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SUMMARY

Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution 

methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in 

deep learning that replace complex, human-designed pipelines with differentiable models 

optimized end-to-end suggest the potential benefits of similarly reformulating structure prediction. 

Here we introduce an end-to-end differentiable model for protein structure learning. The model 

couples local and global protein structure via geometric units that optimize global geometry 

without violating local covalent chemistry. We test our model using two challenging tasks: 

predicting novel folds without co-evolutionary data and predicting known folds without structural 

templates. In the first task the model achieves state-of-the-art accuracy and in the second it comes 

within 1–2Å; competing methods using co-evolution and experimental templates have been 

refined over many years and it is likely that the differentiable approach has substantial room for 

further improvement, with applications ranging from drug discovery to protein design.
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eTOC Blurb

Prediction of protein structure from sequence is important for understanding protein function, but 

it remains very challenging, especially for proteins with few homologs. Existing prediction 

methods are human-engineered, with many complex parts developed over decades. We introduce a 

new approach based entirely on machine learning that predicts protein structure from sequence 

using a single neural network. The model achieves state of the art accuracy, and does not require 

co-evolution information or structural homologs. It is also much faster, making predictions in 

milliseconds vs. hours or days, which enables new applications in drug discovery and protein 

design.

INTRODUCTION

Proteins are linear polymers that fold into very specific and ordered three dimensional 

conformations based on their amino acid sequence (Branden and Tooze, 1999; Dill, 1990). 

Understanding how this occurs is a foundational problem in biochemistry. Computational 

approaches to protein folding not only seek to make structure determination faster and less 

costly; they aim to understand the folding process itself. Existing computational methods fall 

into two broad categories (Gajda et al., 2011b, 2011a). The first category builds explicit 

sequence-to-structure maps using computational procedures to transform raw amino acid 

sequences into 3D structures. This includes physics-based molecular dynamics simulations 

(Marx and Hutter, 2012), which are restricted by computational cost to small proteins, and 

fragment assembly methods (Gajda et al., 2011a), which find energy-minimizing 

conformations by sampling statistically-derived protein fragments. Fragment assembly 

usually achieves high accuracy only when homologous protein structures are used as 

templates. Such template-based methods use one or more experimental structures—found 

through homology searches—as the basis for making predictions.

The second category of methods eschews explicit sequence-to-structure maps and instead 

identifies co-evolving residues within protein families to derive residue-residue contact 
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maps, using co-evolution as an indicator of contact in physical space (Hopf et al., 2014; 

Marks et al., 2011). With a large and diverse set of homologous sequences—typically tens to 

hundreds of thousands—co-evolution methods can accurately predict contact maps (Juan et 

al., 2013). A correct contact map can guide fragment assembly methods to an accurate 3D 

structure 25–50% of the time (Ovchinnikov et al., 2017). However, because co-evolutionary 

methods do no construct a model of the relationship between individual sequences and 

structures, they are unable to predict structures for which no sequence homologs exist, as in 

new bacterial taxa or de novo protein design. Moreover, even for well-characterized proteins, 

such methods are generally unable to predict the structural consequences of minor sequence 

changes such as mutations or indels, because they operate on protein families rather than 

individual sequences (they do however show promise in predicting the functional 

consequences of mutations (Hopf et al., 2017)). Thus, there remains a substantial need for 

new and potentially better approaches.

End-to-end differentiable deep learning has revolutionized computer vision and speech 

recognition (LeCun et al., 2015), but protein structure pipelines continue to resemble the 

ways in which computers tackled vision and speech prior to deep learning, by having many 

human-engineered stages, each independently optimized (Xu and Zhang, 2012; Yang et al., 

2015) (Figure 1). End-to-end differentiable models replace all components of such pipelines 

with differentiable primitives to enable joint optimization from input to output. In contrast, 

use of deep learning for structure prediction has so far been restricted to individual 

components within a larger pipeline (Aydin et al., 2012; Gao et al., 2017; Li et al., 2017; 

Lyons et al., 2014; Zhao et al., 2010), for example prediction of contact maps (Liu et al., 

2017; Wang et al., 2016). This stems from the technical challenge of developing an end-to-

end differentiable model that rebuilds the entire structure prediction pipeline using 

differentiable primitives. We have developed such a model by combining four ideas: (i) 

encoding protein sequence using a recurrent neural network, (ii) parameterizing (local) 

protein structure by torsional angles, to enable a model to reason over diverse conformations 

without violating their covalent chemistry, (iii) coupling local protein structure to its global 

representation via recurrent geometric units, and (iv) using a differentiable loss function to 

capture deviations between predicted and experimental structures. We find that the new 

approach outperforms other methods, including co-evolution ones, when predicting novel 

folds even though it uses only primary sequences and position-specific scoring matrices 

(PSSMs) that summarize individual residue propensities for mutation. We also find that 

when predicting known folds, the new approach is on average within 1–2Å of other 

approaches, including template-based ones, despite being template-free.

