blindin of intervention; and blinding of outcome measurement not re- ported
tress syndrome (Seger 2009)							Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Neonatal care: m	nechanical ventilation						
Continuous dis- tending pres- sure vs stan- dard care for respiratory dis-	Death or severe disability at 9 to 15 years (not defined in review; severe disability as defined below)	158 per 1000 (3/19)	210 per 1000 (54 to 816)	RR 1.33 (0.34 to 5.17)	38 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at unclear risk of selection and attri- tion bias and high ris of performance bias
tress in preterm infants (Ho 2015)							Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
	Severe disability at 9 to 15 years (not defined in review; <i>definition from trial</i> <i>manuscript:</i> unable to undertake ac- tivity without aids or assistance most of the time, or completely dependent	158 per 1000 (3/19)	167 per 1000 (38 to 722)	RR 1.06 (0.24 to 4.57)	37 (1 RCT)	VERY LOW	Study limitations (-1) 1 RCT at unclear risk of selection and attri- tion bias and high ris of performance bias
	on carer: WASI ≤ 69; GMF level 4 to 5,						Improvision (2); wid

Cochrane Library

Table 10.	Other composite outcomes that inc teacher overall difficulties (Q26), and impact score 6 to 10 parent to 6 teacher; or other condition supervision/aid constantly - incl continuous home oxygen; comm cation severely limited)	Lude cerebral palsy a , "Yes" and 3 needs udes nuni-	is a component	(Continued)			
	Any disability at 9 to 15 years (no fined in review; <i>definition from tr</i> <i>manuscript:</i> mild: some loss of fu tion but able to function indepen ly; moderate: aids or assistance	ot de- 632 per 1000 <i>ial</i> Inc- (12/19) ndent- need-	392 per 1000 (196 to 764)	RR 0.62 (0.31 to 1.21)	37 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at unclear risk of selection and attri- tion bias and high risk of performance bias
	ed for some tasks. Moderate diff ty in doing some activities; sever able to undertake activity withor or assistance most of the time, o pletely dependent on carer; inclu neuromotor components includ GMF levels 1 to 5)	icul- re: un- ut aids r com- udes es					Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Prophylac- tic methylo anthines (d feine) vs pl bo for endo cheal extui tion in pre- infants (He derson-Sm 2010)	Death or major disability at 18 to months' corrected age (defined caf-cognitive delay, cerebral palsy, c lace-ness, or blindness) otra- ba- term en- hart	o 21 525 per 1000 as leaf- (189/360)	446 per 1000 (383 to 520)	RR 0.85 (0.73 to 0.99)	676 (1 RCT)	MODERATE	Study limitations (-1): results based on 1 RCT subgroup from post hoc subgroup analy- ses (randomisation not stratified according to indication for inclu- sion)
Volume-ta geted vs pu sure-limite ventilation	r- Severe disability (any definition) res- to 18 months and 22 months (de itions not reported in review; de in tions from trial manuscripts: 1 RC	at 6 176 per 1000 fin- fini- (18/102) T: ab-	152 per 1000 (83 to 281)	RR 0.86 (0.47 to 1.59)	209 (2 RCTs)	LOW	Indirectness (-1): post hoc analysis including 2 RCTs with varied def- initions
the neonat (Wheeler 2	ie normal neurological evaluation 010) or fine motor delay) or BSID MDI 1 RCT: cerebral palsy severe eno hamper gross motor activity, de	(gross < 70; ugh to afness					Imprecision (-1): wide CI crossing line of no effect
	needing hearing aids, registered or partially sighted)	blind					(post hoc analysis in re- view)
	Severe disability (any definition) 22 months or death (definition n ported in review; <i>definition from</i>	at 327 per 1000 ot re- <i>tri-</i> (17/52)	177 per 1000 (88 to 347)	RR 0.54 (0.27 to 1.06)	109 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT

	al manuscript: cerebral palsy severe enough to hamper gross motor activi- ty, deafness needing hearing aids, reg- istered blind or partially sighted)		• • •				(post hoc analysis in re- view)
Neonatal care: b	ronchopulmonary dysplasia						
Early (< 8 days) postnatal cor- ticosteroids vs placebo or no treatment for prevent- ing chronic lung disease in preterm infants (Doyle 2014b)	Major neurosensory disability at 18 to 22 months to 53 months (variable cri- teria reported in review: 1 RCT: non- ambulant cerebral palsy, global retar- dation (not specified), blindness, or deafness; 1 RCT: moderate or severe cerebral palsy, blindness, deafness, or BSID MDI or PDI < -2 SD; 1 RCT: cere- bral palsy, BSID MDI or PDI < 71, blind- ness or deafness; 1 RCT: severe motor dysfunction (child non-ambulant), or BSID MDI or PDI <-2 SD; 2 RCTs: cere- bral palsy, blindness, deafness, or de- velopmental delay (BSID MDI < 70 (< -2 SD) or GMDS DQ < 70); 1 RCT: cere- bral palsy, functional blindness, func- tional deafness, developmental delay (BSID MDI < 70 (<-2 SD)), or motor de- lay (BSID PDI < 70 (<-2 SD))	199 per 1000 (121/607)	231 per 1000 (187 to 285)	RR 1.16 (0.94 to 1.43)	1233 (7 RCTs)	LOW	Study limitations (-1): 2 RCTs at unclear risk of selection bias; 1 RCT at high risk of perfor- mance and detection bias Imprecision (-1): wide CI crossing line of no effect
	Major neurosensory disability in sur- vivors examined at 18 to 22 months to 53 months (variable criteria as above)	307 per 1000 (121/394)	350 per 1000 (289 to 424)	RR 1.14 (0.94 to 1.38)	799 (7 RCTs)	LOW	Study limitations (-1): 2 RCTs at unclear risk of selection bias; 1 RCT at high risk of perfor- mance and detection bias Imprecision (-1): wide CI crossing line of no effect
	Death or major neurosensory disability at 18 to 22 months to 53 months (vari- able criteria as above)	466 per 1000 (283/607)	490 per 1000 (434 to 545)	RR 1.05 (0.93 to 1.17)	1233 (7 RCTs)	MODERATE	Study limitations (-1): 2 RCTs at unclear risk of selection bias; 1 RCT at high risk of perfor- mance and detection bias

Copyright \circledast 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Neo	Table 10. Other	composite outcomes that include ce	erebral palsy as	s a component	'Continued)			
natal interventions for	Moderately ear- ly (7-14 days) postnatal cor- ticosteroids vs placebo for pre- venting chronic lung disease in	Major neurosensory disability at 15 months' corrected age up to 90 months (variable criteria reported in review: 1 RCT: any of cerebral palsy or a BSID MDI or PDI < - 1 SD; 1 RCT: not specified)	98 per 1000 (4/41)	123 per 1000 (44 to 340)	RR 1.26 (0.45 to 3.49)	96 (2 RCTs)	VERY LOW	Study limitations (-1): 1 RCT with 70% fol- low-up and unclear blinding of outcome assessment Imprecision (-2): wide
, preventin	preterm infants (Halliday 2003)							CI crossing line of no effect; small sample sizes
g cerebral palsy: a		Major neurosensory disability in sur- vivors assessed at 15 months' correct- ed age up to 90 months (variable crite- ria reported in review as above)	174 per 1000 (4/23)	155 per 1000 (66 to 365)	RR 0.89 (0.38 to 2.10)	56 (2 RCTs)	VERY LOW	Study limitations (-1): 1 RCT with 70% fol- low-up and unclear blinding of outcome assessment
an overview of Co								Imprecision (-2): wide CI crossing line of no effect; small sample sizes
ochrane Systemati		Death or major neurosensory disability at 15 months' corrected age up to 90 months (variable criteria reported in review as above)	366 per 1000 (15/41)	373 per 1000 (241 to 571)	RR 1.02 (0.66 to 1.56)	96 (2 RCTs)	VERY LOW	Study limitations (-1): 1 RCT with 70% fol- low-up and unclear blinding of outcome assessment
ic Reviews (Revi								Imprecision (-2): wide CI crossing line of no effect; small sample sizes
iew)	Late (> 7 days)Major neurosensory disability at 1 yearpostnatal cor- ticosteroidscorrected age up to 11 years (variable criteria reported in review: 1 RCT: non- ambulant cerebral palsy, < 50% of age level on the Minnesota CDI, or predict- for chronic		169 per 1000 (54/320)	197 per 1000 (143 to 270)	RR 1.17 (0.85 to 1.60)	655 (8 RCTs)	LOW	Study limitations (-1): 3 RCTs with unclear risk of selection bias; 3 RCTs with follow-up rates 60% to 78%
94	lung disease in preterm infants (Doyle 2014)	other impairment; 1 RCT: abnormal neurological examination (i.e. cere- bral palsy), cognitive delay (IQ < 71) or not in a regular classroom; 1 RCT: severe disability - bilateral blindness, cerebral palsy with the child unlike-						Imprecision (-1): wide CI crossing line of no effect

Cochrane Database of Systematic Reviews

Cochrane Library

Neonatal interventions for preventing cerebral palsy: an overvie	Table 10. Othe	r composite outcomes that include ce ly ever to walk or BSID MDI < 55 (< -3 SD)) or moderate disability - deafness, cerebral palsy in children not walk- ing at 2 years but expected to walk, or MDI from 55 to < 70 (-3 SD to < -2 SD); 1 RCT: cerebral palsy, blindness, deaf- ness requiring hearing aids or worse, or developmental delay (defined as BSID MDI < 70); 1 RCT: more than mild cerebral palsy, blindness, deafness, or needing extra help with school- ing; 1 RCT: blindness, cerebral palsy or a BSID MDI < 70 OR cerebral palsy or mental retardation (IQ < 70 on ei- ther the DAS or the WISC-III and a VABS composite score < 70); 1 RCT: not spec- ified; 1 RCT moderate or severe cere- bral palsy, bilateral blindness, deaf- ness or an MDI < 2 SD	erebral palsy a	s a component	(Continued)			
ew of Cochrane Systematic Re		Major neurosensory disability in sur- vivors assessed at 1 year corrected age up to 11 years (variable criteria report- ed in review as above)	231 per 1000 (54/234)	254 per 1000 (187 to 346)	RR 1.10 (0.81 to 1.50)	480 (8 RCTs)	LOW	Study limitations (-1): 3 RCTs with unclear risk of selection bias; 3 RCTs with follow-up rates 60% to 78% Imprecision (-1): wide CI crossing line of no effect
eviews (Review)		Death or major neurosensory disability at 1 year corrected age up to 11 years (variable criteria reported in review as above)	375 per 1000 (120/320)	390 per 1000 (323 to 473)	RR 1.04 (0.86 to 1.26)	655 (8 RCTs)	LOW	Study limitations (-1): 3 RCTs with unclear risk of selection bias; 3 RCTs with follow-up rates 60% to 78% Imprecision (-1): wide CI crossing line of no effect
95	Supplemental vitamin A vs a sham injection to prevent mor- tality and short- and long-term	Neurodevelopmental impairment at 18 to 24 months (defined as BSID-II MDI < 70, PDI < 70, any cerebral palsy, blind in both eyes, or bilateral hearing aids)	481 per 1000 (128/266)	428 per 1000 (356 to 520)	RR 0.89 (0.74 to 1.08)	538 (1 RCT)	LOW	Imprecision (-2): "Con- cerning imprecision: does not met the opti- mal information size criteria"

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. (Re iew)

Cochrane Library

morbidity in very low birth- weight infants		(graded by review au- thors themselves)					
(Darlow 2016)	Death or neurodevelopmental impair- ment at 18 to 24 months (defined as BSID-II MDI < 70, PDI < 70, any cerebral palsy, blind in both eyes, or bilateral hearing aids)	596 per 1000 (204/342)	549 per 1000 (483 to 626)	RR 0.92 (0.81 to 1.05)	687 (1 RCT)	MODERATE	Imprecision (-1): wide CIs crossing line of no effect
Neonatal care: n	ecrotising enterocolitis						
Probiotics vs control (dis- tilled water) for prevention of necrotising en- terocolitis in preterm infants (AlFaleh 2014)	Mental retardation and cerebral palsy at 6 years	47 per 1000 (2/43)	47 per 1000 (7 to 323)	RR 1.02 (0.15 to 6.94)	85 (1 RCT)	VERY LOW	Study limitation (-1): 1 RCT at unclear risk for selection, perfor- mance, and detection bias; and high risk of attrition and reporting bias
							Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Arginine sup- plementation vs placebo for prevention of necrotising en- terocolitis in preterm infants (Shah 2007)	Major neurodevelopmental disability at 36 months' post-menstrual age (de- finition not reported in review; <i>defini- tion from trial manuscript:</i> presence of 1 or more of cerebral palsy, cognitive delay (index < 70), bilateral blindness, bilateral hearing loss requiring aids)	127 per 1000 (9/71)	82 per 1000 (29 to 232)	RR 0.65 (0.23 to 1.83)	132 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Neonatal care: fi	ungal infections						
Systemic anti- fungal agent vs placebo to pre- vent mortali- ty and morbid- ity in very low birthweight in- fants (Clemin- son 2015)	Neurodevelopmental impairment (composite) at 18 to 22 months (de- fined as at least 1 of (i) BSID-III cogni- tion composite score < 70, (ii) cerebral palsy, (iii) deafness or, (iv) blindness)	274 per 1000 (23/84)	309 per 1000 (194 to 496)	RR 1.13 (0.71 to 1.81)	171 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT

Table 10. Other composite outcomes that include cerebral palsy as a component (Continued)

Neonatal care: h	erpes simplex						
Vidarabine vs placebo for treatment of herpes simplex virus infection in neonates (Jones 2009)	Abnormal neurodevelopment at ap- proximately 1 year of age (not defined in review; <i>definition from trial manu-</i> <i>script:</i> spasticity or hemiparesis on- ly; or combinations of microcephaly, paresis, spasticity, seizures, blindness, or deafness)	214 per 1000 (6/28)	321 per 1000 (133 to 782)	RR 1.50 (0.62 to 3.65)	56 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with design lim- itations (method of randomisation not stated) Imprecision (-2): wide Cls crossing line of no effect; 1 small RCT
	Abnormal neurodevelopment or death at approximately 1 year of age (not defined in review; <i>definition from trial</i> <i>manuscript</i> as above)	750 per 1000 (21/28)	645 per 1000 (450 to 915)	RR 0.86 (0.60 to 1.22)	56 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with design lim- itations (method of randomisation not stated) Imprecision (-2): wide CIs crossing line of no effect; 1 small RCT
Aciclovir vs vi- darabine for treatment of herpes simplex virus infection in neonates (Jones 2009)	Abnormal neurodevelopment at ap- proximately 1 year of age (not defined in review; <i>definition from trial manu-</i> <i>script:</i> mild impairment: only occular sequelae; moderate neurological im- pairment: hemiparesis or a persistent seizure disorder and no more than a 3-month developmental delay; severe neurological sequelae: microcephaly, spastic quadriplegia, chorioretinitis or blindness, and a serious developmen- tal delay of > 3 months according to the DDST)	263 per 1000 (25/95)	216 per 1000 (132 to 353)	RR 0.82 (0.50 to 1.34)	202 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with design limi- tations (inadequate al- location concealment) Imprecision (-2): wide CIs crossing line of no effect; 1 small RCT
	Abnormal neurodevelopment or death at approximately 1 year of age (not defined in review <i>definition from trial</i> <i>manuscript</i> as above)	463 per 1000 (44/95)	366 per 1000 (264 to 509)	RR 0.79 (0.57 to 1.10)	202 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT with design limi- tations (inadequate al- location concealment) Imprecision (-2): wide CIs crossing line of no effect; 1 small RCT

Cochrane Library

Table 10. Other composite outcomes that include cerebral palsy as a component (Continued)

Neonatal care: jaundice Prophylactic Neurodevelopmental impairment at 305 per 1000 259 per 1000 RR 0.85 (0.74 1804 (1 RCT) MODERATE Study limitations (-1): 18 to 22 months (defined as blindness, photothera-(226 to 302) to 0.99) 1 RCT with high risk of (275/902) py vs standard severe hearing loss, and moderate or attrition bias care for presevere cerebral palsy) venting jaundice in preterm or low birthweight infants (Okwundu 2012) Neonatal care: hypoglycaemia Major neurosensory disability at 2 Study limitations (-1): Dextrose gel 11 per 1000 67 per 1000 (8 RR 6.27 (0.77 184 (1 RCT) VERY LOW years (defined as any of the following: "Evidence is based on vs placebo for to 543) to 51.03) (1/94)legal blindness, sensorineural deaftreatment of a single trial" hypoglycaemia ness requiring hearing aids, moderate Imprecision (-2): "Wide or severe cerebral palsy, developmenin newborn inconfidence intervals. tal delay/intellectual impairment (defants (Weston low event rates and 2016) fined as DQ < 2 SD below the mean)) small sample sizes are suggestive of imprecision: (graded by review authors themselves) Developmental disability at 2 years 32/94 34/90 RR 1.11 (0.75 184 (1 RCT) VERY LOW Study limitations (-1): (defined as cognitive, language, or moto 1.63) 1 RCT with 78% foltor score below -1 SD, or cerebral pallow-up sy, blindness, or deafness) Imprecision: wide CI crossing line of no effect; 1 small RCT Neonatal care: parenteral feeding Neurodevelopmental impairment at 2 Imprecision (-2): "Total Glutamine sup-375 per 1000 401 per 1000 RR 1.07 (0.59 72 (1 RCT) LOW plementation years post term (defined as BSID-II MDI (221 to 720) sample size = 72" to 1.92) (12/32)vs placebo to \leq 85, PDI \leq 85, cerebral palsy, blind-(graded by review auness in 1 or both eyes, or hearing loss prevent morthors themselves) requiring amplification) bidity and mortality in preterm

Cochrane

Table 10. Other composite outcomes that include cerebral palsy as a component (Continued)

infants (Moe-

Byrne 2016)

Abbreviations: BSID: Bayley Scales of Infant Development; CDI: Child Development Inventory; CI: confidence interval; DAS: Differential Ability Scales; DDST: Denver Developmental Screening Test; DQ: development quotient; GMDS: Griffiths Mental Development Scales; GMF: gross motor function; GRADE: Grades of Recommendation, Assessment, Development and Evaluation; IQ: intelligence quotient; MDI: Mental Development Index; PDI: Psychomotor Development Index; RCT: randomised controlled trial; RR: risk ratio; SD: standard deviation; VA: visual acuity; VABS: Vineland Adaptive Behaviour Scales; WASI: Wechsler Abbreviated Scale of Intelligence; WISC: Wechsler Intelligence Scale for Children.

