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Abstract

This paper presents a comprehensive review on the sources of model inaccuracy and parameter 

uncertainty in metal laser powder bed fusion (L-PBF) process. Metal additive manufacturing (AM) 

involves multiple physical phenomena and parameters that potentially affect the quality of the final 

part. To capture the dynamics and complexity of heat and phase transformations that exist in the 

metal L-PBF process, computational models and simulations ranging from low to high fidelity 

have been developed. Since it is difficult to incorporate all the physical phenomena encountered in 

the L-PBF process, computational models rely on assumptions that may neglect or simplify some 

physics of the process. Modeling assumptions and uncertainty play significant role in the 

predictive accuracy of such L-PBF models. In this study, sources of modeling inaccuracy at 

different stages of the process from powder bed formation to melting and solidification are 

reviewed. The sources of parameter uncertainty related to material properties and process 

parameters are also reviewed. The aim of this review is to support the development of an approach 

to quantify these sources of uncertainty in L-PBF models in the future. The quantification of 

uncertainty sources is necessary for understanding the tradeoffs in model fidelity and guiding the 

selection of a model suitable for its intended purpose.
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1 Introduction

Additive manufacturing (AM) is a process of producing parts by depositing material layer by 

layer without part-specific tooling based on a 3D part model [1]. Among the different AM 
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processes, powder bed fusion (PBF) is often referred to as the most promising technology 

capable of manufacturing complex geometry of metallic parts applicable in aerospace, 

automotive, marine industries, and biomedical implants [2–7]. The two main processes of 

PBF are selective laser melting (SLM) and electron beam melting (EBM). The operating 

principle of the PBF process is that a thin layer of powder material is applied on a build 

platform, and an energy source (laser or electron beam) is employed to selectively scan and 

fuse the powder particles as per the desired geometry. After one layer is completed, the build 

platform is lowered by the prescribed layer thickness and an additional powder layer is 

spread. This process is repeated until building of the part is completed [8]. When a powder 

bed is used in the SLM process, it is specifically called laser powder bed fusion (L-PBF) 

process.

The L-PBF technology has many advantages compared to conventional manufacturing 

methods. The L-PBF technology produces parts having complex geometry and internal 

structures, sometimes without the need of support structures, from a wide range of 

engineering materials such as polymers, ceramics, and metals [9] while reducing lead time, 

minimizing material wastage, and producing nearly full-dense final parts [5,10]. In addition, 

L-PBF has the ability to tune properties during the processing of the parts and can produce 

near-net-shaped components ready to use [11]. Although the L-PBF process is a promising 

technology, it faces challenges when creating parts with consistent quality in terms of 

mechanical properties, surface finish, and fatigue life. Some of these challenges can be 

attributed to the existence of unstable fusion, thermal gradients, and process variabilities 

[12] that have not been fully understood [13].

To overcome these challenges, intensive experimental investigations continue, but these 

studies are time consuming and costly. Research efforts are also devoted to the development 

of predictive computational models and simulations to understand the dynamics and 

complexity of heat and phase transformations [14–16]. Although computational models and 

simulations are promising tools to understand the physics of the process, the lack of 

quantitative representation of their prediction accuracy hinders further application in process 

control and optimization. Due to this reason, it is very challenging to select suitable models 

for the intended purpose. Therefore, it is important to study and investigate the degree of 

accuracy and uncertainty associated with L-PBF models.

The focus of this paper is to review existing L-PBF models, their assumptions, and 

associated uncertainties. The rest of the paper is organized as follows: Sec. 2 presents the 

basics of L-PBF process and the summary of previously published review papers. Section 3 

presents a review of different models in L-PBF with associated modeling assumptions. 

Parameter uncertainty is discussed in Sec. 4, which is followed by a discussion of 

uncertainty quantification (UQ) related challenges in Sec. 5. Section 6 presents some 

conclusive remarks, including future directions on uncertainty quantification.
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2 Background

2.1 Physical Phenomena in L-PBF Process.

A simple overview of the L-PBF process is shown in Fig. 1. Due to the inherent nature of L-

PBF process, the powder particles experience rapid heating, melting, and solidification 

processes within a short period of time. Thus, dynamics and complex physical phenomena 

occur during the process over a broad range of time and length scales at different phases of 

the process from powder layer formation to melting and solidification [17,18]. The melt pool 

dynamics that occur during the process include the convective flow of molten metal driven 

by Marangoni effect due to the surface tension gradient on the top surface of the molten pool 

and the effect of recoil pressure of the expanding vapor and evaporation losses [19,20]. This 

process is governed by a variety of physical mechanisms, such as heat source–particle 

interaction, powder layer formation, heat transfer, fluid dynamics of the molten pool, and 

phase transformations.

The physics often modeled in the L-PBF process can be characterized by five physical 

phenomena. First is the powder layer deposition. In this step, powder particles of different 

size get pushed by a re-coater onto the last layer in the build chamber due to gravity, friction, 

and other forces among the powder particles. Second is the delivery of laser energy onto the 

powder. Laser energy, guided by the optics and galvanometer, is directed to the appropriate 

location on the powder layer. Here, the laser energy interacts with the powder and gets 

converted into the heat energy. Third is the formation of the melt pool. In this step, the heat 

energy from a moving laser melts the powder and forms a melt pool with a transient 

temperature field around it. Fourth is the solidification of the melt pool due to heat 

dissipation. Fifth is the development of residual stress due to different heating and cooling 

rates across multiple layers and within a layer. All these physical phenomena are depicted in 

Fig. 1, with various L-PBF process parameters.