RESULTS

Recurrent geometric networks

Our model takes as input a sequence of amino acids and PSSMs and outputs a 3D structure. 

It is comprised of three stages—computation, geometry, and assessment—that we term a 

recurrent geometric network (RGN). The first stage is made of computational units that, for 

each residue position, integrate information about its amino acid and PSSM with 

information coming from adjacent units. By laying these units in a recurrent bidirectional 
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topology (Figure 2), the computations for each residue integrate information from residues 

upstream and downstream all the way to the N- and C-terminus, covering the entire protein. 

By further stacking units in multiple layers (not shown), the model implicitly encodes a 

multi-scale representation of proteins. Each unit outputs three numbers, corresponding to the 

torsional angles of the residue. We do not specify a priori how angles are computed. Instead, 

each unit’s computation is described by an equation whose parameters are optimized so that 

RGNs accurately predict structures.

The second stage is made of geometric units that take as input the torsional angles for a 

given residue and the partially completed backbone resulting from the geometric unit 

upstream of it, and output a new backbone extended by one residue, which is fed into the 

adjacent downstream unit (AlQuraishi, 2019a; Parsons et al., 2005). The last unit outputs the 

completed 3D structure of the protein. During model training, a third stage computes 

deviations between predicted and experimental structures using the distance-based root 

mean square deviation (dRMSD) metric. The dRMSD first computes pairwise distances 

between all atoms in the predicted structure and all atoms in the experimental one 

(separately), and then computes the root mean square of the distance between these sets of 

distances. Because dRMSD is distance-based, it is invariant to reflections, which can lead 

RGNs to predict reflected structures (effectively wrong chirality) that must be corrected by a 

counter-reflection. RGN parameters are optimized to minimize the dRMSD between 

predicted and experimental structures using backpropagation (Goodfellow et al., 2016). 

Hyperparameters, which describe higher-level aspects of the model such as the number of 

computational units, were determined through manual exploration of hyperparameter space. 

See Supplementary Text for a complete mathematical treatment.

Assessment of model error

Machine learning models must be trained against as large a proportion of available data as 

possible to fit model parameters and then evaluated against a distinct test set to assess 

accuracy. Reliable evaluation is frequently complicated by unanticipated information 

leakage from the training set into the test set, especially for protein sequences which share 

an underlying evolutionary relationship. Partly to address this problem, the Critical 

Assessment of Protein Structure Prediction (CASP) (Moult et al., 1995) was organized to 

assess methods in a blinded fashion, by testing predictors using sequences of solved 

structures that have not been publicly released. To assess RGNs we therefore sought to 

recreate the conditions of past CASPs by assembling the ProteinNet datasets (AlQuraishi, 

2019b). For every CASP from 7 through 12, we created a corresponding ProteinNet test set 

comprised of CASP structures, and a ProteinNet training set comprised of all sequences and 

structures publicly available prior to the start of that CASP. Using multiple CASP datasets 

enables a deeper and more thorough assessment that spans a broad range of dataset sizes 

than relying on the most recent CASP alone. We also adopted the CASP division of test 

structures into free modeling (FM) targets that assess prediction of novel folds, and 

template-based (TBM and TBM-hard) targets that assess prediction of folds with known 

homologs in the Protein Data Bank (PDB) (Bernstein et al., 1977). We set aside a subset of 

the training data as a validation set, to determine when to stop model training and to further 

insulate training and test data.
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ProteinNet datasets were used for all analyses described here. RGN hyperparameters were 

fit by repeated evaluations on the ProteinNet 11 validation set followed by three evaluations 

on the ProteinNet 11 test set. Once chosen, the same hyperparameters were used to train 

models on ProteinNet 7–12 training sets, with a single evaluation made at the end on each 

test set (excepting ProteinNet 11) to generate Table 1. Subsequently additional test set 

evaluations were made to generate Table S1, with one evaluation per number reported. No 

additional test set evaluations were made. Overall, this represents a rigorous approach to 

evaluation with the lowest possible risk of information leakage.

Predicting new folds without co-evolution

We first assessed RGNs on a difficult task that has not consistently been achieved by any 

existing method: predicting novel protein folds without co-evolutionary data. FM structures 

served as targets for this exercise. Table 1 compares the average dRMSD of RGN 

predictions on FM structures to the top five automated predictors in CASP 7–12, known as 

“servers” in CASP parlance (“humans” are server/human-expert pipelines—we do not 

compare against this group as our processing is automated). In Figure 3a we break down the 

predictions by target against the top performing server and in Figure 3c against the dRMSD 

distribution of all CASP servers.