Table 11. Motor dysfunction

Intervention and com- parison	Outcome	Assumed risk with com- parator	Correspond- ing risk with intervention	Relative ef- fect (95% CI)	Number of participants (trials)	Quality of the evidence (GRADE)	Comments
Neonatal care: asphyxia							
Therapeutic hypother- mia vs standard care for newborns with hypoxic-is- chaemic encephalopathy (Jacobs 2013)	Neuromotor delay (BSID PDI > 2 SD be- low mean) in survivors assessed at 18 to 24 months	349 per 1000 (104/298)	262 per 1000 (206 to 328)	RR 0.75 (0.59 to 0.94)	657 (6 RCTs)	HIGH	Not downgraded
Neonatal care: blood disord	ders						
Erythropoietin vs placebo for preventing red blood cell transfusion in preterm and/or low birthweight in- fants (Ohlsson 2014)	PDI < 70 at 18 to 22 months' corrected age (in children examined)	133 per 1000 (6/45)	311 per 1000 (131 to 737)	RR 2.33 (0.98 to 5.53)	90 (1 RCT)	VERY LOW	Study limitations: 1 RCT at unclear risk of selection bias and high risk of attrition bias (~73% follow-up) Imprecision (-2): wide CI crossing line of no effect; 1 RCT with small sample size
Neonatal care: pulmonary	hypertension						
Endothelin receptor an- tagonists vs placebo for persistent pulmonary hy- pertension in term and late preterm infants (More 2016)	Adverse neurological outcomes at 6 months (defined as clinical or electrographically proven seizures, ab- normal muscle tone, abnormal deep tendon reflexes, delayed mo-	286 per 1000 (4/14)	20 per 1000 (0 to 343)	RR 0.07 (0.00 to 1.20)	37 (1 RCT)	LOW	Study limitation (-1): 8/23 infants in the placebo group were excluded from analysis Imprecision (-1): single RCT, small sample size (graded by review authors themselves)

Cochrane Library

	normal auditory brain- stem response)						
Neonatal care: resuscitatio	n						
Room air vs 100% oxygen for resuscitation of infants at birth (Tan 2005)	Not walking in those followed up at 18 to 24 months	107 per 1000 (13/122)	110 per 1000 (4 to 240)	RR 1.03 (0.04 to 2.25)	213 (1 RCT)	VERY LOW	Study limitations (-2): 1 qRCT with no blinding, and < 70% follow-up
							Imprecision (-1): wide CI crossing line of no effect
Neonatal care: nitric oxide							
Inhaled NO vs placebo for respiratory failure in preterm infants (studies of routine use in intubated preterm infants) (Barring- ton 2010)	BSID MDI or PDI < - 2 SD at 2 years' correct- ed age	412 per 1000 (28/68)	231 per 1000 (136 to 383)	RR 0.56 (0.33 to 0.93)	138 (1 RCT)	MODERATE	Study limitations (-1): 1 small RCT with 82% fol- low-up
nhaled nitric oxide vs control for respiratory fail- ure in infants born at or near term (Finer 2006)	BSID PDI > 2 SD below the mean at 13 or 18 to 24 months	148 per 1000 (25/169)	161 per 1000 (86 to 300)	RR 1.09 (0.58 to 2.03)	283 (2 RCTs)	LOW	Study limitations (-1): 1 RCT masking of allocation, masking of outcomes, and completeness of follow-up 'can't tell' Inconsistency (-1): substan- tial heterogeneity (I ² = 77%) <i>Note: error in review for Ni-</i> <i>nos 1996 data; interven-</i> <i>tion and control group data</i> <i>switched; this has been recti-</i> <i>fied in this analysis</i>
Neonatal care: respiratory	distress syndrome						
Inositol supplementation (repeat doses) vs place- bo in preterm infants at risk for or having respira- tory distress syndrome (Howlett 2015)	Minor neural develop- mental impairment at 1 year corrected age (defined as sensorimo- tor abnormality and/or developmental delay)	137 per 1000 (10/73)	115 per 1000 (52 to 255)	RR 0.84 (0.38 to 1.86)	169 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT at unclear risk of selection, performance, detection, and reporting bias, and at high risk of other bias

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. (NEV)

							RCT with small sample size
Neonatal care: mechanical	ventilation						
Volume-targeted vs pres- sure-limited ventilation in the neonate (Wheeler	Gross Motor Devel- opmental Issue (any definition) at 6 to 18	172 per 1000 (11/64)	172 per 1000 (81 to 368)	RR 1.00 (0.47 to 2.14)	128 (1 RCT)	LOW	Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
2010)	months (defined as gross motor delay)						(post hoc analysis in review)
Neonatal care: bronchopul	monary dysplasia						
Early (< 8 days) postnatal	BSID PDI < - 2 SD at	146 per 1000	170 per 1000	RR 1.17 (0.85	842 (3 RCTs)	MODERATE	Imprecision (-1): wide Cl
bo for preventing chronic	months	6 (124 to (61/419)	(124 to 233)	10 1.60)			crossing line of no effect
fants (Doyle 2014b)	BSID PDI < - 2 SD in	232 per 1000	271 per 1000	RR 1.17 (0.87	528 (3 RCTs)	MODERATE	Imprecision (-1): wide Cl
	to 22 months or 25 months	(61/263)	(202 to 364)	101.57			crossing line of no effect
Late (> 7 days) postnatal	BSID PDI < - 2 SD at 1	180 per 1000	141 per 1000	RR 0.78 (0.34	118 (1 RCT)	LOW	Imprecision (-2): wide CI
or no treatment for chron-	year corrected age	(11/61)	(61 to 325)	10 1.80)			RCT with small sample size
infants (Doyle 2014)	BSID PDI < - 2 SD in	256 per 1000	171 per 1000	er 1000 RR 0.67 (0.30	R 0.67 (0.30 90 (1 RCT) 9 1.50)	LOW lı c R	Imprecision (-2): wide CI
	year corrected age	(11/43)	(11 to 384)	(0 1.50)			RCT with small sample size
Early inhaled corticos-	Mean developmental	143 per 1000	179 per 1000	RR 1.25 (0.37	56 (1 RCT)	VERY LOW	Study limitations (-1): 1 RCT
venting chronic lung dis-	SD of the mean (age	(4/28)	(53 10 596)	(0 4.17)			bias and detection bias
low birthweight preterm neonates (Shah 2012)	view;from trial manu- script: 3 years)						Imprecision (-2): wide CI crossing line of no effect; 1 small RCT
Neonatal care: other							
Early developmental in-	Motor outcome at	378 per 1000	423 per 1000	RR 1.12 (0.87	333 (2 RCTs)	LOW	Study limitations (-1): 2
low-up post hospital dis-	(defined as low score	(51/135)	(329 10 544)	10 1.44)			bias and unclear risk of per-

Table 11. Motor dysfunction (Continued)

Imprecision (-2): wide Cl crossing line of no effect; 1 e size

formance bias

101

charge to prevent motor

on Movement ABC)

Table 11. Motor dysfunction (Continued) and cognitive impairment

in preterm infants (Spittle 2015)

Imprecision (-1): wide Cl crossing line of no effect

Abbreviations: BSID: Bayley Scales of Infant Development; CI: confidence interval; GRADE: Grades of Recommendation, Assessment, Development and Evaluation; MDI: Mental Development Index; Movement ABC: Movement Assessment Battery for Children; PDI: Psychomotor Development Index; qRCT: quasi-randomised controlled trial; RCT: randomised controlled trial; RR: risk ratio; SD: standard deviation Cochrane Library

APPENDICES

Appendix 1. Ongoing reviews

Protocol citation	Overview outcomes pre-specified in protocol
Abiramalatha T, Thomas N, Gupta V,	Secondary outcomes pre-specified include:
standard volumes of enteral feeds for preterm or low birth weight infants (Proto- col). Cochrane Database of Systematic Re- views 2016, Issue 10.	1. Neurodevelopmental outcomes assessed after 12 months post term: neurological evaluations; developmental scores; and classifications of disability, including auditory and visual disability. We will define neurodevelopmental impairment as the presence of 1 or more of the following: non-ambulant cerebral palsy ; developmental quotient > 2 SD below the population mean; and blindness (VA less than 6/60) or deafness (any hearing impairment requiring — or unimproved by — amplification)
Amari S, Shahrook S, Ota E, Mori R.	Primary outcomes pre-specified include:
Branched-chain amino acid supplemen- tation for improving nutrition in term and preterm neonates (Protocol). Cochrane Database of Systematic Reviews 2016, Is- sue 7.	 Neurological development Major neurodevelopmental disability after 18 months' post-term age Cerebral palsy (yes/no)
	 Developmental delay (> 2 SD below the mean in a validated mental development test) or intellectual impairment (> 2 SD below the mean in a validated intelligence test) (yes/no)
	d. Blindness (vision < 6/60 in both eyes) (yes/no)
	e. Sensorineural deatness (requiring amplification) (yes/no)
Askie LM, Darlow BA, Davis PG, Finer N, Stenson B, Vento M, Whyte R, Effects of	Primary outcomes pre-specified include:
targeting higher versus lower arterial oxy- gen saturations on death or disability in	1. Composite outcome of death or major disability by 18 to 24 months' corrected age (gestational age plus chronological age)
base of Systematic Reviews 2014, Issue 7.	Secondary outcomes pre-specified include:
	1. Major disability by 18 to 24 months' corrected age (gestational age plus chronological age)
	 Cerebral palsy with GMFCS level 2 or higher, or MACS level 2 or higher at 18 to 24 months' corrected age (gestational age plus chronological age)
Choo YM, Ahmad Kamar A, Tengku Kamalden TAE Looi ML, Tan K, Lai NM	Secondary outcomes pre-specified include:
Lutein and zeaxanthin for reducing mor- bidity and mortality in preterm infants (Protocol). Cochrane Database of System- atic Reviews 2016, Issue 5.	 Neurodevelopmental outcome assessed at 18 months to 28 months (Newman 2012). We will accept any of the following outcomes alone or in combination: cerebral pal- sy, mental retardation (BSID MDI < 70), and hearing deficit (aided or < 60 dB on audio- metric testing) or assessment via use of a validated cognitive/language/behaviour- al/social interaction/adaptive test (Albers 2007)
Dawson JA, Davis PG, Foster JP. Routine	Secondary outcomes pre-specified include:
suction in the delivery room (Protocol). Cochrane Database of Systematic Reviews 2013, Issue 1.	 Long-term neurodevelopmental outcome (rates of cerebral palsy on physician as- sessment; developmental delay, i.e. DQ > 2 SD < the mean on validated assessment tools, e.g. BSID MDI)
Foster JP, Buckmaster A, Sinclair L, Lees S,	Secondary outcomes pre-specified include:
pressure (nCPAP) for term neonates with respiratory distress (Protocol). Cochrane Database of Systematic Reviews 2015, Is- sue 11.	 Neurodevelopmental disability (after at least 18 months' postnatal age) defined as neurological abnormality including cerebral palsy on clinical examination, develop- mental delay > 2 SD below population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification)

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

 Secondary outcomes pre-specified include: 1. Neurodevelopmental disability (after at least 18 months' postnatal age) defined as neurological abnormality including cerebral palsy on clinical examination, developmental delay > 2 SD below population mean on a standardised test of development
 Secondary outcomes pre-specified include: 1. Neurodevelopmental disability to at least 18 months' postnatal age (defined as neurological abnormality including cerebral palsy on clinical examination, developmental delay > 2 SD below population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification) at any time after term corrected)
 Secondary outcomes pre-specified include: Neurodevelopmental outcomes assessed after 12 months post term using validated tools: neurological evaluations; developmental scores; and classifications of disability, including auditory and visual disability. We will define neurodevelopmental impairment as the presence of 1 or more of the following: non-ambulant cerebral palsy; DQ > 2 SD below the population mean; and blindness (VA < 6/60) or deafness (any hearing impairment requiring or unimproved by amplification) Death or neurological impairment assessed after 12 months post term
 Secondary outcomes pre-specified include: Neurodevelopmental outcomes assessed after 12 months post term using validated tools: neurological evaluations; developmental scores; and classifications of disability, including auditory and visual disability. We will define neurodevelopmental impairment as the presence of 1 or more of the following: non-ambulant cerebral palsy; DQ > 2 SD below the population mean; and blindness (VA < 6/60) or deafness (any hearing impairment requiring or unimproved by amplification) Death or neurological impairment assessed after 12 months post term
 Secondary outcomes pre-specified include: 1. Neurodevelopmental disability (defined as neurological abnormality including cerebral palsy on clinical examination or global developmental delay (2 or more SD below population mean on BSID or GMDS at any time after term corrected at 1 year, 18 months', 2 years', and 5 years' postnatal age)
 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome at a later time point (> 1 year post-conceptional age). Neurodevelopmental impairment is defined as the presence of cerebral palsy and/or mental retardation (BSID MDI < 70) and/or legal blindness (< 20/200 VA) and or deafness (aided or < 60 dB on audiometric testing)
 Primary outcomes pre-specified include: 1. Major neurological disability at 2 years of age or greater (any of legal blindness, sensorineural deafness requiring hearing aids, moderate or severe cerebral palsy, or developmental delay/intellectual impairment (defined as a DQ or IQ lower than 2 SD below the mean)) Secondary outcomes pre-specified include: 1. Cerebral palsy and severity at 2 years of age or older

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

(Continued)	
Hyttel-Sorensen S, Støy Saem L, Greisen G, Als-Nielsen B, Gluud C. Cerebral near-in- frared spectroscopy monitoring for preven- tion of brain injury in very preterm infants (Protocol). Cochrane Database of System- atic Reviews 2015, Issue 2.	 Primary outcomes pre-specified include: 1. Major neurodevelopmental disability: a. Cerebral palsy b. Developmental delay or intellectual impairment: i. BSID or GMDS assessment > 2 SD below the mean or intellectual impairment (IQ > 2 SD below mean) ii. Neuromotor development (BSID - PDI) assessed in survivors iii. Mental development (BSID - MDI) assessed in survivors c. Blindness (vision < 6/60 in both eyes)
Jauncey-Cooke J, Bogossian F, Hough JL, Schibler A, Davies MW, Grant CA, Gibbons K, East CE. Lung recruitment manoeuvres for reducing respiratory morbidity in me- chanically ventilated neonates (Protocol). Cochrane Database of Systematic Reviews 2012, Issue 7.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental impairment: cerebral palsy, sensorineural hearing loss, visual impairment or developmental delay (e.g. GMDS, BSID) assessed at 12 to 24 months' corrected age, 2 years, or 5 years
Kaempfen S, Neumann RP, Jost K, Schulzke SM. Beta-blockers for prevention and treat- ment of retinopathy of prematurity in preterm infants (Protocol). Cochrane Data- base of Systematic Reviews 2015, Issue 9.	 Secondary outcomes pre-specified include: 1. Adverse neurodevelopmental outcomes at 18 to 24 months' corrected age a. Cerebral palsy b. Moderate to severe developmental delay as assessed by validated neurodevelopmental tests such as BSID
Kent A, Kecskes Z. Magnesium sulfate for term infants following perinatal asphyxia (Protocol). Cochrane Database of System- atic Reviews 2003, Issue 2.	 Primary outcomes pre-specified include: 1. Severe neurodevelopmental disability at or equal to 12 months of age or more. Severe neurodevelopmental disability is defined as cerebral palsy, developmental delay (DQ < 70), or blindness (VA < 6/60 in both eyes), or any combination of these disabilities
Kulasekaran K, Sargent PH, Flenady V. Mil- rinone for the treatment of cardiac dys- function in neonates (Protocol). Cochrane Database of Systematic Reviews 2004, Is- sue 4.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome (neurodevelopmental outcome assessed by a standardised and validated assessment tool and/or a child developmental specialist) at any age reported (outcome data will be grouped at 12, 18, 24 months if available) - cerebral palsy, developmental delay, blindness, sensorineural deafness
Lai NM, Ahmad Kamar A, Choo YM, Kong JY, Ngim CF. Fluid supplementation for neona- tal unconjugated hyperbilirubinaemia (Protocol). Cochrane Database of System- atic Reviews 2015, Issue 9.	 Primary outcomes pre-specified include: 1. Proportion of infants with moderate or severe cerebral palsy, defined as a non-progressive disorder with abnormal muscle tone in at least 1 arm or leg that was associated with abnormal control of movement or posture and a modified GMFCS score (Palisano 2008) ≥ 2 (Rosenbaum 2007), measured at predefined intervals, e.g. at 6, 12, 18, and 24 months Secondary outcomes pre-specified include: 1. Proportion of infants with motor impairment, as indicated by a score of 2 or higher in the modified GMFCS evaluation (Palisano 2008)
Lui K, Foster JP, Davis PG, Ching SK, Oei	Primary outcomes pre-specified include:

JL, Osborn DA. Higher versus lower oxygen

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright @ 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