2.2 Summary of Previous Reviews.

The five physical phenomena are often only partially addressed. The predictive accuracies of 

L-PBF models of the five physical phenomena are affected by modeling assumptions, 

numerical accuracy, parameters uncertainty, and measurement uncertainty for validation. To 

better understand the uncertainties and inaccuracies of these models, several researchers 

have reviewed the L-PBF modeling literature [21]. Although several reviews of L-PBF 

models exist in the literature, the sources of uncertainty and inaccuracy are not explicitly 

considered.

Assouroko et al. [21] studied the heat absorption and melt pool models to identify the model 

inputs and the underlying physics of the L-PBF models. They did not consider all the 

associated assumptions and did not review the sources of parameter uncertainties. Roh et al. 

[22] reviewed an additional solidification model, but did not consider the sources of 

parameter uncertainties. Witherell et al. [23] reviewed additional model, but did not review 

the sources of parameter uncertainties. Hu and Mahadevan [24] reviewed all five models, but 

a comprehensive review of their assumptions and the sources of parameter uncertainty is still 
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lacking. These studies reviewed some of the L-PBF models without considering the sources 

of inaccuracy and uncertainty associated with modeling assumptions and input parameters.

Lopez et al. [25] conducted the uncertainty quantification in an L-PBF model to quantify 

model uncertainty considering the melt pool model as a case study. They used the melt pool 

model to characterize uncertainty in the melt pool dimensions based on certain assumed 

uncertainties in the input parameters of the melt pool model. Furthermore, the uncertainty 

quantification included numerical uncertainty and measurement uncertainty.

The predictive accuracy of L-PBF models strongly depends on the included and neglected 

physics of the process. Modeling inaccuracy originates from the modeling assumptions that 

neglect the part of the physical phenomena of a process. In addition, computational models 

require several input parameters including process parameters and material properties to 

represent the physical scenario of the process. However, the value of some parameters 

cannot always be known precisely and may exhibit inherent temporal fluctuations. 

Therefore, there is an associated parameter uncertainty in the computational models due to 

unknown input parameters. Moreover, the mathematical equations used to formulate the 

physical phenomena are difficult to be solved analytically, and various numerical methods 

have been used to discretize the system into finite elements and temporal transient 

phenomena into time-steps to obtain an approximate solution. This discretization introduces 

numerical uncertainty in the computational models. Finally, to validate the simulation results 

against measurement data, experimental results introduce measurement uncertainty due to 

imprecise measurement methods. Therefore, modeling uncertainty includes parameter 

uncertainty, numerical uncertainty, and measurement uncertainty for validation [26].

In general, model assumptions lead to inaccuracies in model predictions. Prediction 

uncertainty arises due to model uncertainty, which includes parameter uncertainties, 

numerical accuracy, and measurement uncertainty. Usually, L-PBF simulation models have 

several variables that cannot be experimentally measured. The values of these variables are 

estimated by calibrating the model output with experimental outcomes [27,28]. Model 

predictions are affected by both inaccuracy and uncertainty. Model inaccuracy arises from 

modeling assumptions, while model uncertainty is a resultant of various sources of 

uncertainties combined within the model.

It is critical to review and consider all the phenomena and their modeling assumptions and 

sources of parameter uncertainty to quantify uncertainties in the L-PBF models. The 

modeling inaccuracy and parameter uncertainty sources are discussed in Secs. 3 and 4, 

respectively.

3 Sources of Model Inaccuracy

The accuracy of computational models and simulations strongly depends on the included 

and neglected physics of the process. Modeling inaccuracy originates from the modeling 

assumptions that neglect the part of the physical phenomena of a process [25,29]. In this 

section, we focus on metal L-PBF process and discuss some of the common sources of 
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modeling inaccuracies due to modeling assumptions that exist in powder, heat source, melt 

pool, solidification, and residual stress models.

3.1 Powder Bed Models.

The L-PBF process begins with the formation of a powder layer on a substrate. The packing 

structure, which is the output of powder bed models, is dependent on parameters such as 

powder size and shape, particle size distribution, layer thickness, and re-coater shape. The 

powder bed is formed when the powder delivery piston rises, the build platform lowers by 

the predefined layer thickness, and the re-coater moves forward and spreads a layer of 

particles on the build platform. In addition to the powder bed parameters, the re-coater 

velocity also influences the surface structure and packing density of the powder bed [30,31]. 

During the powder bed formation, a number of phenomena such as friction, collision, and 

adhesion occur due to the interaction among microsized particles. As a result, different 

forces, such as elastic, frictional forces, gravity, and van der Waal forces, can influence 

powder bed morphology [32–34].

To simulate the powder bed formation in L-PBF, several numerical models have been 

proposed based on the discrete element method (DEM) or the Raindrop packing algorithm. 

In DEM, inter-particle forces computed using nonlinear Hertz theory are explicitly 

considered [32–36]. The Raindrop packing algorithm randomly deposits powder particles 

without considering interaction forces among particles [37–40]. Figure 2 depicts the input, 

output, and characteristics of the two types of models.