On all CASPs, RGNs had the best performance, even compared to servers that use co-

evolution data (in CASP 11 (Kryshtafovych et al., 2016; Ovchinnikov et al., 2016) and 

CASP 12 (Schaarschmidt et al., 2017)). RGNs outperformed other methods at both short and 

long, multi-domain proteins, suggesting their performance is not limited to one regime (e.g. 

short single domain proteins), despite having no explicit knowledge of domain boundaries. 

While the margin between RGNs and the next best server is small for most CASPs, such 

small gaps are representative of the differences between the top five performers in Table 1. 

In general, small gains in accuracy at the top end are difficult, with only minimal gains 

obtained over a ten-year time span from CASP 6 to CASP 11 (Kryshtafovych et al.). More 

substantial gains were seen in CASP 12 due to the use of co-evolutionary information 

(Moult John et al., 2018), but RGNs match these advances without using co-evolutionary 

data and by operating in a fundamentally distinct and complementary way. The accuracy gap 

between RGNs and other servers is highest on CASP 11, which benefits from having the 

RGN hyperparameters fit on the ProteinNet11 validation set, suggesting similar gains may 

be had by optimizing RGN hyperparameters for each dataset (this would not correspond to 

overfitting, as only the validation set is used to fit hyperparameters, but would require 

substantially more compute resources for training.) ProteinNet datasets of earlier CASPs are 

smaller which may have also reduced accuracy. To assess the contribution of dataset size to 

model error, we used RGNs trained on earlier ProteinNet datasets to predict later CASP test 

sets (Table S1). As expected, accuracy drops as datasets shrink.

The dRMSD metric does not require structures to be pre-aligned, and is consequently able to 

detect regions of high local concordance even when global concordance is poor. Because 

dRMSD assesses predictions at all length scales however, it penalizes large global deviations 

in proportion to their distance, which can result in very high error for far apart regions. To 
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obtain a complementary assessment of model accuracy, we also tested RGNs using TM 

scores (Zhang and Skolnick, 2004), which are defined by the following equation:

TM score  = max 1
Ltarget

∑
i

L aligned  1

1 +
di

d0 Ltarget

2

where Ltarget and Laligned are the lengths of the full protein and the aligned region, 

respectively, di is the distance between the ith residues in the experimental and predicted 

structures, and d0 Ltarget = 1.24 Ltarget − 153 − 1.8 is used to normalize scores. TM scores do 

require structures to be pre-aligned, and thus can penalize predictions with high local 

concordance if a global alignment cannot be found, but they are less sensitive to large 

deviations because they only compute error over the aligned regions. TM scores range from 

0 to 1, with a score of < 0.17 corresponding to a random unrelated protein, and > 0.5 

generally corresponding to the same protein fold (Xu and Zhang, 2010). Since TM scores 

are not invariant to reflections, we compute them for both the original and reflected RGN 

structures and use the higher of the two. Table S2 compares TM scores of RGN predictions 

to CASP servers. In general, RGNs rank among the top five servers, but do not consistently 

outperform all other methods as they do on dRMSD, possibly reflecting the lack of partial 

credit assignment by TM scores.

Predicting known folds without templates

We next assess RGNs on predicting known protein folds without experimental templates, a 

challenging task that provides an advantage to template-based methods (Zhou et al., 2010). 

TBM structures served as targets for this purpose. Table 1 and Table S2 compare RGN 

predictions to top CASP servers using dRMSD and TM score, respectively, while Figure 3b 

breaks down predictions by target and Figure 3c shows the distribution over all CASP 

servers. A representative sampling of the full quality spectrum of FM and TBM predictions 

is shown in Figure 3e. In general, RGNs underperform the very top CASP servers, all of 

which use templates, although ~60% of predictions are within 1.5Å of the best-performing 

server.

Since RGNs do not use templates, this suggests that they learn generalizable aspects of 

protein structure, and their improved accuracy on TBM targets relative to FM reflects denser 

sampling in TBM regions of protein space. To investigate this possibility, we partitioned 

ProteinNet validation sets into groups based on maximum sequence identity to the training 

set, and computed dRMSDs within each group across CASPs 7–12 (Figure 3d) and by 

individual CASP (Figure S1). RGN performance robustly transfers to sequences with >40% 

sequence identity, predicting structures with a median dRMSD of ~5Å, and then begins to 

deteriorate. There was little difference in dRMSD between 50% and 90% sequence identity, 

with substantial error remaining at 90%, which is suggestive of underfitting.
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Template-based methods are particularly accurate where template and query sequences 

overlap, and are inaccurate where they do not; unfortunately, non-overlapping regions are 

often the regions of high biological interest. Errors in these critical non-overlapping regions 

can be masked by large overlapping regions, inflating overall accuracy (Contreras-Moreira 

et al., 2005; Dill and MacCallum, 2012; Liu et al.; Perez et al., 2016). To determine whether 