(Continued) concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth (Protocol). Cochrane Data- base of Systematic Reviews 2012, Issue 11.	 Neurodevelopmental disability (after > 18 months' postnatal age): Neurological abnormality including cerebral palsy on clinical examination, developmental delay > 2 SD below population mean on any standard test of development Blindness (VA < 6/60) Deafness (any hearing impairment requiring amplification)
Malhotra A, Veldman A. Recombinant acti- vated Factor VII for prevention and treat- ment of intraventricular haemorrhage in neonates (Protocol). Cochrane Database of Systematic Reviews 2011, Issue 3.	 Primary outcomes pre-specified include: 1. Severe neurodevelopmental disability as defined by cerebral palsy, low developmental scores (DQ < 2 SD or untestable), blindness, or any combination of these using validated assessment tools at 18 or 24 months: neurological examinations, developmental scores (BSID, etc.)
McCarthy LK, Davis PG, O'Donnell CPF. Nasal airways (single or double prong, long or short) for neonatal resuscitation (Proto- col). Cochrane Database of Systematic Re- views 2011, Issue 5.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome (rates of cerebral palsy on physician assessment; developmental delay, i.e. DQ > 2 SD < the mean on validated assessment tools, e.g. BSID MDI)
Molloy EJ, McCallion N, O'Donnell CPF, Davis PG. Heliox for prevention of morbid- ity and mortality in ventilated newborn infants (Protocol). Cochrane Database of Systematic Reviews 2008, Issue 3.	 Secondary outcomes pre-specified include: 1. Death or long-term (< 18 months) major neurodevelopmental disability (cerebral palsy, developmental delay (BSID or GMDS assessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), sensorineural deafness requiring amplification)
Neary E, Ni Ainle F, El-Khuffash A, Cotter M, Kirkham C, McCallion N. Plasma trans- fusion to prevent intraventricular haemor- rhage in very preterm infants (Protocol). Cochrane Database of Systematic Reviews 2016, Issue 9.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability at 2 years' postnatal age, defined as neurological abnormality on clinical examination, including cerebral palsy, developmental delay > 2 SD below the population mean on any standard test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification) at any time after 2 years' corrected age
O'Donnell CPF, Davis PG, Morley CJ. En- dotracheal intubation versus face mask for newborns resuscitated with positive pressure ventilation at birth (Protocol). Cochrane Database of Systematic Reviews 2004, Issue 4.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome (rates ofcerebral palsy on physician assessment, developmental delay, i.e. IQ 2 SD < the mean on validated assessment tools, e.g. BSID MDI)
O'Donnell CPF, Davis PG, Morley CJ. Man- ual ventilation devices for neonatal resus- citation (Protocol). Cochrane Database of Systematic Reviews 2004, Issue 3.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome (rates of cerebral palsy on physician assessment, developmental delay, i.e. IQ 2 SD < the mean on validated assessment tools, e.g. BSID MDI)
Onland W, De Jaegere APMC, Offringa M, van Kaam A. Systemic corticosteroid regi- mens for prevention of bronchopulmonary dysplasia in preterm infants (Protocol). Cochrane Database of Systematic Reviews 2014, Issue 1.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental sequelae, assessed after at least 1 year corrected gestational age and before a corrected gestational age of 4 years, and at the latest reported time point, including cerebral palsy and BSID (MDI)
Onyango AB, Suresh G, Were F. Intermit- tent phototherapy versus continuous pho- totherapy for neonatal jaundice (Protocol). Cochrane Database of Systematic Reviews 2009, Issue 4.	 Primary outcomes pre-specified include: 1. Kernicterus defined as either the pathological finding of deep-yellow staining of neurons and neuronal necrosis of the basal ganglia and brainstem nuclei or acute or chronic neurological deficit including athetoid cerebral palsy, impaired upward gaze

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

(Continued)	and deafness, isolated conditions like auditory neuropathy or dyssynchrony, and subtle bilirubin-induced neurological dysfunction
Pierro M, Thébaud B, Soll R. Mesenchymal stem cells for the prevention and treat- ment of bronchopulmonary dysplasia in preterm infants (Protocol). Cochrane Data- base of Systematic Reviews 2015, Issue 11.	 Secondary outcomes pre-specified include: Cerebral palsy at 18 to 24 months' corrected age Neurodevelopmental outcome at approximately 2 years' corrected age (acceptable range 18 months to 28 months) including cerebral palsy, delayed neurodevelopment (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). We will define the composite outcome 'neurodevelopmental impairment' as having any 1 of the aforementioned deficits
Rivas-Fernandez M, Roqué i Figuls M, To- bias A, Balaguer A. Different strains of pro- biotics for preventing morbidity and mor- tality in preterm infants: a network meta- analysis (Protocol). Cochrane Database of Systematic Reviews 2016, Issue 8.	 Secondary outcomes pre-specified include: 1. Neurodevelopment impairment (i.e. rates of cerebral palsy, cognitive delay, deafness, blindness or their composite reported at 18 months' corrected age or later)
Romantsik O, Calevo MG, Bruschettini M. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular hemorrhage in preterm infants (Protocol). Cochrane Data- base of Systematic Reviews 2016, Issue 9.	 Secondary outcomes pre-specified include: Long-term neurodevelopmental outcomes (yes/no): cerebral palsy on physician assessment, developmental delay (i.e. IQ 2 SD below the mean on validated assessment tools such as BSID MDI) (Bayley 1993; Bayley 2006) Major neurodevelopmental disability: cerebral palsy, developmental delay (BSID MDI (Bayley 1993; Bayley 2006) or GMDS (Griffiths 1954) assessment > 2 SDs below the mean), intellectual impairment (IQ > 2 SDs below the mean), blindness (vision < 6/60 in both eyes), or sensorineural deafness requiring amplification (Jacobs 2013). We plan to evaluate each of these components as a separate outcome and to extract data on each long-term outcome from studies that evaluated children after 18 months' chronological age. We will separately assess data on children 18 to 24 months of age and on those 3 to 5 years of age
Seliem W, Bhutta ZA, Soll R, McGuire W. Topical emollient therapy for preventing infection in preterm infants in low- or mid- dle-income countries (Protocol). Cochrane Database of Systematic Reviews 2007, Is- sue 3.	 Secondary outcomes pre-specified include: Neurodevelopmental outcomes at > 12 months post term (measured using validated assessment tools) and classifications of disability, including auditory and visual disability. The composite outcome "severe neurodevelopmental disability" will be defined as any 1 or combination of the following: non-ambulant cerebral palsy, severe developmental delay, auditory and visual impairment
Shah D, Tracy M. Cutaneous antisepsis for prevention of intravascular catheter–asso- ciated infection in newborn infants (Proto- col). Cochrane Database of Systematic Re- views 2014, Issue 3.	 Secondary outcomes pre-specified include: Long-term neurodevelopmental outcome: neurodevelopmental outcome at approximately 2 years' corrected age (acceptable range 18 months to 28 months) including cerebral palsy, significant mental developmental delay (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental impairment" was defined as having any 1 of the aforementioned deficits
Sinn JKH, Kumar K, Osborn DA, Bolisetty S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants (Protocol). Cochrane Database of System- atic Reviews 2006, Issue 2.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability at at least 18 months' postnatal age (defined as neurological abnormality including cerebral palsy on clinical examination, developmental delay > 2 SD below population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification) at any time after term corrected) Secondary outcomes pre-specified include:

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cochrane

Library

(Continued) Van Rostenberghe H, Ho JJ, Quah BS, No- raida P. The effects of thyroxine on end or-	 Individual components of neurodevelopment at at least 18 months' postnatal age: a. Cerebral palsy on clinical examination b. Developmental delay > 2 SD below population mean on a standardised test of development c. Blindness (VA < 6/60) d. Deafness (any hearing impairment requiring amplification) at any time after term corrected Primary outcomes pre-specified include:
gan damage in asphyxiated neonates (Pro- tocol). Cochrane Database of Systematic Reviews 2009, Issue 4.	 Any neurodevelopmental disability assessed at 12 months or more of age: Presence of no/minor or major disabilities Presence ofcerebral palsy Any objective quantitative assessments of neurodevelopmental assessment that are internationally recognised
Xiong T, Chen H, Mu D. Effect of pre-ex- change albumin infusion on neonatal hy- perbilirubinaemia and long-term devel- opmental outcomes (Protocol). Cochrane Database of Systematic Reviews 2014, Is- sue 2.	 Primary outcomes pre-specified include: Neurological deficits consistent with kernicterus at 2 years of age (including separate analysis of each component): athetoid cerebral palsy, impaired upward gaze and deafness, auditory neuropathy or dys-synchrony (ABR abnormality), dental dysplasia, and subtle bilirubin-induced neurological dysfunction
Xiong T, Li H, Zhao J, Dong W, Qu Y, Wu T, Mu D. Hyperbaric oxygen for term new- borns with hypoxic ischemic encephalopa- thy (Protocol). Cochrane Database of Sys- tematic Reviews 2011, Issue 8.	 Primary outcomes pre-specified include: Long-term (> 18 months) major neurodevelopmental disabilities among all participants or survivors (cerebral palsy, developmental delay (BSID or GMDS assessment > 2 SD below the mean), or intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), sensorineural deafness requiring amplification)
Yu B, Li S, Zhou D, Davis PG. Subcutaneous reservoir drainage versus ventriculoperi- toneal shunt for the treatment of posthem- orrhagic hydrocephalus in preterm infants (Protocol). Cochrane Database of System- atic Reviews 2009, Issue 3.	 Primary outcomes pre-specified include: 1. The incidence rates of death or neurodevelopmental disability in infancy (> 12 months' postnatal age). Neurodevelopmental disability includes developmental delay (e.g. the score of BSID < 2 SD below the mean indicates developmental delay), cerebral palsy, blindness, deafness, and any other neurodevelopmental abnormalities
Yu Z, Guo X, Han S, Lu J, Sun Q. Erythropoi- etin for term and late preterm infants with hypoxic ischemic encephalopathy (Proto- col). Cochrane Database of Systematic Re- views 2010, Issue 1.	 Primary outcomes pre-specified include: 1. The primary outcome measure will be either death or long-term (1 year or 18 months) major neurodevelopmental disability (cerebral palsy, developmental delay (BDIS or GMDS assessment > 2 SD below the mean), or intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), sensorineural deafness requiring amplification) Secondary outcomes pre-specified include: Each component of the primary outcome: Cerebral palsy Developmental delay or intellectual impairment Blindness Sensorineural deafness requiring amplification patient
Yu Z, Sun Q, Han S, Lu J, Ohlsson A, Guo X. Erythropoietin for preterm infants with hy- poxic ischaemic encephalopathy (Proto- col). Cochrane Database of Systematic Re- views 2012, Issue 12.	 Primary outcomes pre-specified include: Either death (at 28 days and at discharge) or long-term (1 year or 24 months' corrected age) intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), sensorineural deafness requiring amplification

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

(Continued)

Secondary outcomes pre-specified include:

- 1. Each component of the primary outcome:
 - a. Death at 28 days and at discharge
 - b. **Cerebral palsy** at > 1 year (the criterion for the diagnosis of cerebral palsy was a fixed motor deficit diagnosed by a neurologist)
 - c. Developmental delay (BSID or GMDS > 2 SD below the mean) or intellectual impairment (IQ > 2 SD below mean) at 1 year or 24 months' corrected age
 - d. Blindness (vision < 6/60 in both eyes) at 1 year or 24 months' corrected age
 - e. Sensorineural deafness requiring amplification patient at 1 year or 24 months' corrected age

Abbreviations: ABR: auditory brainstem response; BSID: Bayley Scales of Infant Development; DQ: developmental quotient; GMDS: Griffith Mental Development Scales; GMFCS: Gross Motor Function Classification System; IQ; intelligence quotient; MACS: Manual Ability Classification System; MDI: Mental Development Index; PDI: Psychomotor Development Index; SD: standard deviation; VA: visual acuity

Appendix 2. Reviews awaiting further classification

Review citation	Overview outcomes pre-specified in re- view with no outcome data	Main conclusion(s) of review
Abdel-Latif ME, Osborn DA. Intratracheal Clara cell secretory protein (CCSP) administration in preterm infants with or at risk of respirato- ry distress syndrome. Cochrane Database of Systematic Reviews 2011, Issue 5.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability ≥ 18 months' postnatal age (defined as neurological abnormality including cerebral palsy on clinical examination, developmental delay > 2 SD below population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification) at any time after term corrected) 	"There are insufficient data to determine the role of rhCC10 in clinical practice. Further studies are required to determine if rhCC10 reduces lung inflammation in infants at risk of CLD, and to determine dose and dosing strategy"
Abdel-Latif ME, Osborn DA. Laryngeal mask air- way surfactant admin- istration for prevention of morbidity and mor- tality in preterm infants with or at risk of res- piratory distress syn- drome. Cochrane Data- base of Systematic Re- views 2011, Issue 7.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability ≥ 18 months' postnatal age (defined as neurological abnormality including cerebral palsy on clinical examination, developmental delay > 2 SD below population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification) at any time after term corrected) 	"There is evidence from a single small trial that LMA sur- factant administration in preterm infants ≥ 1200 g with es- tablished RDS may have a short term effect in reducing oxygen requirements although the study is underpowered to detect important clinical effects. Adequately powered trials are required to determine the effect of LMA surfac- tant administration for prevention or treatment of RDS in preterm infants. LMA surfactant administration should be limited to clinical trials"
Abdel-Latif ME, Osborn DA. Pharyngeal instil- lation of surfactant be- fore the first breath for prevention of mor- bidity and mortality in preterm infants at risk of respiratory distress syndrome. Cochrane Database of Systematic Reviews 2011, Issue 3.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability at ≥ 18 months' postnatal age, defined as neurological abnormality including cerebral palsy on clinical examination, developmental delay of > 2 SD below the population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring ampli- 	No included trials. "There were no data from randomised controlled or qua- si-randomised trials that evaluated the effect of intra- partum instillation of pharyngeal surfactant before the first breath. Evidence from animal and observational hu- man studies suggest that pharyngeal instillation of surfac- tant before the first breath is potentially safe, feasible and may be effective. Well designed trials are needed"

(Continued)	fication) at any time after the age was term corrected	
Abdel-Latif ME, Osborn DA. Nebulised surfac- tant in preterm infants with or at risk of res- piratory distress syn- drome. Cochrane Data- base of Systematic Re- views 2012, Issue 10.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability assessed at 18 months' postnatal age or later de- fined as neurological abnormality includ- ing cerebral palsy on clinical examina- tion, developmental delay > 2 SD below population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requir- ing amplification) at any time after term corrected 	"There are insufficient data to support or refute the use of nebulised surfactant in clinical practice. Adequately powered trials are required to determine the effect of neb- ulised surfactant administration for prevention or early treatment of RDS in preterm infants. Nebulised surfactant administration should be limited to clinical trials"
Ainsworth S, McGuire W. Percutaneous central venous catheters versus peripheral cannulae for delivery of parenteral nutrition in neonates. Cochrane Database of Systematic Reviews 2015, Issue 10.	 Primary outcomes pre-specified include: 1. Neurodevelopmental outcomes during infancy and beyond, using validated assessment tools, such as BSID, and classifications of disability, including auditory and visual disability. Severe neurodevelopmental disability was defined as any one or combination of the following: non-ambulant cerebral palsy, developmental delay (DQ < 70), or auditory and visual impairment 	"Data from one small trial suggest that use of percuta- neous central venous catheters to deliver parenteral nu- trition increases nutrient input. The significance of this in relation to long-term growth and developmental out- comes is unclear. Three trials suggest that use of percu- taneous central venous catheters decreases the num- ber of catheters/cannulae needed to deliver nutrition. No evidence suggests that percutaneous central venous catheter use increases risks of adverse events, particular- ly invasive infection, although none of the included trials was large enough to rule out an effect on uncommon se- vere adverse events such as pericardial effusion"
Alcock GS, Liley H. Im- munoglobulin infu- sion for isoimmune haemolytic jaundice in neonates. Cochrane Database of Systematic Reviews 2002, Issue 3.	Outcomes pre-specified include: 1. Incidence of cerebral palsy .	"Although the results show a significant reduction in the need for exchange transfusion in those treated with intra- venous immunoglobulin, the applicability of the results is limited. The number of studies and infants included is small and none of the three included studies was of high quality. The protocols of two of the studies mandated the use of early exchange transfusion, limiting the general- izability of the results. Further well designed studies are needed before routine use of intravenous immunoglobu- lin can be recommended for the treatment of isoimmune haemolytic jaundice"
Anabrees J, AlFaleh K. Fluid restriction and prophylactic in- domethacin versus pro- phylactic indomethacin alone for prevention of morbidity and mor- tality in extremely low birth weight infants. Cochrane Database of Systematic Reviews 2011, Issue 7.	 Secondary outcomes pre-specified include: Neurosensory impairment defined as rates of cerebral palsy, cognitive delay, deafness, blindness at 18 to 24 months' corrected age as per BSID score (Bayley 1993) The composite of death or neurosensory impairment at 18 to 24 months' corrected age 	No included trials "We found no randomized controlled trials to investigate the possible interaction between fluid restriction and in- domethacin prophylaxis versus indomethacin prophylaxis alone in ELBW infants. A well-designed randomized trial is needed to address this question"
Austin N, Cleminson J, Darlow BA, McGuire W. Prophylactic oral/top- ical non-absorbed an- tifungal agents to pre- vent invasive fungal	 Primary outcomes pre-specified include: 1. Neurodevelopmental outcomes assessed beyond infancy (neurological evaluations, developmental scores, and classifications of disability, including auditory and visual 	"The finding of a reduction in risk of invasive fungal infec- tion in very low birth weight infants treated with oral/top- ical non-absorbed antifungal prophylaxis should be inter- preted cautiously because of methodological weaknesses in the included trials. Further large randomised controlled trials in current neonatal practice settings are needed to