Moreover, in numerical simulations of the powder bed, considering the particle size 

distribution as a Gaussian (most common) [32,33,41], bimodal (provides higher powder 

packing density) [33,39,41], uniform (less common) [32], or monosized (ideal condition) 

[32,33,39] distribution significantly affects the powder bed morphology. Each distribution 

type provides different packing density and porosity of the powder bed, especially at small 

layer thickness [33]. The choice of particle size distribution has a significant influence on 

factors that directly depend on the packing density like the value and degree of fluctuations 

of absorptivity of powder bed [41] and radiative transfer process [42].

In most of the powder bed simulations, the shape of the particle is assumed to be spherical. 

However, the particles are of complex geometrical shape that significantly alters the packing 

nature and size distribution of the powder bed [31]. In addition, while recycling powder 

particles, oxygen content increases leading to changes in particle size distribution, shape 

(distortion), and surface roughness [43]. Moreover, when the powder size is relatively small, 

the effect of van der Waal forces becomes significant, and the particles have the tendency to 

agglomerate together. This causes the flow-ability of the powder to reduce, which results in 

poor estimation of powder bed density (packing density) [44].

Thus, neglecting these factors and simplifications and assumptions related to interaction 

between particles causes model inaccuracies in powder bed models.
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3.2 Heat Source Models.

Once the powder bed is formed, thermal energy in the form of a laser beam is applied on the 

powder bed, as per the scanning strategy, to melt and fuse particles together. The amount of 

heat absorbed by the powder bed is governed by many factors, such as laser power, beam 

spot size, thermal conductivity of a material, powder size and shape, size distribution, 

packing density, surface oxidation, and contamination [16,41]. Based on the intensity of 

laser power distribution on the surface of the powder bed, the heat source is assumed to be 

(a) a point heat source that discards the diameter of the laser beam spot [45,46], (b) a 

cylindrical heat source that assumes the uniform intensity within the spot size [21], (c) an 

ellipsoidal heat source that assumes the heat intensity decays exponentially with distance 

from the center of the source [47–49], or (d) a Gaussian heat source that considers the 

intensity of power to be a normal distribution [50]. When the laser beam strikes the powder 

bed, multiple scattering of laser rays occurs within the powder particles and in the melt pool 

[15], and hence, the penetration depth is comparable to the layer thickness [51]. Multiple 

scattering of the laser beam causes the absorptivity of the powder bed to be higher than the 

absorptivity of laser on a flat surface [41,52]. Thus, assuming the absorbed energy to be 

constrained on the surface instead of the volume of the powder bed considerably reduces the 

predictive accuracy of the heat source model [53].

To determine the amount of absorbed energy and absorptivity of the powder bed, a number 

of numerical models are developed on the basis of (a) a radiation transfer formulation that 

derived analytical solution from a homogeneous continuum radiation transfer equation 

(RTE) using powder porosity and surface areas [51], (b) a ray tracing method that accounts 

for the effect of multiple reflections by tracking the trajectories of each photon [41,54], 

and(c) a Beer–Lambert approach that assumes the laser beam is predominantly absorbed at 

the powder surface of the first incidence layer and relates attenuation of irradiation intensity 

with penetration depth as a function of exponential decay [55–57]. Considering their varying 

assumptions, these heat source models intrinsically carry significant inaccuracy that further 

propagates into the subsequent melt pool and solidification models [24]. Table 1 presents the 

inputs, outputs, and characteristics of these different models.

Moreover, due to the moving nature of the heat source in L-PBF process, the thermal 

diffusion time is short, resulting in partial melting of the particle and possibly causing 

defects in the form of pores or inclusions in the finished part [41]. Thus, while modeling the 

heat source in the L-PBF process, it is important to consider the powder bed as a distribution 

of interacting powder particles instead of idealizing it as a continuum material. Treating the 

powder bed as a continuum body ignores the effect of several physical phenomena induced 

by fluid dynamics, such as surface tension and wetting, that are present in the molten pool 

[52,60]. Therefore, assumptions associated with the distribution of absorbed energy (surface 

versus volumetric) and powder bed material (continuum versus powder particles) potentially 

govern the fidelity of the heat source models. A model that considers simplified assumptions 

and neglects realistic characteristics of the powder bed possess a substantial amount of 

modeling inaccuracy.
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3.3 Melt Pool Models.

The absorbed heat energy from the laser beam is locally dissipated across the powder bed, 

and when the powder reaches its melting temperature, a melt pool is formed, and 

consolidation of particles occurs at locations exposed directly to the laser power. 

Consolidation of molten particles, melt pool dynamics, and melt pool characteristics, such as 

melt pool shape and dimensions (width, depth, and length) and the temperature gradient, are 

affected by different factors and phenomena that exist in the process. These factors include 

the surface tension of melt pool, capillary and Marangoni forces, wetting behavior of the 

melt pool, Plateau–Rayleigh instability, viscosity of the molten pool, gravity, shrinkage, 

inertia effect, surrounding atmospheric pressure, evaporation, recoil pressure, buoyancy 

force, spattering, heat convection and radiation, and layer thickness of the powder bed 

[52,55,60–62].

The accuracy of predictive melt pool models significantly depends on the incorporation of 

these factors. Since temperature-dependent surface tension governs the flow of the melt pool 

from hot to cold regions, which causes Marangoni convection transfer, surface tension 

influences the surface quality and morphology of the track formation [37,63,64]. When the 

surface tension effect is considered in a melt pool model, the binding of melted particles 

together and the formation of smoother surface due to an increase in contact area with the 

substrate are better captured [65]. The wetting behavior of the melt pool with the substrate or 

previous layers and surrounding powder particles due to surface tension strongly affects the 

shape of the melt pool and continuity as well as adhesion to the previous layer [52]. The 

presence of factors, such as surface roughness of powder particles, oxidation, and 

contamination in powder bed, cause improper wetting, which results in the formation of 

defects such as balling, pores, uneven surface, and delamination between layers [66]. The 

evaporation phenomenon occurs when the temperature of the melt pool exceeds the boiling 

point especially at high energy density. The resulting loss of mass and additional cooling 

induce recoil pressure on the melt pool, which possibly leads to the formation of keyhole-

related defects [67–70]. Thus, for better understanding of the melt pool dynamics at high 

heat intensity, the effect of evaporation phenomena should be considered [71].

Direct measurement of complex melt pool mechanisms has been extremely cumbersome and 

time consuming [72]. Therefore, computational models and simulations that consider the 

physical phenomena occurring during the process are developed. For quick prediction of the 

temperature field of a track and melt pool geometry, highly simplified thermal models [45] 

based on Rosenthal’s approach [46] have been developed for L-PBF process [25]. Although 

these models provide quick and preliminary results that can be starting points for the 

development of numerical models [21], several physical phenomena, such as phase changes, 

melt pool flow, powder particle packing, and energy distribution, are neglected. Therefore, to 

(a) better understand and capture the complex physical phenomena of the melt pool, (b) 

simulate the melt pool dynamics, and (c) determine melt pool characteristics and thermal 

history of a track, several numerical models have been developed based on different 

approaches.

The finite element method (FEM)–based thermal model is the most popular approach for 

simulating L-PBF process and predicting temperature field and melt pool characteristics 
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[15,73]. In this approach, the powder bed and substrate are discretized into finite number of 

elements to solve heat transfer governing equations and boundary conditions. Considering 

(a) convection heat loss due to surrounding gas, (b) thermal radiation loss on the free 

surface, (c) temperature-dependent material properties, and (d) the effect of latent heat of 

fusion during phase changes, certainly improve the predictive accuracy of FEM-based 

thermal models [50,57,74–77]. The common assumptions of FEM thermal models are that 

the powder bed is considered to be a continuum body instead of randomly distributed 

particles, and the dynamics of the melt pool, including fluid flow and convection of the melt 

pool due to surface tension, are neglected. These simplifications can potentially cause 

significant modeling inaccuracy when estimating melt pool characteristics and the 

temperature field of the track where the laser scanning occurs.

To understand the dynamics in melt pool formation, a number of numerical models have 

been developed based on (a) the Lattice Boltzmann method (LBM) and (b) computational 

fluid dynamics (CFD)–based models. LBM uses particle collusion and considers the 

hydrodynamics effects in the melt pool [13,20,37,56,78]. The CFD models include (a) finite 

difference method (FDM) and volume of fluid (VOF) method used to track the free surface 

of the molten pool and Flow-3D code to solve the governing equations [79], and (b) finite 

volume method (FVM) with VOF to solve mass, momentum, and energy conservation 

equations using tools, such as OpenFOAM and Flow-3D [63,80–85]. In addition, coupling 

FEM and FVM using ALE3D code by utilizing arbitrary Lagrangian–Eulerian techniques is 

another numerical method used for melt pool model [64,65]. Since these methods consider 

the powder bed to be a distribution of particles and partially or fully incorporate the physical 

phenomena mentioned above, they provide better predictive accuracy than FEM and 

Rosenthal-based thermal models. It should be noted that neglecting some of the factors 

mentioned above introduces inaccuracy associated with modeling assumptions that affect the 

model fidelity [86]. The inputs, outputs, and characteristics of these melt pool models are 

listed in Table 2.

As mentioned above, the L-PBF melt pool possesses many physical phenomena that need to 

be considered while predicting melt pool shape and geometry, thermal history of a track, 

defects such as balling, porosity, and delamination between layers. The model assumptions 

potentially affect the fidelity of the predictive models and result in modeling inaccuracy.

3.4 Solidification Models.

When the heat source moves away from a certain location in a powder bed, the molten 

material becomes cool and starts to solidify, and the evolution of grain structure begins. The 

microstructure characteristics such as grain size, grain morphology, and grain texture are 

required for predicting the mechanical properties of the final part [60]. The temperature 

gradient obtained from the melt pool model and cooling rates induced by the scanning speed 

of the laser beam are the main input variables that govern the evolution of grain structure 

during the solidification process [98]. In addition, melt pool dimensions also have influence 

on the characteristics of microstructure. It is observed that the cross-sectional area of the 

melt pool affects the grain size, whereas the melt pool area-to-depth ratio influences the 

grain morphology during solidification [99]. Due to the moving nature of the heat source, 
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the molten pool experiences rapid cooling and fast solidification, which result in fine grain 

formation and thus good mechanical properties [100]. The previous layers and adjacent 

tracks are exposed to heat treatment and experience repeated heating and cooling cycles. The 

thermal gradients and cooling rates that influence the characteristics of microstructure 

depend on scanning speed, scanning strategy, hatch distance, material properties, part 

geometry, build time, build direction, temperature of the build platform, part porosity, and 

grain size distribution [52,101–103]. The fidelity of a solidification model that predicts the 

metallurgical microstructure of the produced part depends on the accuracy of the 

temperature gradients of the locations directly exposed to the heat source and other affected 

locations (i.e., previous layers and adjacent scan tracks) that are influenced by different 

physical phenomena as discussed in Sec. 3.3.