(Continued) infection in very low birth weight infants. Cochrane Database of Systematic Reviews 2015, Issue 10.	disability, non-ambulant cerebral palsy , developmental delay); and cognitive and educational outcomes at 5 years or older (IQ and/or indices of educational achieve- ment measured using a validated tool in- cluding school examination results)	resolve this uncertainty. These trials might compare oral/ topical non-absorbed antifungal agents with placebo, with each other, or with systemic antifungal agents and should include an assessment of effect on long-term neu- rodevelopmental outcomes"
Bahadue FL, Soll R. Ear- ly versus delayed selec- tive surfactant treat- ment for neonatal res- piratory distress syn- drome. Cochrane Data- base of Systematic Re- views 2012, Issue 11.	 Secondary outcomes pre-specified include: Cerebral palsy Neurodevelopmental outcome at approximately 2 years' corrected age (acceptable range 18 months to 28 months) including cerebral palsy, mental retardation (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental impairment" will be defined as having any 1 of the aforementioned deficits 	"Early selective surfactant administration given to in- fants with RDS requiring assisted ventilation leads to a de- creased risk of acute pulmonary injury (decreased risk of pneumothorax and pulmonary interstitial emphysema) and a decreased risk of neonatal mortality and chronic lung disease compared to delaying treatment of such in- fants until they develop worsening RDS"
Rivas-Fernandez M, Roqué i Figuls M, Diez- Izquierdo A, Escribano J, Balaguer A. Infant po- sition in neonates re- ceiving mechanical ven- tilation. Cochrane Data- base of Systematic Re- views 2016, Issue 11.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental outcomes at age 2 years: rates of cerebral palsy as assessed by physician, developmental delay (i.e. IQ < 2 SD) on validated assessment tools (e.g. the S-B Intelligence Scale or others), or sensory impairment 	"This update of our last review in 2013 supports previous conclusions. Evidence of low to moderate quality favours the prone position for slightly improved oxygenation in neonates undergoing mechanical ventilation. However, we found no evidence to suggest that particular body po- sitions during mechanical ventilation of the neonate are effective in producing sustained and clinically relevant improvement"
Balain M, Oddie SJ, McGuire W. Antimi- crobial-impregnat- ed central venous catheters for preven- tion of catheter-relat- ed bloodstream infec- tion in newborn infants. Cochrane Database of Systematic Reviews 2015, Issue 9.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcomes assessed 12 months' corrected age using validated tools: neurological evaluations; developmental scores; and classifications of disability, including auditory and visual disability. We will define neurodevelopmental impairment as the presence of 1 or more of the following: non-ambulant cerebral palsy; DQ > 2 SD below the population mean; and blindness (VA < 6/60) or deafness (any hearing impairment requiring or unimproved by amplification) 2. Death or neurological impairment assessed > 12 months' corrected age 	"Although the data from one small trial indicates that antimicrobial-impregnated central venous catheters might prevent catheter-related bloodstream infection in newborn infants, the available evidence is insufficient to guide clinical practice. A large, simple and pragmatic ran- domised controlled trial is needed to resolve on-going un- certainty"
Bassler D, Kreutzer K, McNamara P, Kirpalani H. Milrinone for persis- tent pulmonary hyper- tension of the newborn. Cochrane Database of Systematic Reviews 2010, Issue 11.	 Primary outcomes pre-specified include: 1. Neurodevelopment (assessed by the presence of cerebral palsy, cognitive delay, blindness or deafness, and the BSID-II) assessed > 18 months of life 	"The efficacy and safety of milrinone in the treatment of PPHN are not known and its use should be restricted within the context of RCTs. Such studies should address a comparison of milrinone with placebo (in clinical sit- uations where iNO is not available) or, in well resourced countries, should compare milrinone with iNO or as an adjunct to iNO compared with iNO alone"
Basuki F, Hadiati DR, Turner T, McDonald S,	Secondary outcomes pre-specified include:	"There is evidence from three small, old trials at unclear risk of bias that use of dilute formula in preterm or low

	(Continued) Hakimi M. Dilute ver- sus full strength formu- la in exclusively formu- la-fed preterm or low birth weight infants. Cochrane Database of Systematic Reviews 2013, Issue 11.	 Neurodevelopment: Death or severe neurodevelopmental disability defined as any 1 or a combination of the following: non-ambulant cerebral palsy; developmental delay (DQ < 70); auditory and visual impairment (each component will be analysed individually as well as part of the composite outcome) Neurodevelopmental scores in survivors aged ≥ 12 months of age measured using validated assessment tools Cognitive and educational outcomes in survivors aged > 5 years old 	birth weight formula-fed infants leads to an important re- duction in the time taken for these infants to attain an ad- equate energy intake. There was no evidence of important differences in feeding intolerance. The impact on serious gastrointestinal problems, including necrotising entero- colitis, was not reported. Further randomised trials are needed to confirm these results"
_	Beveridge CJE, Wilkin- son AR. Sodium bicar- bonate infusion during resuscitation of infants at birth. Cochrane Data- base of Systematic Re- views 2006, Issue 1.	 Secondary outcomes pre-specified include: 1. Long-term severe neurodevelopmental disability reported at any time during follow-up. Defined as any of cerebral palsy, cognitive delay (score > 2 SD below mean for a recognised psychometric test e.g. BSID), blindness, and deafness 	"There is insufficient evidence from randomised con- trolled trials to determine whether the infusion of sodium bicarbonate reduces mortality and morbidity in infants re- ceiving resuscitation in the delivery room at birth"
	Bhola K, Foster JP, Os- born DA. Chest shield- ing for prevention of a haemodynamically sig- nificant patent ductus arteriosus in preterm infants receiving pho- totherapy. Cochrane Database of Systematic Reviews 2015, Issue 11.	 Secondary outcomes pre-specified include: Neurodevelopmental disability (after at least 18 months' postnatal age) defined as neurological abnormality including cerebral palsy on clinical examination, developmental delay > 2 SD below population mean on a standardised test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification at any time after term corrected age) 	"The available evidence is very low quality and insuffi- cient to assess the safety or efficacy of chest shield during phototherapy for prevention of PDA in preterm infants. Further trials of chest shielding are warranted, particular- ly in settings where infants are not receiving prophylactic or early echocardiographic targeted cyclo-oxygenase in- hibitors for PDA"
-	Booth D, Evans DJ. Anticonvulsants for neonates with seizures. Cochrane Database of Systematic Reviews 2004, Issue 3.	 Primary outcomes pre-specified include: Significant neurodevelopmental impairment (any 1 or combination of: cerebral palsy, developmental delay DQ > 2 SD, blindness) assessed at 1 to 2 years of age Death or significant neurodevelopmental impairment (any 1 or combination of: cerebral palsy, developmental delay DQ > 2 SD, blindness) assessed at 1 to 2 years of age 	"At present there is little evidence from randomised con- trolled trials to support the use of any of the anticonvul- sants currently used in the neonatal period. In the litera- ture, there remains a body of opinion that seizures should be treated because of the concern that seizures in them- selves may be harmful, although this is only supported by relatively low grade evidence (Levene 2002; Massin- gale 1993). Development of safe and effective treatment strategies relies on future studies of high quality (ran- domised controlled trials with methodology that assures validity) and of sufficient size to have the power to detect clinically important reductions in mortality and severe neurodevelopmental disability in addition to any short term reduction in seizure burden"
_	Bottino M, Cowett RM, Sinclair JC. Interven- tions for treatment of neonatal hyper- glycemia in very low birth weight infants. Cochrane Database of	 Primary outcomes pre-specified include: 1. Neurodevelopmental impairment, defined as presence of 1 or more of the following: cerebral palsy, MDI or PDI < 70, blindness or deafness assessed between 18 and 24 months' postmenstrual age or 	"Evidence from randomized trials in hyperglycemic VLBW neonates is insufficient to determine the effects of treat- ment on death or major morbidities. It remains uncertain whether the hyperglycemia per se is a cause of adverse clinical outcomes or how the hyperglycemia should be treated. Much larger randomized trials in hyperglycemic VLBW neonates that are powered on clinical outcomes are

(Continued) Systematic Reviews 2011, Issue 10.	with latest assessment up to 24 months' postmenstrual age	needed in order to determine whether, and how, the hy- perglycemia should be treated"
Brion LP, Bell EF, Raghu- veer TS. Vitamin E supplementation for prevention of mor- bidity and mortali- ty in preterm infants. Cochrane Database of Systematic Reviews 2003, Issue 4.	Primary outcomes pre-specified include: 1. Mortality, combined outcome at 18 months including mortality (mortality, bronchopulmonary dysplasia, blindness, mental retardation, or cerebral palsy), and combined outcome at 18 months excluding mortality (bronchopulmonary dysplasia, blindness, mental retardation, or cerebral palsy)	"Vitamin E supplementation in preterm infants reduced the risk of intracranial hemorrhage but increased the risk of sepsis. In very low birth weight infants, vitamin E in- creased the risk of sepsis, and reduced the risk of severe retinopathy and blindness among those examined. Evi- dence does not support the routine use of vitamin E sup- plementation by intravenous route at high doses or aim- ing at serum tocopherol levels greater than 3.5 mg/dl"
Brown JVE, Emble- ton ND, Harding JE, McGuire W. Multi-nutri- ent fortification of hu- man milk for preterm infants. Cochrane Data- base of Systematic Re- views 2016, Issue 5.	 Primary outcomes pre-specified include: 1. Neurodevelopmental outcomes assessed after 12 months post term: neurological evaluations, developmental scores, and classifications of disability, including auditory and visual disability. We defined neurodevelopmental impairment as the presence of 1 or more of the following: non-ambulantcerebral palsy, DQ > 2 SD below the population mean, and blindness (VA < 6/60) or deafness (any hearing impairment requiring or unimproved by amplification) 	"Limited available data do not provide strong evidence that feeding preterm infants with multi-nutrient fortified breast milk compared with unfortified breast milk affects important outcomes, except that it leads to slightly in- creased in-hospital growth rates"
Brown JVE, Moe-Byrne T, McGuire W. Gluta- mine supplementation for young infants with severe gastrointestinal disease. Cochrane Data- base of Systematic Re- views 2014, Issue 12.	 Primary outcomes pre-specified include: 1. Neurodevelopmental outcomes assessed beyond infancy (neurological evaluations, developmental scores, and classifications of disability including auditory and visu- al disability, non-ambulant cerebral pal- sy, and developmental delay) and cogni- tive and educational outcomes (IQ and/or indices of educational achievement mea- sured using a validated tool, including school examination results) 	"The available data from randomised controlled trials do not suggest that glutamine supplementation has any im- portant benefits for young infants with severe gastroin- testinal disease"
Bruschettini M, Ro- mantsik O, Zappettini S, Banzi R, Ramenghi LA, Calevo MG. Antithrom- bin for the prevention of intraventricular hem- orrhage in very preterm infants. Cochrane Data- base of Systematic Re- views 2016, Issue 3.	 Secondary outcomes pre-specified include: 1. Major neurodevelopmental disability assessed at age of 12 months or more (defined as cerebral palsy, developmental delay (BSID or GMDS assessment > 2 SD below the mean), intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), or sensorineural deafness requiring amplification) 	"The administration of antithrombin seems not to reduce the incidence and severity of intraventricular hemorrhage in very preterm infants. Limited evidence is available on other clinically relevant outcomes. Given the imprecision of the estimate, the results of this systematic review are consistent with either a benefit or a detrimental effect of antithrombin and do not provide a definitive answer to the review question"
Bruschettini M, Zap- pettini S, Moja L, Cale- vo MG. Frequency of endotracheal suction- ing for the prevention of respiratory morbid- ity in ventilated new- borns. Cochrane Data-	 Secondary outcomes pre-specified include: 1. Major neurodevelopmental disability (cerebral palsy, developmental delay (BSID or GMDS assessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD below mean), blindness (vision less than 6/60 in both eyes), sensorineur- 	"There was insufficient evidence to identify the ideal fre- quency of ETT suctioning in ventilated neonates. Future research should focus on the effects in the very preterm newborns, that is, the most vulnerable population as con- cerns the risk of both lung and brain damage. Assessment should include the cases of prolonged ventilation, when more abundant, dense secretions are common. Clinical trials might include comparisons between 'as-scheduled'

(Continued)

Trusted evidence. Informed decisions. Better health.

base of Systematic Reviews 2016, Issue 3.	 al deafness requiring amplification). We evaluated each component of major neurodevelopmental disability: a. Cerebral palsy on physician assessment (yes/no) b. Developmental delay or intellectual impairment: BSID or GMDS assessment > 2 SD below the mean or intellectual impairment (IQ > 2 SD below mean); neuromotor development (BSID PDI) assessed in survivors; mental development (BSID MDI) assessed in survivors c. Blindness vision (less than 6/60 in both eyes) d. Sensorineural deafness requiring amplification 	versus 'as-needed' endotracheal suctioning, that is, based on specific indications, as well frequent versus less fre- quent suctioning schedules"
Bruschettini M, Ro- mantsik O, Zappettini S, Banzi R, Ramenghi LA, Calevo MG. Heparin for the prevention of intraventricular haem- orrhage in preterm in- fants. Cochrane Data- base of Systematic Re- views 2016, Issue 5.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome (yes/no): cerebral palsy on physician assessment, developmental delay, i.e. IQ 2 SD below the mean on validated assessment tools, e.g. BSID MDI (Bayley 1993; Bayley 2006) 2. Major neurodevelopmental disability: cerebral palsy, developmental delay (BSID MDI (Bayley 1993; Bayley 2006) or GMDS assessment (Griffiths 1954) > 2 SD below the mean), intellectual impairment (IQ > 2 SD below mean), blindness (vision < 6/60 in both eyes), or sensorineural deafness requiring amplification (Jacobs 2013). We planned to evaluate each of these components as a separate outcome and to extract data on this long-term outcome from studies that evaluated children after 18 months of chronological age. Data on children aged 18 to 24 months and those aged 3 to 5 years were to be assessed separately 	"There is very limited data on the effect of prophylactic administration of heparin on the incidence and severity of IVH in very preterm neonates. Both the identified trials used heparin in the context of maintaining umbilical line patency and not specifically as an agent to prevent ger- minal matrix-intraventricular haemorrhage. Given the im- precision of our estimates, the results of this systematic review are consistent with either a benefit or a detrimen- tal effect of heparin and do not provide a definitive an- swer to the review question. Limited evidence is available on other clinically relevant outcomes"
Bruschettini M, Ro- mantsik O, Zappettini S, Ramenghi LA, Cale- vo MG. Transcutaneous carbon dioxide moni- toring for the preven- tion of neonatal mor- bidity and mortality. Cochrane Database of Systematic Reviews 2016, Issue 2.	 Primary outcomes pre-specified include: 1. Major neurodevelopmental disability (cerebral palsy, developmental delay (BSID or GMDS > 2 SD below the mean) or intellectual impairment (IQ > 2 SD be- low mean), blindness (vision < 6/60 in both eyes), sensorineural deafness requir- ing amplification) (Jacobs 2013) Secondary outcomes pre-specified include: 1. Each component of major neurodevelop- mental disability: (a)cerebral palsy on physician assessment (yes/no); (b) de- velopmental delay or intellectual impair- ment: BSID or GMDS assessment > 2 SD below the mean or intellectual impair 	No included trials "There was no evidence to recommend or refute the use of transcutaneous CO2 monitoring in neonates. Well-de- signed, adequately powered randomized controlled stud- ies are necessary to address efficacy and safety of transcu- taneous CO2 monitoring in neonates"

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ment (IQ > 2 SD below mean); neuromo-

(Continuea)	tor development (BSID PDI) assessed in survivors; mental development (BSID MDI) assessed in survivors; (c) blindness vision (< 6/60 in both eyes); (d) sensorineural deafness requiring amplification. We will report these components of this long- term outcome for all trials that have evalu- ated children after 18 months' chronologi- cal age. We will perform separate analyses for children aged 18 months to 24 months and those aged 3 years to 5 years	
Cleminson J, McGuire W. Topical emollient for preventing infec- tion in preterm infants. Cochrane Database of Systematic Reviews 2016, Issue 1.	 Secondary outcomes pre-specified include: Neurodevelopmental outcomes assessed at > 12 months post term (measured us- ing validated assessment tools) and clas- sifications of disability, including audito- ry and visual disability. A composite out- come "severe neurodevelopmental dis- ability" was defined as any 1 or combina- tion of the following: non-ambulant cere- bral palsy, severe developmental delay, auditory impairment, and visual impair- ment 	"The available data do not provide evidence that the use of emollient therapy prevents invasive infection or death in preterm infants in high-, middle- or low-income set- tings. Some evidence of an effect of topical vegetable oils on neonatal growth exists but this should be interpret- ed with caution because lack of blinding may have intro- duced caregiver or assessment biases. Since these inter- ventions are low cost, readily accessible, and generally ac- ceptable, further randomised controlled trials, particular- ly in both community- and health care facility-based set- tings in low-income countries, may be justified"
Clerihew L, McGuire W. Antifungal therapy for newborn infants with invasive fungal infec- tion. Cochrane Data- base of Systematic Re- views 2012, Issue 6.	 Primary outcomes pre-specified include: 1. Neurodevelopmental outcomes assessed beyond infancy (neurological evaluations, developmental scores, and classifications of disability, including auditory and visual disability, non-ambulant cerebral palsy, developmental delay) and cognitive and educational outcomes (IQ and/or indices of educational achievement measured us- ing a validated tool including school ex- amination results) 	"There are insufficient data to inform practice. Large ran- domised controlled trials are required to compare anti- fungal drugs, drug preparations or drug combinations for treating newborn infants with invasive fungal infection"
Cooke L, Steer PA, Woodgate PG. In- domethacin for asymp- tomatic patent ductus arteriosus in preterm in- fants. Cochrane Data- base of Systematic Re- views 2003, Issue 1.	Outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy , sensorineural hearing loss, visual impairment, developmental delay)	"This review demonstrates a significant decrease in the incidence of symptomatic PDA following treatment of an asymptomatic PDA with indomethacin. There is also a small but statistically significant decrease in the duration of requirement for supplemental oxygen. There are no re- ported long term outcomes in the included trials, and so it is not possible to comment on possible long term effects. Further studies are required to determine the long term benefits or harms of closing a PDA prior to the onset of symptoms"
Davies MW, Kimble RM, Woodgate PG. Ward re- duction without general anaesthesia versus re- duction and repair un- der general anaesthesia for gastroschisis in new- born infants. Cochrane Database of Systematic Reviews 2002, Issue 3.	Outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy, sensorineural hearing loss, visu- al impairment, and/or developmental de- lay)	No included trials "There is no evidence from RCTs to support or refute the practice of ward reduction for the immediate manage- ment of gastroschisis. There is an urgent need for RCTs to compare ward reduction versus reduction under gener- al anaesthesia in infants with gastroschisis. Initial trials would best be limited to those infants with uncomplicat- ed gastroschisis (using pre-defined selection criteria ex- cluding infants that are unstable, have gut perforation, necrosis or atresia, have other organs requiring reduction