Modeling the solidification process to determine the evolution of microstructure in L-PBF is 

important as it helps for the accurate prediction of residual stresses and distortion. Since the 

solidification process utilizes the thermal history of the melt pool in the heat-affected zone 

and locations at previous layers and adjacent scan tracks, it needs to be coupled with the 

melt pool model. To study the solidification process and simulate the evolution of grain 

structures, the phase field (PF) method and cellular automata (CA) approaches are 

commonly used [104].

The formulation of the PF model [105–108] is based on the free energy function and 

explicitly considers the locations of liquid, solid, and liquid–solid phase boundaries. It is 

coupled with a FEM-based thermal model of the melt pool that provides the temperature 

field to study the solidification process. The CA approach [101,108–111] geometrically 

tracks the grain growth in the heat-affected zone. To simulate the evolution of grain growth 

in the solidification process, the CA approach is coupled with melt pool models, such as 

LBM [111] and FDM [101]. The CA model is also coupled with the FEM-based thermal 

model to simulate micro-structure evolution and to study the contributions of variability in 

several parameters to grain size distribution [96,110,112]. Since microstructure evolution 

approaches simulate solidification process on the basis of different assumptions and 

approximations, there is associated model inaccuracy that affects the accurate prediction of 

the microstructure characteristics and metallurgical properties. The inputs, outputs, and 

characteristics of these different solidification models are presented in Fig. 3.

3.5 Residual Stress Models.

Due to high thermal gradients near the laser spot and the surrounding area, rapid cooling 

when the laser moves, and repeated heating and cooling cycles, the material experiences 

successive thermal expansion and shrinkage to produce localized compression and tension 

that induce residual stresses in the produced part [102]. These thermally induced residual 

stresses partially relax when the support structures and surrounding powders are removed. 

Depending on part geometry, they may cause fatigue crack growth and deformation in the 

final part, which may result in warping, loss of edge tolerance, loss of net shape, and part 

failure [102,113,114]. The residual stresses and distortion of the produced part are 

potentially affected by the build orientation, scanning strategy, and preheating of the build 

platform [115,116]. To mitigate residual stresses, some of the applied techniques are proper 
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selection of scan strategies and build orientation [117,118], in situ heating of the powder bed 

[119], and ex situ heat treatment before removing support structures [120]. In addition, since 

larger residual stresses are observed at the top layer and substrate–part connection [121], 

filleting the edges can reduce stress concentration at these regions [122]. Thus, to simulate 

the residual stresses and distortion, which is commonly performed at part scale, it is 

necessary to consider the effect of support structures, surrounding powder particles, and the 

build platform [60].

A simplified mathematical model is derived to predict the general profile of residual stresses 

using equilibria of force and moment as per the general beam theory based on a number of 

assumptions [116]. However, the most common residual stresses prediction method in the L-

PBF process is the thermomechanical FEM-based analysis that uses the temperature 

gradients determined from the melt pool model as thermal loading [123,124]. In addition to 

the temperature history, the characteristics of microstructure determined from the 

solidification model are also used as input to residual stress models. These are used to 

perform elastoplastic mechanical analysis for the computation of residual stress and 

distortion [125]. In FEM-based analysis, the material deposition is modeled by using quiet 
element or inactive element activation approaches, which are activated as the added material 

solidifies [49]. In the quiet element activation approach, the elements are present from the 

start of the analysis, but due to their assigned properties, they do not affect the analysis. 

However, in the inactive element activation approach, the elements are not included in the 

analysis until the corresponding material is added [125]. To include phase transformation 

phenomena for predicting residual stresses and distortion, FEM analysis uses these 

activation approaches, also known as element birth and death in ABAQUS and ANSYS [15]. 

These elements are deactivated until solidification is completed, and then they are activated 

back to attain their actual stiffness [15]. The residual stress and distortion are predicted by 

utilizing a thermoelasto-plastic constitutive material model that can be solved using CUBIC 

code by Pan Computing LLC (Autodesk Inc.), which includes the stress relaxation effect 

due to annealing [122]. Moreover, thermomechanical FEM analysis is utilized to predict the 

residual stresses and distortion occurring during the cooling cycle [121]. The inputs, outputs, 

and characteristics of these different residual stress models are presented in Fig. 4.

The prediction accuracy of residual stress and distortion strongly depends on the factors 

considered in the material constitutive model, such as material inhomogeneity and 

anisotropy, temperature field, microstructure, and temperature-dependent mechanical 

properties of the material. Thus, the inaccuracies present in the melt pool and solidification 

models propagate to residual stress and distortion models via temperature history and 

microstructure characteristics.

4 Sources of Parameter Uncertainty

Due to the complexity of the L-PBF process, more than 130 parameters affect the quality of 

the final part [126]. Since precise values of some of these parameters are not known, 

computational models can have uncertainty due to unknown values of the input parameters. 