(Continued)

			besides bowel, or are considered to need a silo prior to any reduction). Trials should use adequate pain relief and specify a pre-defined time period after which manual re- duction is abandoned"
	Davies MW, Woodgate PG. Tracheal gas insuf- flation for the preven- tion of morbidity and mortality in mechan- ically ventilated new- born infants. Cochrane Database of Systematic Reviews 2002, Issue 2.	 Outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy, sensorineural hearing loss, visual impairment, and/or developmental delay) at 1, 2, 3, 5, or 7 years 	"There is evidence from a single RCT that TGI may reduce the duration of mechanical ventilation in preterm infants - although the data from this small study do not give suffi- cient evidence to support the introduction of TGI into clin- ical practice. The technical requirements for performing TGI (as performed in the single included study) are great. There is no statistically significant reduction in the total duration of respiratory support or hospital stay. TGI can- not be recommended for general use at this time"
-	De Paoli AG, Davis PG, Faber B, Morley CJ. Devices and pressure sources for administra- tion of nasal continuous positive airway pres- sure (NCPAP) in preterm neonates. Cochrane Database of Systematic Reviews 2008, Issue 1.	 Secondary outcomes pre-specified include: 1. Long-term neurosensory outcomes at 2 years' corrected age or older as defined by the incidence of: a. Cerebral palsy b. Moderate to severe developmental delay c. Blindness d. Deafness 	"Short binasal prong devices are more effective than single prongs in reducing the rate of re-intubation. Al- though the Infant Flow Driver appears more effective than Medicorp prongs the most effective short binasal prong device remains to be determined. The improvement in respiratory parameters with short binasal prongs sug- gests they are more effective than nasopharyngeal CPAP in the treatment of early RDS. Further studies incorporat- ing longer-term outcomes are required. Studies are also needed to determine the optimal pressure source for the delivery of NCPAP"
	Dimmick SJ, Badawi N, Randell T. Thyroid hor- mone supplementa- tion for the prevention of morbidity and mor- tality in infants under- going cardiac surgery. Cochrane Database of Systematic Reviews 2004, Issue 3.	Outcomes pre-specified include: 1. Development: neurological abnormality (cerebral palsy) or developmental delay on standardised tests in the first year 5	"At present, there is a lack of evidence concerning the ef- fects of triiodothyronine supplementation in infants un- dergoing cardiac surgery. Further randomised controlled trials which include sufficiently large subject numbers in a variety of different age strata (neonates, infants and older children) need to be undertaken"
	Foster JP, Psaila K, Pat- terson T. Non-nutritive sucking for increasing physiologic stability and nutrition in preterm infants. Cochrane Data- base of Systematic Re- views 2016, Issue 10.	 Secondary outcomes pre-specified include: Neurodevelopmental outcomes at 12 months or more of age (corrected for preterm birth) measured using validated assessment tools such as BSID and classifications of disability, including auditory and visual disability. Severe neurodevelopmental disability will be defined as any one or combination of the following: nonambulant cerebral palsy, developmental delay (developmental quotient < 70), auditory and visual impairment 	"Meta-analysis demonstrated a significant effect of NNS on the transition from gavage to full oral feeding, tran- sition from start of oral feeding to full oral feeding, and length of hospital stay. None of the trials reported any ad- verse effects. Well-designed, adequately powered studies using reliable methods of randomisation, concealment of treatment allocation and blinding of the intervention and outcome assessors are needed. In order to facilitate meta- analysis of these data, future research should involve out- come measures consistent with those used in previous studies"
-	Görk AS, Ehrenkranz RA, Bracken MB. Continu- ous infusion versus in- termittent bolus dos- es of indomethacin for patent ductus arterio- sus closure in sympto- matic preterm infants.	 Secondary outcomes pre-specified include: Neurodevelopmental outcome (sensorineural hearing loss, visual impairment, cerebral palsy, developmental delay at 24 months' corrected age assessed by a standardised and validated assess- 	"The available data is insufficient to draw conclusions re- garding the efficacy of continuous indomethacin infusion vs. bolus injections for the treatment of PDA. Although continuous indomethacin seems to cause less alterations in cerebral, renal and mesenteric circulations, the clinical meaning of this effect is unclear. Definitive recommenda- tions about the preferred method of indomethacin admin-

<i>(Continued)</i> Cochrane Database of Systematic Reviews 2008, Issue 1.	ment tool and/or a child developmental specialist)	istration in premature infants cannot be made based on the current findings of this review"
Henderson G, Antho- ny MY, McGuire W. For- mula milk versus ma- ternal breast milk for feeding preterm or low birth weight infants.	 Primary outcomes pre-specified include: 1. Development: a. Neurodevelopmental outcomes at ≥ 12 months of age (corrected for preterm birth) measured using validated as- 	No included trials "There are no data from randomised trials of formula milk versus maternal breast milk for feeding preterm or low birth weight infants. This may relate to a perceived diffi- culty of allocating an alternative feed to an infant whose
Cochrane Database of Systematic Reviews 2007, Issue 4.	 sessment tools b. Severe neurodevelopmental disability defined as any 1 or combination of the following: non-ambulant cerebral palsy, developmental delay (DQ < 70 or > 2 SD below the mean), severe auditory impairment (sensorineural deafness requiring (or too severe to (benefit from) hearing aids), or visual impairment (legal blindness). We plan to analyse each component individually as well as part of the composite outcome c. Cognitive and educational outcomes at age > 5 years: IQ and/or indices of educational achievement measured using a validated assessment tool (including school examination results) 	mother wishes to feed with her own breast milk. Mater- nal breast milk remains the default choice of enteral nu- trition because observational studies, and meta-analy- ses of trials comparing feeding with formula milk versus donor breast milk, suggest that feeding with breast milk has major non-nutrient advantages for preterm or low birth weight infants"
Henderson G, Fahey T, McGuire W. Nutrient-en-	Primary outcomes pre-specified include:	No included trials
riched formula milk versus human breast milk for preterm infants following hospital dis- charge. Cochrane Data- base of Systematic Re- views 2007, Issue 4.	 Neurodevelopmental outcomes at ≥ 12 months of age (corrected for preterm birth) measured using validated assess- ment tools such as BSID and classifi- cations of disability, including auditory and visual disability. Severe neurodevel- opmental disability will be defined as any 1 or combination of the following: non- ambulant cerebral palsy, developmental delay (DQ < 70), auditory and visual im- pairment 	"There are no data from randomised controlled trials to determine whether feeding preterm infants following hos- pital discharge with nutrient-enriched formula milk ver- sus human breast milk affects growth and development. Mothers who wish to breast feed, and their health care ad- visors, would require very clear evidence that feeding with a nutrient-enriched formula milk had major advantages for their infants before electing not to feed (or to reduce feeding) with maternal breast milk. If evidence from trials that compared feeding preterm infants following hospital discharge with nutrient-enriched versus standard formula milk demonstrated an effect on growth or development, then this might strengthen the case for undertaking trials of nutrient-enriched formula milk versus human breast milk"
Henderson-Smart DJ, Wilkinson AR, Raynes- Greenow CH. Mechani- cal ventilation for new- born infants with res- piratory failure due to pulmonary disease. Cochrane Database of Systematic Reviews 2002, Issue 4.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental abnormalities in childhood (developmental delay, cerebral palsy) 	"When MV was introduced in the 1960s to treat infants with severe respiratory failure due to pulmonary disease, trials showed an overall reduction in mortality which was most marked in infants born with a birthweight of more than 2 kg. This review does not provide information to evaluate the relative benefits or harms of MV in the setting of modern perinatal care"
Ho JJ, Hender- son-Smart DJ, Davis PG.	Secondary outcomes pre-specified include:	"Early application of CDP has a clinical benefit in the treatment of RDS in that it reduces subsequent use of IP-

(Continued) Early versus delayed ini- tiation of continuous distending pressure for respiratory distress syn- drome in preterm in- fants. Cochrane Data- base of Systematic Re- views 2002, Issue 2.	 Long-term growth and neurodevelop- mental outcome (cerebral palsy and ab- normal mental development < 2 SD below the mean on a standardised score) 	PV and thus may be useful in preventing the adverse ef- fects of this treatment. However, many of the trials were done in the 1970s and 1980s and re-evaluation of the strategy of early CDP in the era of antenatal steroid use and early surfactant administration is indicated focusing on administration methods"
Ho JJ, Rasa G. Magne-	Secondary outcomes pre-specified include:	No included trials
sium sulfate for persis- tent pulmonary hyper- tension of the newborn. Cochrane Database of Systematic Reviews 2007, Issue 3.	1. Cerebral palsy on physician assessment	"On the basis of the current lack of evidence, the use of magnesium sulphate cannot be recommended in the treatment of PPHN. Randomised controlled trials are rec- ommended"
Hunt R, Osborn DA. Dopamine for preven- tion of morbidity and mortality in term new- born infants with sus- pected perinatal as- phyxia. Cochrane Data- base of Systematic Re- views 2002, Issue 3.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability (neurological abnormality including cerebral palsy, developmental delay > 2 SD below population mean, or sensory impairment) (Review reports on 'neurodevelopmental disability' for 1 RCT (14 infants), which did not include cerebral palsy) 	"There is currently insufficient evidence from randomised controlled trials that the use of dopamine in term in- fants with suspected perinatal asphyxia improves mor- tality or long-term neurodevelopmental outcome. The question of whether dopamine improves outcome for term infants with suspected perinatal asphyxia has not been answered. Further research is required to determine whether or not the use of dopamine improves mortality and long-term morbidity for these infants and if so, issues such as which infants, at what dose and with what co-in- terventions should be addressed"
Hunt R, Davis PG, In- der TE. Replacement of estrogens and prog- estins to prevent mor- bidity and mortali- ty in preterm infants. Cochrane Database of Systematic Reviews 2004, Issue 4.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability defined as neurological abnormality includingcerebral palsy on clinical examination > 12 months' postnatal age, developmental delay > 2 SD below population mean on any standard test of development, blindness (VA < 6/60), or deafness (any hearing impairment requiring amplification) at any time after term corrected 	"The one small randomised controlled trial demonstrated neither evidence of benefit or harm related to the replace- ment of estradiol and progesterone in preterm infants less than 30 weeks' gestation. A properly powered randomised controlled trial is required to determine whether or not administration of estradiol or progesterone, either alone or in combination, and at varying doses, confers any clini- cally significant benefits, or poses any risk, to the preterm infant"
Ibrahim H, Sinha IP, Subhedar NV. Corticos- teroids for treating hy- potension in preterm infants. Cochrane Data- base of Systematic Re- views 2011, Issue 12.	 Primary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome (cerebral palsy, developmental delay, sensorineural impairment, abnormal neu- rological examination) 	"Hydrocortisone may be as effective as dopamine when used as a primary treatment for hypotension. But the long term safety data on the use of hydrocortisone in this man- ner is unknown. Steroids are effective in treatment of re- fractory hypotension in preterm infants without an in- crease in short term adverse consequences. However, long term safety or benefit data is lacking. With long term benefit or safety data lacking steroids cannot be recom- mended routinely for the treatment of hypotension in preterm infants"
Ibrahim MDH, Sinn JKH, McGuire W. Iodine sup- plementation for the prevention of mortal- ity and adverse neu- rodevelopmental out- comes in preterm in- fants. Cochrane Data-	 Primary outcomes pre-specified include: Neurodevelopmental outcomes at ≥ 12 months of age (corrected for preterm birth) measured using validated assessment tools such as BSID Severe neurodevelopmental disability defined as any 1 or combination of the fol- 	"There are insufficient data at present to determine whether providing preterm infants with supplemental io- dine (to match fetal accretion rates) prevents morbidity and mortality in preterm infants. Future randomised con- trolled trials of iodine supplementation should focus on extremely preterm and extremely low birth weight infants, the group at greatest risk of transient hypothyroxinaemia. These trials should aim to assess the effect of iodine sup-

(Continued) base of Systematic Re- views 2006, Issue 2.	lowing: non-ambulant cerebral palsy , de- velopmental delay (DQ < 70), auditory and visual impairment. We planned to analyse each component individually as well as part of the composite outcome	plementation on clinically important outcomes includ- ing respiratory morbidity and longer term neurodevelop- ment"
Inglis GDT, Davies MW. Prophylactic antibi- otics to reduce mor- bidity and mortality in neonates with umbili- cal venous catheters. Cochrane Database of Systematic Reviews 2005, Issue 4.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy, sensorineural hearing loss, visual impairment and/or developmental delay will be considered as separate components - at 1 year, 18 months, 2 years, or 5 years) 	"There is insufficient evidence from randomised trials to support or refute the use of prophylactic antibiotics when UVCs are inserted in newborn infants. There is no evidence to support or refute continuing antibiotics once initial cultures rule out infection in newborn infants with UVCs"
Inglis GDT, Jardine LA, Davies MW. Prophylac- tic antibiotics to reduce morbidity and mortality in ventilated newborn infants. Cochrane Data- base of Systematic Re- views 2007, Issue 3.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy, sensorineural hearing loss, visual impairment and/or developmental delay at 1 year, 18 months, 2 years, or 5 years) 	"There is insufficient evidence from randomised trials to support or refute the use of prophylactic antibiotics when starting mechanical ventilation in newborn infants, or to support or refute continuing antibiotics once initial cul- tures have ruled out infection in mechanically ventilated newborn infants"
Inglis GDT, Jardine LA, Davies MW. Prophylac- tic antibiotics to reduce morbidity and mortali- ty in neonates with um- bilical artery catheters. Cochrane Database of Systematic Reviews 2007, Issue 4.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy, sensorineural hearing loss, visual impairment and/or developmental delay - at 1 year, 18 months, 2 years, or 5 years) 	"There is insufficient evidence from randomised trials to support or refute the use of prophylactic antibiotics when umbilical artery catheters are inserted in newborn infants, and no evidence to support or refute continuing antibi- otics once initial cultures rule out infection in newborn in- fants with umbilical artery catheters"
Jardine LA, Inglis GDT, Davies MW. Prophy- lactic systemic antibi- otics to reduce mor- bidity and mortality in neonates with cen- tral venous catheters. Cochrane Database of Systematic Reviews 2008, Issue 1.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy, sensorineural hearing loss, visual impairment, and/or developmental delay - at 1 year, 18 months, 2 years, or 5 years) 	"Prophylactic systemic antibiotics in neonates with a cen- tral venous catheter reduces the rate of proven or sus- pected septicaemia. However, this may not be clinically important in the face of no significant difference in over- all mortality and the lack of data on long-term neurode- velopmental outcome. Furthermore, there is a lack of da- ta pertaining to the potentially significant disadvantages of this approach such as the selection of resistant organ- isms. The routine use of prophylactic antibiotics in infants with central venous catheters in neonatal units cannot currently be recommended"
Jardine LA, Inglis GDT, Davies MW. Strategies for the withdrawal of nasal continuous pos- itive airway pressure (NCPAP) in preterm in- fants. Cochrane Data- base of Systematic Re- views 2011, Issue 2. Art. No.: CD006979. DOI: 10.1002/14651858.CD006	Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy , sensorineural hearing loss, visual impairment, and/or developmental delay - at 1 year, 18 months, 2 years, or 5 years) 979.pub2.	"Infants who have their NCPAP pressure weaned to a pre- defined level and then stop NCPAP completely have less total time on NCPAP and shorter durations of oxygen ther- apy and hospital stay compared with those that have NC- PAP removed for a predetermined number of hours each day. Future trials of withdrawing NCPAP should compare proposed strategies with weaning NCPAP pressure to a predefined level and then stopping NCPAP completely. Clear criteria need to be established for the definition of stability prior to attempting to withdraw NCPAP"

(Continued)

Kaushal A, McDonnell CG, Davies MW. Partial liquid ventilation for the prevention of mortality and morbidity in paediatric acute lung injury and acute respiratory distress syndrome. Cochrane Database of Systematic Reviews 2013, Issue 2.

Kecskes Z, Healy G, Jensen A. Fluid restric-

tion for term infants

with hypoxic-ischaemic

encephalopathy follow-

ing perinatal asphyx-

ia. Cochrane Database

of Systematic Reviews

2005, Issue 3.

Secondary outcomes pre-specified include: "There is no use of parti

- Long-term neurodevelopment (cerebral palsy, sensorineural hearing loss, visual impairment, developmental delay)
- 2. Long-term disability

"There is no evidence from RCTs to support or refute the use of partial liquid ventilation in children with acute lung injury or acute respiratory distress syndrome. Adequately powered, high quality RCTs are still needed to assess its efficacy. Clinically relevant outcome measures should be assessed (mortality at discharge and later, duration of both respiratory support and hospital stay, and long-term neurodevelopmental outcomes). The studies should be published in full"

"Given that fluid restriction for the treatment of hypoxic

recommended in standard textbooks, there is a need for

randomised, controlled trials to establish if this practice

affects mortality and morbidity. As it may not be ethical to

include neonates with acute renal failure in a randomised

trial, these babies will have to be excluded from the trial.

These studies should investigate the effects of fluid management on outcomes such as mortality, seizure activity, evidence of cerebral damage on histology, and effects on

"We identified a single small study. The results from this

study show a high level of uncertainty, as the confidence

intervals are consistent with both a large improvement or

a serious harm caused by the intervention. Consequently,

there is insufficient evidence to support or refute the use

neonatal morbidities or mortality. Further clinical trials

infants, or both, on short- and long-term outcomes"

are required to assess the potential effects of pre-transfu-

sion washing of RBCs for preterm or very low birth weight

of washed RBCs to prevent the development of significant

ischaemic encephalopathy following perinatal asphyxia is

No included trials

renal function and electrolytes"

Primary outcomes pre-specified include:

 Severe neurodevelopmental disability at or equal to 12 months of age or more. Severe neurodevelopmental disability was defined as **cerebral palsy**, developmental delay (DQ < 70) or blindness (VA < 6/60 in both eyes), or any combination of these disabilities

Keir AK, Wilkinson D, Andersen C, Stark MJ. Washed versus unwashed red blood cells for transfusion for the prevention of morbidity and mortality in preterm infants. Cochrane Database of Systematic Reviews 2016, Issue 1.

Kylat RI, Ohlsson A. Re-

combinant human ac-

tivated protein C for se-

vere sepsis in neonates.

Cochrane Database of

Systematic Reviews

2012, Issue 4.

Primary outcomes pre-specified include:

1. Cerebral palsy by physician assessment

Secondary outcomes pre-specified include:

- 1. Composite outcome of mortality or severe adverse neurosensory outcome (or its complement, survival without serious adverse neurosensory outcome) at a defined period of follow-up at age 18 to 24 months' adjusted gestational age or older, where adverse neurosensory outcome
 - is defined as: a. **Cerebral palsy** by physician assessment
 - DQ (> 2 SD below the mean on validated assessment tool of cognitive function (e.g. BSID))
 - c. Blindness (VA < 20/200 in best eye)
 - d. Deafness (hearing loss requiring amplification or cochlear implantation)

Secondary outcomes pre-specified include:

Severe disability, defined as any of blindness, deafness, cerebral palsy or cognitive delay (score > 2 SD below the mean for a recognised psychometric test for neurodevelopmental outcome assessed by a validated test, e.g. BSID), or adverse neurological outcome, at 18 months of age or later. These outcomes will be reported

"Despite the scientific rationale for its use, there is insufficient data to use rhAPC for the management of severe sepsis in newborn infants. Due to the results among adults with lack of efficacy, an increase in bleeding and resulting withdrawal of rhAPC from the market, neonates should not be treated with rhAPC and further trials should not be conducted"

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

	(Continued)	both as a composite outcome and individ- ually 2. Cerebral palsy	
	Lai NM, Foong SC, Foong WC, Tan K. Co- bedding in neonatal nursery for promot- ing growth and neu- rodevelopment in sta- ble preterm twins. Cochrane Database of Systematic Reviews 2016, Issue 4.	 Secondary outcomes pre-specified include: Long-term neurodevelopment, measured by validated scales such as BSID (Wash- ington 1998), whereby average scores be- tween twin pairs would be taken if data were available. Clinically diagnosed non- ambulatory cerebral palsy or significant auditory and visual impairment would be accepted if data were available 	"Evidence on the benefits and harms of co-bedding for stable preterm twins was insufficient to permit recom- mendations for practice. Future studies must be ade- quately powered to detect clinically important differences in growth and neurodevelopment. Researchers should as- sess harms such as infection, along with medication er- rors and caregiver satisfaction"
	Lai NM, Rajadurai SV, Tan K. Increased ener-	Secondary outcomes pre-specified include:	No included trials
	gy intake for preterm in- fants with (or develop- ing) bronchopulmonary dysplasia/chronic lung disease. Cochrane Data- base of Systematic Re- views 2006, Issue 3.	 Neurodevelopmental disabilities at or after 12 months' corrected age, assessed using validated tools like BSID, including diagnosed cerebral palsy, blindness, or deafness Mortality or neurodevelopmental disabilities 	"To date, no randomised controlled trials are available that examine the effects of increased versus standard en- ergy intake for preterm infants with (or developing) CLD/ BPD. Research should be directed at evaluating the ef- fects of various levels of energy intake on this group of in- fants on clinically important outcomes like mortality, res- piratory status, growth and neurodevelopment. The bene- fits and harms of various ways of increasing energy intake, including higher energy density of milk feed and/or fluid volume (clinically realistic target volume should be set), parenteral nutrition, and the use of various constituents of energy like carbohydrate, protein and fat for this pur- pose also need to be assessed"
_	Lai NM, Taylor JE, Tan K, Choo YM, Ahmad Ka- mar A, Muhamad NA. Antimicrobial dress- ings for the preven- tion of catheter-relat- ed infections in new- born infants with cen- tral venous catheters. Cochrane Database of Systematic Reviews 2016, Issue 3.	 Secondary outcomes pre-specified include: Long-term neurodevelopmental outcomes, measured using validated scales such as the BSID (Washington 1998) at 12, 18, or 24 months of age. Data on clinically diagnosed non-ambulatory cerebral palsy or significant auditory and visual impairment would be accepted if available 	"Based on moderate-quality evidence, chlorhexidine dressing/alcohol skin cleansing reduced catheter coloni- sation, but made no significant difference in major out- comes like sepsis and CRBSI compared to polyurethane dressing/povidone-iodine cleansing. Chlorhexidine dress- ing/alcohol cleansing posed a substantial risk of contact dermatitis in preterm infants, although it was unclear whether this was contributed mainly by the dressing ma- terial or the cleansing agent. While silver-alginate patch appeared safe, evidence is still insufficient for a recom- mendation in practice. Future research that evaluates antimicrobial dressing should ensure blinding of care- givers and outcome assessors and ensure that all partici- pants receive the same co-interventions, such as the skin cleansing agent. Major outcomes like sepsis, CRBSI and mortality should be assessed in infants of different gesta- tion and birth weight"
-	Lai M, Inglis GDT, Hose K, Jardine LA, Davies MW. Methods for se- curing endotracheal tubes in newborn in- fants. Cochrane Data- base of Systematic Re- views 2014, Issue 7.	 Secondary outcomes pre-specified include: 1. Incidence of an adverse neurodevelopmental outcome (e.g. cerebral palsy, sensorineural hearing loss, visual impairment, developmental delay) whenever measured in the primary studies 	"This review highlighted the need for further well de- signed and completed studies to be conducted for this common neonatal procedure. Evidence is lacking to de- termine the most effective and safe method to stabilise the endotracheal tube in the ventilated neonate"
-	Lawn CJ, Weir FJ, McGuire W. Base ad-	Secondary outcomes pre-specified include:	"There is insufficient evidence from randomised con- trolled trials to determine whether infusion of base or flu-

(Continued) ministration or fluid bolus for preventing morbidity and mortal- ity in preterm infants with metabolic acido- sis. Cochrane Database of Systematic Reviews 2005, Issue 2.	 Neurodevelopmental outcomes at ≥ 12 months of age (corrected for preterm birth) measured using validated assess- ment tools such as BSID and classifica- tions of disability, including (a) auditory and (b) visual disability. The composite outcome of "severe neurodevelopmental disability" is defined as any 1 or combina- tion of the following: non-ambulant cere- bral palsy, developmental delay (DQ < 70), auditory and visual impairment 	id bolus reduces morbidity and mortality in preterm in- fants with metabolic acidosis. Further large randomised trials are needed"
Malwade US, Jardine LA. Home- versus hos- pital-based photother- apy for the treatment of non-haemolytic jaun- dice in infants at more than 37 weeks' gesta- tion. Cochrane Data- base of Systematic Re- views 2014, Issue 6.	 Primary outcomes pre-specified include: 1. Incidence (percentage) of chronic bilirubin encephalopathy or kernicterus, defined by a tetrad of choreoathetoid cerebral palsy, high-frequency sensorineural hearing loss, palsy of vertical gaze, and dental enamel hypoplasia 	No included trials "No high-quality evidence is currently available to sup- port or refute the practice of home-based phototherapy for non-haemolytic jaundice in infants at more than 37 weeks' gestation"
McGuire W, Fowlie PW, Evans DJ. Naloxone for preventing morbidity and mortality in new- born infants of greater than 34 weeks' ges- tation with suspect- ed perinatal asphyx- ia. Cochrane Database of Systematic Reviews 2004, Issue 1.	 Primary outcomes pre-specified include: 1. Severe neurodevelopmental disability assessed at ≥ 12 months of age. Severe neurodevelopmental disability will be defined as any 1 or combination of the following: non-ambulant cerebral palsy, developmental delay (DQ < 70), auditory and visual impairment. Development should have been assessed by means of a previously validated tool, such as BSID PDI and MDI 	"There are insufficient data available to evaluate the safe- ty and effectiveness of the routine use of naloxone for newborn infants of greater than 34 weeks' gestation with suspected perinatal asphyxia. A further randomised con- trolled trial is needed to determine if naloxone benefits newborn infants with suspected perinatal asphyxia. Such a trial should assess clinically important outcomes such as mortality, and adverse short and long term neurologi- cal outcomes"
Morgan J, Bombell S, McGuire W. Early troph- ic feeding versus en- teral fasting for very preterm or very low birth weight infants. Cochrane Database of Systematic Reviews 2013, Issue 3.	 Secondary outcomes pre-specified include: Neurodevelopment: death or severe neurodevelopmental disability defined as any 1 or combination of the following: nonambulant cerebral palsy, developmental delay (DQ < 70), auditory and visual impairment. Each component will be analysed individually as well as part of the composite outcome 	"The available trial data do not provide evidence of im- portant beneficial or harmful effects of early trophic feed- ing for very preterm or very low birth weight infants. The applicability of these findings to extremely preterm, ex- tremely low birth weight or growth restricted infants is limited. Further randomised controlled trials would be needed to determine how trophic feeding compared with enteral fasting affects important outcomes in this popula- tion"
Morgan J, Young L, McGuire W. Slow ad- vancement of enteral feed volumes to pre- vent necrotising en- terocolitis in very low birth weight infants. Cochrane Database of Systematic Reviews 2015, Issue 10.	 Secondary outcomes pre-specified include: Neurodevelopment: Death or severe neurodevelopmental disability defined as any 1 or a combination of the following: non-ambulatory cerebral palsy, developmental delay (DQ < 70), auditory and visual impairment. Each component was to be analysed individually as well as part of the composite outcome Neurodevelopmental scores in survivors aged 12 months or greater mea- 	"The available trial data suggest that advancing enteral feed volumes at daily increments of 30 to 40 mL/kg (com- pared to 15 to 24 mL/kg) does not increase the risk of NEC or death in VLBW infants. Advancing the volume of enter- al feeds at slow rates results in several days of delay in es- tablishing full enteral feeds and increases the risk of in- vasive infection. The applicability of these findings to ex- tremely preterm, extremely low birth weight, or growth- restricted infants is limited. Further randomised con- trolled trials in these populations may be warranted to re- solve this uncertainty"

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

sured using validated assessment tools

(Continued)

c. Cognitive and educational outcomes in survivors aged > 5 years

Morgan J, Young L, McGuire W. Delayed in- troduction of progres- sive enteral feeds to prevent necrotising en- terocolitis in very low birth weight infants. Cochrane Database of Systematic Reviews 2014, Issue 12.	 Secondary outcomes pre-specified include: 1. Neurodevelopment: a. Death or severe neurodevelopmental disability defined as any 1 or combination of the following: non-ambulant cerebral palsy, developmental delay (DQ < 70), auditory and visual impairment. Each component was analysed individually as well as part of the composite outcome b. Neurodevelopmental scores in survivors aged 12 months or greater measured using validated assessment tools c. Cognitive and educational outcomes in survivors aged > 5 years 	"The evidence available from randomised controlled tri- als suggested that delaying the introduction of progres- sive enteral feeds beyond four days after birth did not re- duce the risk of developing NEC in very preterm or VLBW infants, including growth-restricted infants. Delaying the introduction of progressive enteral feeds resulted in a few days' delay in establishing full enteral feeds but the clini- cal importance of this effect was unclear. The applicabil- ity of these findings to extremely preterm or extremely low birth weight was uncertain. Further randomised con- trolled trials in this population may be warranted"
Mosalli R, AlFaleh K. Prophylactic surgi- cal ligation of patent ductus arteriosus for prevention of mor- tality and morbidi- ty in extremely low birth weight infants. Cochrane Database of Systematic Reviews 2008, Issue 1.	Secondary outcomes pre-specified include: 1. Neurodevelopmental impairment (i.e. rates of cerebral palsy , cognitive delay defined as a MDI score < 70 (2 SD below the mean of 100) on the BSID II (Bayley 1993), deafness, blindness, or composite report- ed at 18 months' corrected age or later)	"Prophylactic surgical ligation of the PDA did not decrease mortality or BPD in ELBW infants. A significant reduction of stage II or III NEC was noted. Based on the current evi- dence, the high rate of spontaneous closure, availability of effective safe medical therapies, and the potential short and long-term complications of surgical ligation, the use such prophylactic surgical therapy is not indicated in the management of the preterm infants"
O'Donnell CPF, Br- uschettini M, Davis PG, Morley CJ, Moja L, Cale- vo MG, Zappettini S. Sustained versus stan- dard inflations during neonatal resuscitation to prevent mortality and improve respirato- ry outcomes. Cochrane Database of Systematic Reviews 2015, Issue 7.	Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome (rates of cerebral palsy on physician as- sessment, developmental delay, i.e. IQ 2 SD < mean on validated assessment tools, e.g. BSID MDI)	"At present there is insufficient evidence from clinical tri- als to determine the efficacy and safety of initial sustained lung inflation for newborn infants resuscitated with PPV. RCTs comparing PPV with and without sustained infla- tions at neonatal resuscitation are warranted"
Ogunlesi TA, Odigwe CC, Oladapo OT. Adju- vant corticosteroids for reducing death in neonatal bacterial meningitis. Cochrane Database of Systematic Reviews 2015, Issue 11.	 Secondary outcomes pre-specified include: 1. Presence of severe neurological deficits or developmental delay between 1 and 2 years of age (a neurological deficit was defined as a functional abnormality of a body area that is observed as the result of an abnormality in function of the brain, spinal cord, muscles, or nerves; developmental delay was defined as any significant lag in a child's physical or motor, cognitive, behavioural, emotional, or social development, in comparison with other children of the same age and sex within similar environments; formal eval- 	"Very low-quality data from two randomised controlled trials suggest that some reduction in death and hearing loss may result from use of adjunctive steroids alongside standard antibiotic therapy for treatment of patients with neonatal meningitis. Benefit is not yet seen with regards to reduction in neurological sequelae. Researchers who wish to clarify these findings must conduct more robustly designed trials with greater numbers of participants, eval- uating more relevant outcomes and providing adequate follow-up"

	uation tools were used to assess neu- rological deficits and developmental de- lay). Examples of neurological deficits in- clude mental retardation, cerebral pal- sy , epilepsy, blindness, and behaviour- al disorders. We considered evaluation tools such as BSID or GMDS (for neurode- velopmental deficits), the GMFCS or the Movement ABC (for cerebral palsy), the Sonken-Silver VA test (for blindness), dis- traction tests (for behavioural disorders), and electroencephalography (for epilep- sy) - all applied between 1 and 2 years of age. We also accepted other measures used by individual trialists to evaluate and document neurological deficits in their re- spective trials	
Onland W, Offringa M, van Kaam A. Late (≥ 7 days) inhalation corti- costeroids to reduce bronchopulmonary dys- plasia in preterm in- fants. Cochrane Data- base of Systematic Re- views 2012, Issue 4.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental seque- lae, assessed after at least 1 year CGA and before a CGA of 4 years includingcerebral palsy and BSID (MDI) 	"Based on the results of the currently available evidence, inhalation corticosteroids initiated at ≥ 7 days of life for preterm infants at high risk of developing BPD cannot be recommended at this point in time. More and larger ran- domised, placebo-controlled trials are needed to estab- lish the efficacy and safety of inhalation corticosteroids"
Osborn DA, Evans NJ. Early volume expan- sion versus inotrope for prevention of mor- bidity and mortality in very preterm infants. Cochrane Database of Systematic Reviews 2001, Issue 2.	 Primary outcomes pre-specified include: 1. Neurodevelopmental disability (neurological abnormality includingcerebral palsy, developmental delay, or sensory impairment) 	"Dopamine was more successful than albumin at correct- ing low BP in hypotensive preterm infants, many of whom had already received volume. Neither intervention has been shown to be superior at improving blood flow or in improving mortality and morbidity in preterm infants. The trials do not allow any firm conclusions to be made as to whether or when volume or dopamine should be used in preterm infants"
Osborn DA, Hunt R. Postnatal thyroid hor- mones for preterm in- fants with transient hypothyroxinaemia. Cochrane Database of Systematic Reviews 2007, Issue 1.	 Primary outcomes pre-specified include: 1. Neurodevelopmental status at follow-up. Neurodevelopmental outcome was categorised as: a. Abnormal mental developmental > 12 months' corrected age (a development or IQ > 2 SD below the mean of a standardised test) b. Abnormal neurological outcome (infants with abnormal mental development or definite cerebral palsy) c. Motor deficits d. Sensorineural impairments including hearing deficit requiring aids; VA < 6/60 	"There is insufficient evidence to determine whether use of thyroid hormones for treatment of preterm infants with transient hypothyroxinaemia results in changes in neona- tal morbidity and mortality, or reductions in neurodevel- opmental impairments. Further research is required"
Osborn DA, Hunt R. Postnatal thyroid hor- mones for respirato- ry distress syndrome in preterm infants. Cochrane Database of	 Primary outcomes pre-specified include: 1. Abnormal neurodevelopmental outcome: a. Abnormal mental development > 12 months' corrected age (a validated de- 	"There is no evidence from controlled clinical trials that postnatal thyroid hormone treatment reduces the severi- ty of respiratory distress syndrome, neonatal morbidity or mortality in preterm infants with respiratory distress syn- drome"