In addition, due to inherent temporal fluctuations and variation in input parameters, such as 

laser power, scan speed, powder size, powder shape, and powder size distribution, there is 
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uncertainty associated with these parameters that reduce predictive accuracy of a model. 

Some of the sources of uncertainty related to input parameters that affect the accuracy of the 

L-PBF models are discussed in this section.

4.1 Layer Thickness.

Layer thickness is the quantity that describes the predetermined thickness of the powder 

layer for each layer of scanning [127]. It is one of the main controllable process parameters 

that is directly correlated with the quality of the part and its effects have been studied in 

Refs. [128–132]. The accuracy of the powder bed layer thickness depends on (a) motion and 

position of build platform and re-coater arm [133] and (b) powder bed density. The density 

of the powder bed affects the layer thickness, and due to consolidation of the powder, the 

effective layer thickness is different from the nominal value. The effective layer thickness is 

the nominal layer thickness divided by the powder packing density [13,134]. Although the 

re-coater spreads approximately the same amount of material in one layer, the density of the 

powder packing is not the same [93]. As a result, variation in powder bed density causes 

layer thickness of the powder bed to inherit uncertainty. Based on the review of literature, 

the sources of uncertainties in layer thickness can be categorized as uncertainties related to 

build platform motion, powder bed density, and re-coater arm motion.

4.2 Laser Power.

Laser power is the rate at which energy is emitted from a laser. It is one of the most critical 

controllable parameters that has an impact on the quality of the finished part and influences 

the consolidation process. Uncertainty in the laser power arises due to (a) inherent drift in 

the Galvanometer control system [135,136], (b) heating of optics, and (c) soot on optics. 

When various components of the beam delivery optics within the laser path heat up, it can 

potentially cause loss of power on the build plane. Moreover, during the L-PBF process, the 

build chamber gets dirty, and soot can accumulate on beam delivery optics and block the 

laser path. This contamination effectively reduces the laser power at the build plane, and 

when the contaminated optics heat up, it can further reduce the laser power.

There are dynamic effects that limit the accuracy of the laser power, scan speed, and laser 

spot position due to disturbance of the laser and galvo systems during switch on and off. 

Laser systems require time to reach a normally steady state in which it exhibits small 

oscillations as output power does not immediately attain its steady state [137]. In other 

words, when the laser is suddenly switched on, the laser emits a number of spikes and 

undergoes damped relaxation oscillations before the steady state is reached [138]. Because 

of laser power fluctuation, perturbation during the melting process can be observed and 

uniform melt pool dimensions could not be achieved [139]. Based on the review of 

literature, the source of uncertainties in laser power can be categorized into galvanometer 

system and optics system.

4.3 Laser Scan Speed.

Scan speed is another critical controllable parameter that decides the quality of the produced 

part as it influences the melting and solidification processes [139]. Uncertainty in scanning 

speed arises from (a) Galvanometer’s inherent drift and intrinsic error [140] and (b) heating 
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and intrinsic errors in positioning optics [140,141]. The dynamic effects of the galvo system 

depend on the input frequency, acceleration, and other related factors. Small variations in 

scanning speed perturb the melting process and result in a noticeable effect on peak 

temperature and melt pool geometry [142].

Based on the review of literature, the source of uncertainties in laser scan speed can be 

categorized into galvanometer and optics systems. Figure 5 shows uncertainty sources in a 

fishbone diagram highlighting the factors that affect layer thickness, laser power, and scan 

speed.

4.4 Absorptivity.

Absorptivity is the ratio of the optical power absorbed by the material to the incident power 

applied [143]. Absorptivity depends on powder material, particle shape and size, distribution 

of particle sizes, porosity, layer thickness, and laser beam size, wavelength, and profile 

[16,41]. Due to multiple scattering of light, when the laser strikes the powder, the absorption 

is significantly larger than its value from normal incidence on a flat surface. During keyhole 

formation, multiple reflections of laser light directly strike the keyhole wall, resulting in an 

increase in the energy transfer from the laser to the material and increases absorption 

[144,145].

Although direct measurement of absorption is very difficult [146], it is important to capture 

the realistic aspects affecting the absorptivity of the powder [143,146]. These aspects include 

nonspherical particle shape, real powder structure, surface oxidation, alloy materials, and 

surface roughness of the powder [16,143,147,148]. Therefore, these factors result in 

significant uncertainty in the absorption coefficient of the powder bed in L-PBF process. 

Based on the review of literature, the source of uncertainties in powder bed absorptivity can 

be categorized as uncertainties related to powder properties, material properties, effective 

layer thickness, and laser beam properties.

4.5 Temperature-Dependent Properties.

The temperature-dependent material properties that significantly affect the accuracy of the 

predictive models are density, thermal conductivity, specific heat capacity, and emissivity. 

Complete and well-documented sets of measurements of temperature-dependent material 

properties are available for some metals. However, to the best of our knowledge, similar 

standard documents for metallic alloys in a wide range of temperatures are unavailable. The 

standard method for implementing temperature-dependent properties is to linearly 

interpolate between the measured values provided that the measured values can be 

approximated linearly [149]. Moreover, due to the complexity of heat transfer mechanisms 

in an L-PBF process, precise determination of temperature-dependent properties above 

melting temperature is more difficult [150].

4.5.1 Thermal Conductivity.—Thermal conductivity is a quantity that determines the 

rate at which heat transfers through the material due to a temperature gradient. Thermal 

conductivity of a powder bed is smaller than the solid material due to higher porosity as the 

contact area between adjacent particles is small. Thermal conductivity is influenced by 
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several factors including particle size and shape, particle size distribution, particle 

morphology, inter-particle distance, and thermal conductivity of the solid material and 

surrounding gas [75,151–154]. The effective thermal conductivity of the powder bed is 

different in the powder, melting, and solidification phases of the process and depends on the 

solidus and liquidus temperatures of the material in the melting phase [88,134]. Based on the 

review of literature, the source of uncertainties in thermal conductivity can be categorized as 

uncertainties related to powder properties, material properties, surrounding gas properties, 

and temperature.

4.5.2 Density.—Due to high temperature variation during the L-PBF process, from room 

temperature through melting, density of a material changes with temperature. In most cases, 

the density of the final part is higher than the powder bed density [155]. Availability and 

uncertainty in measured density at high temperature lead L-PBF models to assume (a) 

constant density, (b) linear variation between measured values, (c) different density in 

powder, molten, and solid phases of materials, or (d) constant density in solid region but a 

quadratic function of temperature in the liquid region [75,134]. These different assumptions 

can have considerable influence on the accuracy of models.

4.5.3 Specific Heat Capacity.—Temperature-dependent specific heat capacity follows 

a nonlinear function of temperature around the melting temperature in the melting phase to 

account for the latent heat of fusion [134,156]. However, to simplify the complexity of the 

model, some studies assumed a linear function of temperature in the solid region and a 

constant value of specific heat capacity in the liquid region [75]. Such simplification, in the 

absence of measured data, influences model accuracy.

4.5.4 Emissivity.—Emissivity is the property of a material that quantifies the efficiency 

of a surface to emit energy in the form of thermal radiation. It is defined as the ratio of the 

energy intensity radiated by the surface of a material to that radiated by a blackbody at the 

same temperature, wavelength, and viewing angle [157]. Emissivity is critical for the 

accurate prediction of the temperature of the molten pool and melt pool dimensions and can 

be used to calibrate thermal camera readings for temperature measurement. Emissivity of a 

material strongly depends on temperature and highly varies at elevated temperatures 

[158,159]. Powder bed emissivity also depends on factors such as wavelength, oxidation, 

contamination, surface texture, surface morphology, surface roughness [157–161], solid 

material emissivity, and powder bed porosity [162]. Furthermore, it is likely to have different 

values in the powder, melting, and solidified phases in the L-PBF process [127,163].

Based on the review of literature, the sources of uncertainty in powder bed emissivity can be 

categorized as uncertainties related to powder properties, material properties, in-bed 

porosity, and temperature. Uncertainty sources for powder bed absorptivity, powder bed 

thermal conductivity, and powder bed emissivity are compared in a fishbone diagram 

highlighting the common and different sources in Fig. 6.

Several other parameters that are of interest in L-PBF are preheat temperature, melting 

temperature, and latent heat of fusion. Uncertainties in these parameters also impact model 

accuracy.
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5 Challenges in Uncertainty Quantification for L-PBF

As can be seen from the review of model inaccuracies and parameter uncertainty sources 

presented in Secs. 3 and 4, the UQ in the L-PBF process is a difficult and tedious process. 

The modeling uncertainty of output quantity of interest is impacted by not only the 

parameter uncertainties but also the numerical and measurement uncertainties and cascading 

effect of one model output into other models. This cascading effect based on the summary of 

the review presented above is also depicted in Fig. 7.

To quantify the parameter uncertainty, a design of experiments approach needs to be 

planned. Such an approach would require consideration of simulation times of each model, 

model fidelity, model assumptions, uncertainty of input parameters, and the cascading effect 

shown in Fig. 7. Due to the large number of input parameters in L-PBF, a design of 

experiments approach can be challenging in terms of number of simulations and time 

required. Nevertheless, the uncertainty of an output quantity of interest will be a function of 

the uncertainties of input parameters (Ui), powder bed model (UPB), heat source model 

(UHS), melt pool model (UMP), solidification model (US), and the residual stress model 

(URS), as shown in Eq. (1).

Uo = f Ui, UPB, UHS, UMP, US, URS (1)

To quantify modeling uncertainty, simulation results S of the predictive model need to be 

validated against the experimental data D. The ASME V&V-20 standard [29], which 

discusses the sources of uncertainty and UQ methods in heat transfer and fluid mechanics 

models, can be suitable for L-PBF models as it involves thermally activated consolidation 

processes [87]. The interval within which modeling error falls is characterized by

δmodel ϵ E ± uval (2)

where E is the comparison error between simulation result S and measurement data D and 

uval is validation uncertainty, also known as modeling uncertainty, which accounts for all 

sources of uncertainty. Assuming that they are independent, it can be computed as follows

uval = unum
2 + uinput

2 + uD
2 (3)

where unum, uinput, and uD are numerical uncertainty, parameter uncertainty, and 

measurement uncertainty, respectively. Numerical uncertainty can be quantified using a grid 

convergence index [164], whereas measurement uncertainty is quantified as per the Guide to 

the expression of Uncertainty in Measurement (GUM) that standardized the evaluation and 

expression of uncertainty in measurement [165].
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Another aspect critical to uncertainty and inaccuracy of models is calibration uncertainty. As 

indicated earlier, models are calibrated to experimental measurements based on certain 

parameters. Depending on the physics considered in the model and input parameter ranges 

for the experiment, calibration will have associated uncertainty. Such uncertainty can play a 

wider role when comparing similar models to new experimental results. This effect is widely 

seen in recently concluded AMBench Tests [166].