<i>(Continued)</i> Systematic Reviews 2007, Issue 1.	 velopment or IQ > 2 SD below the mean of a standardised test) b. Abnormal neurological outcome (in- fants with abnormal mental develop- ment or definite cerebral palsy) c. Motor deficits d. Sensorineural impairments (hearing deficit requiring aids or VA < 6/60) 	
Özek E, Soll R, Schim- mel MS. Partial ex- change transfusion to prevent neurode- velopmental disabili- ty in infants with poly- cythemia. Cochrane Database of Systematic Reviews 2010, Issue 1.	 Primary outcomes pre-specified include: 1. Neurodevelopmental status at 2 years of age, neurodevelopmental status at school age. This will include both combined and separate analyses of the components of severe neurodevelopmental delay defined as an MDI < 70, cerebral palsy, vision loss, and hearing loss 	"There are no proven clinically significant short or long- term benefits of PET in polycythemic newborn infants who are clinically well or who have minor symptoms relat- ed to hyperviscosity. PET may lead to an increase in the risk of NEC. The data regarding developmental follow-up are extremely imprecise due to the large number of sur- viving infants who were not assessed and, therefore, the true risks and benefits of PET are unclear"
Paradisis M, Osborn DA. Adrenaline for preven- tion of morbidity and mortality in preterm infants with cardio- vascular compromise. Cochrane Database of Systematic Reviews 2004, Issue 1.	 Primary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome: cerebral palsy and standardised assessment of developmental delay or sensorineural impairment 	"There are insufficient data on the use of adrenaline in- fusions in preterm infants with cardiovascular compro- mise to make recommendations for practice. There is a need for larger trials to determine whether adrenaline is effective in reducing morbidity and mortality in preterm infants with cardiovascular compromise"
Pfister RH, Soll R, Wiswell TE. Pro- tein-containing synthet- ic surfactant versus pro- tein-free synthetic sur- factant for the preven- tion and treatment of respiratory distress syn- drome. Cochrane Data- base of Systematic Re- views 2009, Issue 4.	 Secondary outcomes pre-specified include: Neurodevelopmental outcome at approximately 2 years' corrected age (acceptable range 18 months to 28 months) including cerebral palsy, mental delay (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental impairment" was defined as having any 1 of the aforementioned deficits 	"In the one trial comparing protein containing synthetic surfactants compared to protein free synthetic surfactant for the prevention of RDS, no statistically different clinical differences in death and chronic lung disease were noted. Clinical outcomes between the two groups were general- ly similar although the group receiving protein containing synthetic surfactants did have decreased incidence of res- piratory distress syndrome. Further well designed studies comparing protein containing synthetic surfactant to the more widely used animal derived surfactant extracts are indicated"
Pfister RH, Soll R, Wiswell TE. Protein con- taining synthetic sur- factant versus animal derived surfactant ex- tract for the prevention and treatment of res- piratory distress syn- drome. Cochrane Data- base of Systematic Re- views 2007, Issue 4.	 Secondary outcomes pre-specified include: Neurodevelopmental outcome at approximately 2 years' corrected age (range 18 months to 28 months) including cerebral palsy, mental retardation (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental impairment" was defined as having any 1 of the aforementioned deficits 	"In two trials of protein containing synthetic surfactants compared to animal derived surfactant extract, no statis- tically different clinical differences in death and chronic lung disease were noted. In general, clinical outcomes be- tween the two groups were similar. Further well designed studies of adequate size and power will help confirm and refine these findings"
Pilley E, McGuire W. Pre-discharge "car seat challenge" for prevent- ing morbidity and mor- tality in preterm infants.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcomes at > 12 months post term measured using vali- dated assessment tools such as BSID and 	No included trials "It is unclear whether undertaking a pre-discharge car seat challenge is beneficial or harmful to preterm infants. Further studies are needed to determine whether the car

(Continued) Cochrane Database of Systematic Reviews 2006, Issue 1.	classifications of disability, including au- ditory and visual disability. The compos- ite outcome "severe neurodevelopmen- tal disability" will be defined as any 1 or combination of the following: non-ambu- lant cerebral palsy , developmental delay (DQ < 70), auditory and visual impairment	seat challenge accurately predicts the risk of clinically sig- nificant adverse events in preterm infants travelling in car seats. If this is shown to be the case then a large ran- domised controlled trial is needed to provide an unbiased assessment of its utility in pre-discharge assessment"
Quigley M, McGuire W. Formula versus donor breast milk for feed- ing preterm or low birth weight infants. Cochrane Database of Systematic Reviews 2014, Issue 4.	 Primary outcomes pre-specified include: 1. Death or severe neurodevelopmental disability defined as any 1 or combination of the following: non-ambulant cerebral palsy, developmental delay (DQ < 70), auditory and visual impairment. We analysed each component individually as well as part of the composite outcome 	"In preterm and low birth weight infants, feeding with for- mula compared with donor breast milk results in a high- er rate of short-term growth but also a higher risk of devel- oping necrotising enterocolitis. Limited data on the com- parison of feeding with formula versus nutrient-fortified donor breast milk are available. This limits the applicabili- ty of the findings of this review as nutrient fortification of breast milk is now a common practice in neonatal care. Future trials may compare growth, development and ad- verse outcomes in infants who receive formula milk ver- sus nutrient-fortified donor breast milk given as a supple- ment to maternal expressed breast milk or as a sole diet"
Qureshi MJ, Kumar M. D-Penicillamine for pre- venting retinopathy of prematurity in preterm infants. Cochrane Data- base of Systematic Re- views 2013, Issue 9.	 Secondary outcomes pre-specified include: 1. Abnormal neurodevelopment defined as abnormal neurological examination, epilepsy, cerebral palsy, or DQ < 70 diag- nosed at 1 year of corrected age or older 	"Administration of prophylactic D-penicillamine in preterm infants does not prevent acute or severe ROP, death or neurodevelopmental delay. D-penicillamine can- not be recommended for the prevention of ROP based on the available evidence"
Rojas-Reyes MX, Mor- ley CJ, Soll R. Prophy- lactic versus selective use of surfactant in pre- venting morbidity and mortality in preterm in- fants. Cochrane Data- base of Systematic Re- views 2012, Issue 3.	 Secondary outcomes pre-specified include: 1. Cerebral palsy. 2. Neurodevelopmental outcome at approximately 2 years' corrected age (acceptable range 18 months to 28 months) including cerebral palsy, significant mental developmental delay (BSID < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental impairment" was defined as having any one of the aforementioned deficits (Review notes that 2 RCTs have reported on cerebral palsy, but not in the 'acceptable range' pre-specified; therefore no results were reported: "Neurodevelopmental outcome: For this outcome, we considered any trial reporting at approximately 2 years' corrected age (acceptable range 18 months to 28 months) any of the following entities cerebral palsy, intellectual disability or developmental delay (Bayley Scales of Infant Development Mental Developmental Index < 70), legal blindness (< 20/200 visual acuity), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental mental delay (Bayley Scales of Infant Development Mental Developmental Index < 70), legal blindness (< 20/200 visual acuity), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental impairment" would be defined as having any one of the aforementioned deficits. Two 	"Although the early trials of prophylactic surfactant ad- ministration to infants judged to be at risk of developing RDS compared with selective use of surfactant in infants with established RDS demonstrated a decreased risk of air leak and mortality, recent large trials that reflect current practice (including greater utilization of maternal steroids and routine post delivery stabilization on CPAP) do not support these differences and demonstrate less risk of chronic lung disease or death when using early stabiliza- tion on CPAP with selective surfactant administration to infants requiring intubation"

(Continued)	trials Sinkin 1998; Vaucher 1993 performed a follow-up study including infants recruit- ed in the Kendig 1991 and Merritt 1991 tri- als respectively. Sinkin 1998 reported cere- bral palsy but in 148 children at school age, no data were available from ages between 18 and 28 months. Vaucher 1993 reported on cerebral palsy and developmental delay in 145 survivors at 12 months' corrected age. No one study reporting neurodevelopmental outcomes at 24 months' corrected age was found")	
Rojas-Reyes MX, Or- rego-Rojas PA. Rescue high-frequency jet ven- tilation versus conven- tional ventilation for severe pulmonary dys- function in preterm in- fants. Cochrane Data- base of Systematic Re- views 2015, Issue 10.	 Secondary outcomes pre-specified include: 1. Long-term neurodevelopmental outcome (measured at approximately 2 years' cor- rected age; acceptable range 18 months to 28 months) including cerebral palsy, de- layed neurodevelopment (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing); impairment defined as including any of the aforementioned deficits 	"Study authors reported no significant differences in over- all mortality between rescue high-frequency jet ventila- tion and conventional ventilation and presented highly imprecise results for important adverse effects such as intraventricular haemorrhage, new air leaks, airway ob- struction and necrotising tracheobronchitis. The overall quality of evidence is affected by limitations in trial design and by imprecision due to the small number of infants in the included study. Existing evidence does not support the use of high-frequency jet ventilation as rescue thera- py in preterm infants. Studies that target populations at greatest risk and that have sufficient power to assess im- portant outcomes are needed. These trials should incor- porate long-term pulmonary and neurodevelopmental outcomes"
Romantsik O, Bruschet- tini M, Zappettini S, Ra- menghi LA, Calevo MG. Heparin for the treat- ment of thrombosis in neonates. Cochrane Database of Systematic Reviews 2016, Issue 11.	 Secondary outcomes pre-specified include: Major neurodevelopmental disability, that is, (1) cerebral palsy on physician assessment (yes/no); (2) developmental delay or intellectual impairment: BSID or GMDS assessment > 2 SD below the mean, or intellectual impairment (IQ > 2 SD below the mean); neuromotor development (BSID PDI) assessed in survivors; mental development (BSID MDI) assessed in survivors; (3) blindness vision (< 6/60 in both eyes); or (4) sensorineural deafness requiring amplification. We will report these components of this long-term outcome for all trials that have assessed children after 18 months' chronological age. We will perform separate analyses for children aged 18 to 24 months and for those aged 3 to 5 years 	"We found no studies that met our inclusion criteria and no evidence from randomized controlled trials to rec- ommend or refute the use of heparin for treatment of neonates with thrombosis"
Sankar MJ, Sankar J, Mehta M, Bhat V, Srini- vasan R. Anti-vascu- lar endothelial growth factor (VEGF) drugs for treatment of retinopa- thy of prematurity. Cochrane Database of Systematic Reviews 2016, Issue 2.	 Secondary outcomes pre-specified include: Adverse neurodevelopmental outcomes at 18 months to 24 months' corrected age: a. Cerebral palsy and/or b. Moderate to severe developmental delay as assessed on performance in formal neurodevelopmental testing such as the BSID scale 	"Implications for practice: Intravitreal bevacizumab re- duces the risk of refractive errors during childhood when used as monotherapy while intravitreal pegaptanib re- duces the risk of retinal detachment when used in con- junction with laser therapy in infants with type 1 ROP. Quality of evidence was, however, low for both the out- comes because of the risk of detection and other biases. Effect on other critical outcomes and, more importantly, the long-term systemic adverse effects of the drugs are not known. The insufficient data precludes strong con- clusions favouring routine use of intravitreal anti-VEGF

(Continued)

		agents in preterm infants with type 1 ROP. Implications for research: Further studies are needed to evaluate the ef- fect of anti-VEGF agents on structural and functional out- comes in childhood and delayed systemic adverse effects such as myocardial dysfunction and adverse neurodevel- opmental outcomes"
Schulzke SM, Kaempfen S, Trachsel D, Patole SK. Physical activity pro- grams for promoting bone mineralization and growth in preterm infants. Cochrane Data- base of Systematic Re- views 2014, Issue 4.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental abnormalities at 18 to 24 months' corrected age or later: a. Cerebral palsy b. Developmental delay (assessed by standardised and validated test, e.g. GMDS or BSID test, with abnormality defined as > 2 SD below the mean) c. Intellectual impairment (IQ > 2 SD below the mean as assessed by a standardised and validated test) d. Blindness (vision < 6/60 in both eyes) e. Sensorineural deafness requiring amplification 	"Some evidence suggests that physical activity programs might promote short-term weight gain and bone miner- alization in preterm infants. Data are inadequate to al- low assessment of harm or long-term effects. Current ev- idence does not support the routine use of physical activ- ity programs in preterm infants. Further trials incorporat- ing infants with a high baseline risk of osteopenia are re- quired. These trials should address adverse events, long- term outcomes, and the effects of nutritional intake (calo- ries, protein, calcium, phosphorus)"
Shah PS, Ohlsson A. Al- pha-1 proteinase in- hibitor (a1PI) for pre- venting chronic lung disease in preterm in- fants. Cochrane Data- base of Systematic Re- views 2001, Issue 3.	 Secondary outcomes pre-specified include: Long-term neurodevelopmental outcome (frequency of cerebral palsy and/or mental retardation, legal blindness, and /or deafness) (Review reports on 'Developmental delay amongst infants assessed' for 1 RCT (83 infants); however it was not clear whether this included cerebral palsy (in review or RCT (published as abstract only)) 	"Prophylactic administration of a1PI did not reduce the risk of CLD at 36 weeks or long term adverse developmen- tal outcomes in preterm neonates"
Shah PS, Kaufman DA. Antistaphylococcal im- munoglobulins to pre- vent staphylococcal infection in very low birth weight infants. Cochrane Database of Systematic Reviews 2009, Issue 2.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental disability at 18 to 24 months (includingcerebral palsy, cognitive impairment, deafness, and blindness) 	"Antistaphylococcal immunoglobulins (INH A-21 and Al- tastaph) are not recommended for prevention of staphy- lococcal infections in preterm or VLBW neonates. Further research to investigate the efficacy of other products such as Pagibaximab is needed"
Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for pre- venting chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database of Systematic Reviews 2012, Issue 5.	 Secondary outcomes pre-specified include: Long-term neurodevelopmental outcome: Neurodevelopmental impairment was defined as presence of cerebral palsy and/or mental retardation (BSID MDI < 70) and/or legal blindness (< 20/200 VA) and/or deafness (aided or < 60 dB on audiometric testing) assessed at 18 to 24 months 	"This review found no evidence that early inhaled steroids confer important advantages over systemic steroids in the management of ventilator dependent preterm infants. Neither inhaled steroids nor systemic steroids can be rec- ommended as a part of standard practice for ventilated preterm infants. Because they might have fewer adverse effects than systemic steroids, further randomised con- trolled trials of inhaled steroids are needed that address risk/benefit ratio of different delivery techniques, dosing schedules and long-term effects, with particular attention to neurodevelopmental outcome"
Shah SS, Ohlsson A, Halliday HL, Shah VS.	Secondary outcomes pre-specified include:	"This review found no evidence that inhaled corticos- teroids confer net advantages over systemic corticos-

(Continued) Inhaled versus systemic corticosteroids for the treatment of chron- ic lung disease in ven- tilated very low birth weight preterm infants. Cochrane Database of Systematic Reviews 2012, Issue 5.	 Long-term neurodevelopmental out- come: Neurodevelopmental impairment is defined as presence of cerebral palsy and/or mental retardation (BSID MDI < 70) and/or legal blindness (< 20/200 VA) and/ or deafness (aided or < 60 dB on audiomet- ric testing) assessed at 18 to 24 months 	teroids in the management of ventilator dependent preterm infants. Neither inhaled steroids nor systemic steroids can be recommended as standard treatment for ventilated preterm infants. There was no evidence of dif- ference in effectiveness or side-effect profiles for inhaled versus systemic steroids. A better delivery system guaran- teeing selective delivery of inhaled steroids to the alveoli might result in beneficial clinical effects without increas- ing side-effects. To resolve this issue, studies are need- ed to identify the risk/benefit ratio of different delivery techniques and dosing schedules for the administration of these medications. The long-term effects of inhaled steroids, with particular attention to neurodevelopmental outcome, should be addressed in future studies"
Shah PS, Ohlsson A. Sildenafil for pul- monary hypertension in neonates. Cochrane Database of Systematic Reviews 2011, Issue 8.	 Secondary outcomes pre-specified include: Neurodevelopmental disability at 18 to 24 months (including cerebral palsy, cogni- tive impairment, deafness, and blindness) 	"Sildenafil in the treatment of PPHN has significant po- tential especially in resource limited settings. However, a large scale randomised trial comparing sildenafil with the currently used vasodilator, inhaled nitric oxide, is needed to assess efficacy and safety"
Sinclair JC, Bottino M, Cowett RM. Inter- ventions for preven- tion of neonatal hyper- glycemia in very low birth weight infants. Cochrane Database of Systematic Reviews 2011, Issue 10.	 Primary outcomes pre-specified include: 1. Neurodevelopmental impairment defined as presence of 1 or more of the follow- ing: cerebral palsy, MDI or PDI < 70, blind- ness or deafness assessed between 18 and 24 months' post-menstrual age or at lat- est assessment up to 24 months' correct- ed age 	"Glucose infusion rate: There is insufficient evidence from trials comparing lower with higher glucose infusion rates to inform clinical practice. Large randomized trials are needed, powered on clinical outcomes including death, major morbidities and adverse neurodevelopment. In- sulin infusion: The evidence reviewed does not support the routine use of insulin infusions to prevent hyper- glycemia in VLBW neonates. Further randomized trials of insulin infusion may be justified. They should enrol ex- tremely low birth weight neonates at very high risk for hy- perglycemia and neonatal death. They might use real time glucose monitors if these are validated for clinical use. Re- finement of algorithms to guide insulin infusion is needed to enable tight control of glucose concentrations within the target range"
Singh N, Halliday HL, Stevens TP, Suresh G, Soll R, Rojas-Reyes MX. Comparison of an- imal-derived surfac- tants for the prevention and treatment of res- piratory distress syn- drome in preterm in- fants. Cochrane Data- base of Systematic Re- views 2015, Issue 12.	 Secondary outcomes pre-specified include: Cerebral palsy at approximately 2 years' corrected age (as defined by the study authors) Neurodevelopmental outcome at approximately 2 years' corrected age (acceptable range 18 months to 28 months) including cerebral palsy, delayed neurodevelopment (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome 'neurodevelopmental impairment' was defined as having any 1 of the aforementioned deficits 	"Significant differences in clinical outcome were noted in the comparison trials of modified minced lung surfactant extract (beractant) compared with porcine minced lung surfactant extract (poractant alfa) including a significant increase in the risk of mortality prior to discharge, death or oxygen requirement at 36 weeks' postmenstrual age, PDA requiring treatment and "receiving > 1 dose of surfac- tant" in infants treated with modified bovine minced lung surfactant extract compared with porcine minced lung surfactant extract. The difference in these outcomes was limited to studies using a higher initial dose of porcine minced lung surfactant extract. It is uncertain whether the observed differences are from differences in dose or from source of extraction (porcine vs. bovine) because of the lack of dose-equivalent comparison groups with ap- propriate sample size. No differences in clinical outcomes were observed in comparative trials between bovine lung lavage surfactant and modified bovine minced lung sur- factants"
Soll R, Özek E. Pro-	Secondary outcomes pre-specified include:	"Prophylactic intratracheal administration of animal de-

phylactic animal de-

Secondary outcomes pre-specified include:

'Prophylactic intratracheal administration of animal de rived surfactant extract to infants judged to be at risk

(Continued) rived surfactant ex- tract for preventing morbidity and mortal- ity in preterm infants. Cochrane Database of Systematic Reviews 1997, Issue 4.	 Cerebral palsy Neurodevelopmental outcome at approximately 2 years' corrected age (acceptable range 18 months to 28 months) including cerebral palsy, mental retardation (BSID MDI < 70), legal blindness (< 20/200 VA), and hearing deficit (aided or < 60 dB on audiometric testing). The composite outcome "neurodevelopmental impairment" will be defined as having any 1 of the aforementioned deficits 	of developing respiratory distress syndrome has been demonstrated to improve clinical outcome. Infants who receive prophylactic animal derived surfactant extract have a decreased risk of pneumothorax, a decreased risk of PIE, a decreased risk of mortality, and a decreased risk of BPD or death"
Stevens TP, Blennow M, Myers EH, Soll R. Ear- ly surfactant adminis- tration with brief venti- lation vs. selective sur- factant and continued mechanical ventilation for preterm infants with or at risk for respirato- ry distress syndrome. Cochrane Database of Systematic Reviews 2007, Issue 4.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome at hospital discharge and at a later time point (> 1 year post-conceptional age). Neurodevelopmental impairment is defined as the presence of cerebral palsy and/or mental retardation (BSID MDI < 70) and/or legal blindness (< 20/200 VA) and/or deafness (aided or < 60 dB on audiometric testing) 	"Early surfactant replacement therapy with extubation to NCPAP compared with later selective surfactant replace- ment and continued mechanical ventilation with extuba- tion from low ventilator support is associated with less need mechanical ventilation, lower incidence of BPD and fewer air leak syndromes. A lower treatment threshold (FIO2 < 0.45) confers greater advantage in reducing the in- cidences of airleak syndromes and BPD; moreover a high- er treatment threshold (FIO2 at study > 0.45) was associ- ated with increased risk of PDA. These data suggest that treatment with surfactant by transient intubation using a low treatment threshold (FIO2 < 0.45) is preferable to lat- er, selective surfactant therapy by transient intubation us- ing a higher threshold for study entry (FIO2 > 0.45) or at the time of respiratory failure and initiation of mechanical ventilation"
Stewart A, Inglis GDT,	Secondary outcomes pre-specified include:	No included trials
Davies MW. Prophylac- tic antibiotics to reduce morbidity and mortality in newborn infants with intercostal catheters. Cochrane Database of Systematic Reviews 2012, Issue 4.	1. Neurodevelopmental outcome (cerebral palsy , sensorineural hearing loss, visual impairment, or developmental delay) at 1 year, 18 months, 2 years, or 5 years	"There are no data from randomised trials to either sup- port or refute the use of antibiotic prophylaxis for inter- costal catheter insertion in neonates. Any randomised controlled trials of antibiotic prophylaxis would need to account for the fact that neonates who require insertion of an intercostal catheter may already be receiving antibi- otics for other indications"
Subramaniam P, Ho JJ,		
Davis PG. Prophylactic nasal continuous pos- itive airway pressure for preventing mor- bidity and mortality in very preterm infants. Cochrane Database of Systematic Reviews 2016, Issue 6.	 Secondary outcomes pre-specified include: Neurodevelopmental status at follow-up: neurodevelopment measured on a vali- dated scale that measures cognitive, mo- tor, behavioural function, or blindness, deafness, or cerebral palsy at about 2 years of age 	"There is insufficient evidence to evaluate prophylactic CPAP compared to oxygen therapy and other supportive care. However when compared to mechanical ventilation prophylactic nasal CPAP in very preterm infants reduces the need for mechanical ventilation and surfactant and al- so reduces the incidence of BPD and death or BPD"
Davis PG. Prophylactic nasal continuous pos- itive airway pressure for preventing mor- bidity and mortality in very preterm infants. Cochrane Database of Systematic Reviews 2016, Issue 6. Tan K, Lai NM, Sharma A. Surfactant for bacte-	Secondary outcomes pre-specified include: 1. Neurodevelopmental status at follow-up: neurodevelopment measured on a vali- dated scale that measures cognitive, mo- tor, behavioural function, or blindness, deafness, or cerebral palsy at about 2 years of age Secondary outcomes pre-specified include:	"There is insufficient evidence to evaluate prophylactic CPAP compared to oxygen therapy and other supportive care. However when compared to mechanical ventilation prophylactic nasal CPAP in very preterm infants reduces the need for mechanical ventilation and surfactant and al- so reduces the incidence of BPD and death or BPD" No included trials

-

Trusted evidence. Informed decisions. Better health.

(Continued)		
Thayyil S, Milligan D. Single versus dou- ble volume exchange transfusion in jaun- diced newborn infants. Cochrane Database of Systematic Reviews 2006, Issue 4.	 Primary outcomes pre-specified include: 1. Neurological deficits consistent with kernicterus at 2 years of age including athetoidcerebral palsy, impaired upward gaze and deafness, AN/AD, and subtle BIND (Shapiro 2005) Secondary outcomes pre-specified include: 1. Neurological deficits or neurodisability defined as any of deafness, cerebral palsy, or cognitive delay (score > 2 SD below the mean for any recognised test for neurodevelopment, e.g. BSID) 	"There was insufficient evidence to support or refute the use of single volume exchange transfusion as opposed to double volume exchange transfusion in jaundiced new- borns. A change from the current practice of double vol- ume exchange transfusions for severe jaundice in new- borns infant, cannot be recommended on current evi- dence"
Vasudevan C, Odd- ie SJ, McGuire W. Ear- ly removal versus expectant manage- ment of central venous catheters in neonates with bloodstream in- fection. Cochrane Data- base of Systematic Re- views 2016, Issue 4.	 Primary outcomes pre-specified include: 1. Neurodevelopmental outcomes assessed after 12 months' post-menstrual age using validated tools: neurological evaluations, developmental scores, and classifications of disability, including auditory and visu- al disability. We will define neurodevelop- mental impairment as the presence of 1 or more of the following: non-ambulant cerebral palsy, developmental delay (DQ > 2 SD below population mean), blindness (VA < 6/60), or deafness (any hearing im- pairment requiring or unimproved by am- plification) 	No included trials "There are no trial data to guide practice regarding ear- ly removal versus expectant management of central ve- nous catheters in newborn infants with bloodstream in- fections. A simple and pragmatic randomised controlled trial is needed to resolve the uncertainty about optimal management in this common and important clinical sce- nario"
Verner AM, McGuire W, Craig JS. Effect of tau- rine supplementation on growth and develop- ment in preterm or low birth weight infants. Cochrane Database of Systematic Reviews 2007, Issue 4.	 Secondary outcomes pre-specified include: 1. Development a. Neurodevelopmental outcomes at ≥ 12 months of age (corrected for preterm birth) measured using validated assessment tools b. Severe neurodevelopmental disability defined as any 1 or combination of the following: non-ambulant cerebral palsy, developmental delay (DQ < 70), auditory and visual impairment c. Cognitive and educational outcomes at > 5 years old: IQ and/or indices of educational achievement measured using a validated assessment tool (including school examination results) 	"Despite that lack of evidence of benefit from randomised controlled trials, it is likely that taurine will continue to be added to formula milks and parenteral nutrition solutions used for feeding preterm and low birth weight infants giv- en the putative association of taurine deficiency with var- ious adverse outcomes. Further randomised controlled trials of taurine supplementation versus no supplementa- tion in preterm or low birth weight infants are unlikely to be viewed as a research priority, but there may be issues related to dose or duration of supplementation in specific subgroups of infants that merit further research"
Watson J, McGuire W. Responsive ver- sus scheduled feed- ing for preterm infants. Cochrane Database of Systematic Reviews 2016, Issue 8.	 Secondary outcomes pre-specified include: Neurodevelopmental outcomes at > 12 months' corrected age measured using validated assessment tools such as BSID and classifications of disability including auditory and visual disability. We defined the composite outcome 'severe neurode-velopmental disability' as any 1 or combination of the following: non-ambulant 	"Overall, the data do not provide strong or consistent evidence that responsive feeding affects important out- comes for preterm infants or their families. Some (low quality) evidence exists that preterm infants fed in re- sponse to feeding and satiation cues achieve full oral feeding earlier than infants fed prescribed volumes at scheduled intervals. This finding should be interpreted cautiously because of methodological weaknesses in the included trials. A large RCT would be needed to con-

Neonatal interventions for preventing cerebral palsy: an overview of Cochrane Systematic Reviews (Review) Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

(Continued)		
	cerebral palsy , developmental delay (DQ < 70), auditory and visual impairment	firm this finding and to determine if responsive feeding of preterm infants affects other important outcomes"
Wilkinson D, Andersen C, O'Donnell CPF, De Paoli AG, Manley BJ. High flow nasal cannu- la for respiratory sup- port in preterm infants. Cochrane Database of Systematic Reviews 2016, Issue 2.	 Secondary outcomes pre-specified include: Long-term neurodevelopmental outcome (rates of cerebral palsy on physician as- sessment, developmental delay, i.e. IQ 2 SD < mean on validated assessment tools such as BSID MDI), blindness, hearing im- pairment requiring amplification 	"HFNC has similar rates of efficacy to other forms of non- invasive respiratory support in preterm infants for pre- venting treatment failure, death and CLD. Most evidence is available for the use of HFNC as post-extubation sup- port. Following extubation, HFNC is associated with less nasal trauma, and may be associated with reduced pneu- mothorax compared with nasal CPAP. Further adequate- ly powered randomised controlled trials should be un- dertaken in preterm infants comparing HFNC with oth- er forms of primary non-invasive support. Further evidence is also required for evaluating the safety and efficacy of HFNC in extremely preterm and mildly preterm sub- groups, and for comparing different HFNC devices"
Wong V, Cheuk DKL, Chu V. Acupuncture for hypoxic ischemic encephalopathy in neonates. Cochrane Database of Systematic Reviews 2013, Issue 1.	Primary outcomes pre-specified include:	No included trials
	 Long-term (> 12 months) major neu- rodevelopmental disability such as cere- bral palsy, developmental delay (BSID or GMDS assessment > 2 SD below the mean) or intellectual impairment (IQ > 2 SD be- low mean), blindness (vision < 6/60 in both eyes), sensorineural deafness requir- ing amplification, or any combination of these disabilities 	"The rationale for acupuncture in neonates with HIE is un- clear and the evidence from randomized controlled tri- al is lacking. Therefore, we do not recommend acupunc- ture for the treatment of HIE in neonates. High quality randomized controlled trials on acupuncture for HIE in neonates are needed"
Woodgate PG, Flenady V, Steer PA. Intramuscu- lar penicillin for the pre- vention of early onset group B streptococcal infection in newborn in- fants. Cochrane Data- base of Systematic Re- views 2004, Issue 2.	 Secondary outcomes pre-specified include: 1. Neurodevelopmental outcome (cerebral palsy, sensorineural hearing loss, visual impairment, developmental delay) 	"This review does not support the routine use of intra- muscular penicillin to prevent EOGBSD in newborn in- fants. There is a discrepancy between this finding and the results of a number of larger non-randomised trials. Ex- planations for this are proposed. There is a need for this intervention to be tested as a component of the existing prevention strategies in widespread use"
Young L, Embleton ND, McCormick FM, McGuire W. Multinutrient fortifi- cation of human breast milk for preterm infants following hospital dis- charge. Cochrane Data- base of Systematic Re- views 2013, Issue 2.	 Primary outcomes pre-specified include: 1. Development: a. Neurodevelopmental outcomes assessed using validated tools at > 12 months' corrected age and classifications of disability, including non-ambulant cerebral palsy, developmental delay, auditory and visual impairment b. Cognitive and educational outcomes at > 5 years: IQ and/or indices of educational achievement measured using a validated tool (including school examination results) 	"The limited available data do not provide convincing evi- dence that feeding preterm infants with multinutrient for- tified breast milk compared with unfortified breast milk following hospital discharge affects important outcomes including growth rates during infancy. There are no da- ta on long-term growth. Since fortifying breast milk for infants fed directly from the breast is logistically difficult and has the potential to interfere with breast feeding, it is important to determine if mothers would support further trials of this intervention"
Young L, Morgan J, Mc- Cormick FM, McGuire W. Nutrient-enriched formula versus stan- dard term formula for	 Primary outcomes pre-specified include: 1. Development: a. Neurodevelopmental outcomes assessed using validated tools at > 12 months' corrected age and classifica- 	"Current recommendations to prescribe "post-discharge formula" for preterm infants following hospital discharge are not supported by the available evidence. Some lim- ited evidence exists that feeding preterm infants follow- ing hospital discharge with "preterm formula" (which is

(Continued) preterm infants follow- ing hospital discharge. Cochrane Database of Systematic Reviews 2012, Issue 3.	 tions of disability, including non-ambulantcerebral palsy, developmental delay, auditory and visual impairment b. Cognitive and educational outcomes at > 5 years: IQ and/or indices of educational achievement measured using a validated tool (including school examination results) 	generally only available for in-hospital use) may increase growth rates up to 18 months corrected age"
Ziino AJA, Davies MW, Davis PG. Epinephrine for the resuscitation of apparently stillborn or extremely brady- cardic newborn infants. Cochrane Database of Systematic Reviews 2002, Issue 3.	Primary outcomes pre-specified include:	No included trials
	 Severe disability at follow-up at 12 months, 24 months, and 5 years on, de- fined as any of blindness, deafness, cere- bral palsy, or cognitive delay (score > 2 SD below the mean for a recognised psycho- metric test, e.g. BSID) Secondary outcomes pre-specified include: Cerebral palsy at 12 and 24 months, and at 5 years 	"No randomised, controlled trials evaluating the admin- istration of epinephrine to the apparently stillborn or ex- tremely bradycardic newborn infant were found. Similar- ly, no randomised, controlled trials that addressed the is- sues of optimum dosage and route of administration of epinephrine were found. Current recommendations for the use of epinephrine in newborn infants are based on- ly on evidence derived from animal models and the hu- man adult literature. Randomised trials in neonates are urgently required to determine the role of epinephrine in this nonulation"

Abbreviations: AN/AD: Auditory Neuropathy/Auditory Dyssynchrony; anti-VEGF: anti-vascular endothelial growth factor; BIND: bilirubininduced neurological dysfunction; BP: blood pressure; BPD: bronchopulmonary dysplasia; BSID: Bayley Scales of Infant Development; CDP: continuous distending pressure; CGA: corrected gestational age; CLD: chronic lung disease; CO2: carbon dioxide; CPAP: continuous positive airway pressure; CRBSI: catheter-related bloodstream infection; DQ: developmental quotient; ELBW: extremely low birthweight; EOGBSD: early-onset group B streptococcus disease; ETT: endotracheal tube; FIO2: fraction of inspired oxygen; GMDS: Griffith Mental Development Scales; GMFCS: Gross Motor Function Classification System; HFNC: high-flow nasal cannula; HIE: hypoxic-ischaemic encephalopathy; iNO: inhaled nitric oxide; IPPV: intermittent positive-pressure ventilation; IQ; intelligence quotient; IVH: intraventricular haemorrhage; LMA: laryngeal mask airway; MDI: Mental Development Index; Movement ABC: Movement Assessment Battery for Children; MV mechanical ventilation; NCPAP: nasal continuous positive airway pressure; NEC: necrotising enterocolitis; PDA: patent ductus arteriosus; PDI: Psychomotor Development Index; PET: partial exchange transfusion; PIE: pulmonary interstitial emphysema; PPHN: persistent pulmonary hypertension of the newborn; PPV: positive-pressure ventilation; RBCs: red blood cells; RCT: randomised controlled trial; RDS: respiratory distress syndrome; rhAPC: recombinant human activated protein C; ROP: retinopathy of prematurity; S-B: Stanford-Binet; SD: standard deviation; TGI: tracheal gas insufflation; UVCs: umbilical venous catheters; VA: visual acuity; VLBW: very low birthweight.

CONTRIBUTIONS OF AUTHORS

Emily Shepherd, Rehana Abdus Salam, and Shanshan Han conducted screening, data extraction, and quality assessment of included reviews. Emily Shepherd drafted the first version of the overview, with Rehana Abdus Salam, Shanshan Han, Sarah McIntyre, Nadia Badawi, Maria Makrides, Philippa Middleton, and Caroline Crowther making comments and contributing to the final draft.

Emily Shepherd drafted the first version of the protocol for this review, with Sarah McIntyre, Nadia Badawi, Maria Makrides, Philippa Middleton, and Caroline Crowther making comments and contributing to the final draft.

DECLARATIONS OF INTEREST

Emily Shepherd, Rehana Abdus Salam, Shanshan Han, Sarah McIntyre, Maria Makrides, Philippa Middleton, Caroline Crowther: none known.

Nadia Badawi was an author of one of the included reviews (Jones 2009). As pre-specified in our protocol, data extraction and quality assessment for this review were carried out by two other overview authors, who were not authors of this review.

SOURCES OF SUPPORT

Internal sources

ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, The University of Adelaide, Australia.

External sources

- National Health and Medical Research Council, Australia.
- Funding for the Pregnancy and Childbirth Australian and New Zealand Satellite
- Cerebral Palsy Alliance Research Foundation, Australia.

Project Grant: PG0914 – Interventions during the antenatal and neonatal period to prevent cerebral palsy: an overview of Cochrane systematic reviews (Shepherd E, Middleton P, Crowther CA)

• Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, USA.

Editorial support of the Cochrane Neonatal Review Group has been funded with Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, USA, under Contract No. HHSN275201100016C

INDEX TERMS

Medical Subject Headings (MeSH)

Asphyxia Neonatorum [therapy]; Brain Diseases [therapy]; Cerebral Palsy [*prevention & control]; Hypothermia, Induced; Infant, Low Birth Weight; Infant, Premature; Review Literature as Topic

MeSH check words

Humans; Infant, Newborn