The main goal of UQ studies in this work is to compare models having different fidelities 

and to identify (a) the parameter range over which low- and high-fidelity models can 

perform, (b) the ability to use data-driven models in combination with high-fidelity model 

results for specific parameter values, and (c) the speed at which these computations can be 

made using data-driven, physics-based, or hybrid models to quite in-process qualification for 

L-PBF. Recently, there are some research efforts on verification and validation and UQ of 

data-driven models for the prediction of melt pool dimensions and material property in metal 

L-PBF process [167,168]. Moreover, UQ framework based on data-driven surrogate models 

such as generalized polynomial chaos expansions [169] and Gaussian process [170,171] for 

quantifying sources of uncertainty in high-fidelity computational models have been the 

center of recent research interest in AM community.

Although many individual models describing the physics at different fidelity levels exist, 

there is still a lack of simulation models that include all the physics discussed in metal L-

PBF process. The main hinderances for developing such a combined model are (a) speed 

and memory required to run individual models and (b) uncertainty and inaccuracy of the 

models. Even with modern Graphics Processing Unit (GPU), a high-fidelity model for even 

a single track runs several hours. For a realistic part, entire simulation may take anywhere 

from weeks to a month. For these reasons, many researchers are pursuing low-fidelity 

models, surrogate models, or data-driven models. These models have yet to prove their 

capability in comparison to high-fidelity physics-based models. As discussed throughout this 

paper, uncertainty and inaccuracy reporting with a model are needed to understand the 

advantages of one model over another. Very few studies focus on quantifying uncertainty 

and inaccuracy of individual models while none consider combined uncertainty of all the 

models. These are critical gaps in increasing the reliability of physics-based models for 

metal L-PBF simulations.

For complete part simulations, all five classes of simulation models have to consider 

geometry-related artifacts such as support structures, overhangs, thin walls, and bridges. 

Different physical phenomena exist for polymer PBF models, EBM models, and direct 

energy deposition type models. Although these phenomena are different, the modeling 

inaccuracies, calibration uncertainty, parameter uncertainty, and measurement uncertainty 

play similar role in model predictions.

Calibration uncertainty is another important aspect to be considered for simulation models. 

As detailed physics-based models are developed for metal L-PBF, multiple unmeasurable 

parameters emerge that need to be estimated and then calibrated for appropriate predictions 

from the models. Novel techniques to measure these parameters might need to be developed 

to reduce the calibration uncertainty.
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6 Conclusions

The paper comprehensively reviewed the five different phenomena (powder bed formation, 

heat absorption, melt pool formation, solidification, and residual stress) existing in L-PBF 

process, their simulation models, and associated uncertainties. The simulation models were 

reviewed focusing on the modeling assumptions. These assumptions in the models affect 

accuracy of the predictive model and related uncertainties. The sources of uncertainty of the 

critical input parameters (layer thickness, laser power, laser scan speed, absorptivity, thermal 

conductivity, density, specific heat capacity, and emissivity) were identified, and the 

uncertainty sources were mapped out in the fishbone diagram, giving first such detailed 

uncertainty map for L-PBF models.

The overall goal was to identify the sources of uncertainties and support the development of 

uncertainty quantification approach in simulation models of L-PBF for a given quantity of 

interest. With the complete review of model assumptions and parameter uncertainty sources, 

the development of UQ approach for L-PBF will be expedited. Furthermore, the cascading 

L-PBF model dependency and flow of model and parameter uncertainty will aid in reducing 

the effort in UQ. The UQ approach pursued in future will rely on design of experiments to 

showcase the impact of model/parameter sensitivities to the output quantity of interest. The 

ASME V&V 50 (Verification and Validation) Committee is developing a process to quantify 

uncertainty in a data-driven and hybrid physics-based model for advanced manufacturing 

including additive manufacturing [172]. Such a process, when developed, will further reduce 

the time and effort in conducting factorial design of experiments for such complex model 

interactions in L-PBF.
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Fig. 1. 
Overview of L-PBF process with different physical phenomena and process parameters
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Fig. 2. 
Input, output, and characteristics of powder bed models: raindrop algorithm [37–40] and 

discrete element method [32–36]
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Fig. 3. 
Inputs, outputs, and characteristics of solidification models: phase field method [105–108] 

and cellular automaton [101,108–111]
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Fig. 4. 
Inputs, outputs, and characteristics of residual stress models: simplified mathematical model 

[116] and thermomechanical FEM model [50,76,121–124]
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Fig. 5. 
Uncertainty sources in a fishbone diagram for laser power, scan speed, and layer thickness
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Fig. 6. 
Uncertainty sources in a fishbone diagram for powder bed absorptivity, powder bed thermal 

conductivity, and powder bed emissivity
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Fig. 7. 
Cascading effect of uncertainty in L-PBF
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