RGNs suffer from similar limitations, we split TBM domains into short fragments ranging in 

size from 5 to 50 residues and computed the RMSD for every fragment (with respect to the 

experimental structure) from the best template, the best CASP prediction, and the RGN 

prediction (Figure 4). We found CASP predictions to be correlated (average R2 = 0.44) with 

template quality across length scales as previously reported (Kryshtafovych et al.), while 

RGN predictions were not (average R2 = 0.06). This distinction persists even when 

predictions with >3Å accuracy are excluded (average R2 = 0.49 for best CASP predictions; 

average R2 = 0.02 for RGN predictions). Thus RGNs perform equally well on regions of 

proteins with experimental templates and on those without.

RGNs learn an implicit representation of protein fold space

Applications of deep learning in sensory domains often result in models whose internal 

representation of the data is interpretable, e.g. placing semantically similar words nearby in 

a natural language model. To ascertain whether RGNs behave similarly, we extracted the 

internal state of their computational units after processing each protein sequence in the 

ProteinNet12 training set. For each protein, we obtained multiple high-dimensional vectors, 

one per layer / direction of the RGN. We then used linear dimensionality reduction 

techniques to visualize these vectors in two dimensions, separately for each layer / direction 

(Figure 5a), and by concatenating all layers together (Figure 5b). When we color each 

protein (dot) according to the fraction of secondary structure present in its original PDB 

structure, clear visual patterns emerge (Figure 5b). This is notable because secondary 

structure was neither used as input to aid model prediction nor as an output signal to guide 

training; i.e. the model was not explicitly encoded with the concept of secondary structure, 

yet it uses secondary structure as the dominant factor in shaping its representation of protein 

fold space.

We next used the CATH database (Dawson et al., 2017), which hierarchically classifies 

proteins into structural families, to partition data points into CATH classes and visualize 

their distribution in RGN space. At the topmost CATH level, divided into “Mainly Alpha”, 

“Mainly Beta”, “Alpha Beta”, and “Few Secondary Structures”, we see clearly demarcated 

regions for each class (represented by differently colored contour plots), with “Alpha Beta” 

acting unsurprisingly as the bridge (leftmost panel in Figure 5c.) We then reapplied 

dimensionality reduction to data in each class and visualized the distributions of their 

respective second-level CATH categories (three right panels in Figure 5c.) We again see 

contiguous regions for each category, albeit with greater overlap, likely owing to the 

continuous nature of protein structure space and reduction of RGN space to just two 

dimensions. These visualizations suggest RGNs are learning a useful representation of 

protein sequence space that may yield insights into the nature of protein structure space.
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RGNs are 6–7 orders of magnitude faster than existing methods

Existing structure prediction pipelines are multi-staged (Figure 1), first detecting domains 

that can be separately modelled, and running multiple algorithms to estimate secondary 

structure propensities, solvent accessibility, and disordered regions. Co-evolutionary 

methods use multiple sequence alignments to predict contact maps, and template-based 

methods search the PDB for templates. Their predictions are converted into geometric 

constraints to guide a conformation sampling process, where fragments are swapped in and 

out of putative structures to minimize an expertly-derived energy model. Due to this 

complexity, prediction times range from hours to days, and require codebases as large as 

several million lines of code (Leaver-Fay et al., 2011).

In contrast, a trained RGN model is a single mathematical function that is evaluated once per 

prediction. Computation of this function implicitly carries out domain splitting, property 

finding, energy minimization, and conformational sampling simultaneously. We found that 

512 concurrent RGN-based predictions, with sequence length ~700, can be made in ~5.4 

seconds on a single GPU, i.e. ~10 milliseconds / structure. Table 2 compares training and 

prediction speeds of RGNs to established methods that rely heavily on simulation with 

limited learning (first row), and deep learning plus co-evolution-based contact prediction 

methods that rely on learning (second row), combined with CONFOLD (Adhikari et al., 

2015) to convert predicted contact maps into tertiary structures. While training RGNs can 

take weeks to months, once trained, they make predictions 6–7 orders of magnitude faster 

than existing pipelines. This speed enables new types of applications, such as the integration 

of structure prediction within docking and virtual screening in which ligand-aware RGNs 

could output distinct protein conformations in response to distinct ligand poses.

DISCUSSION

A key limitation of explicit sequence-to-structure maps, including molecular dynamics and 

fragment assembly, is a reliance on fixed energy models that do not learn from data; a 

second limitation is the exclusive use of single-scale atomic or residue-level representations. 

In contrast, modern co-evolution methods leverage learning and multi-scale representations 

to substantially improve performance (Liu et al., 2017; Wang et al., 2016). RGNs go one 

step further by building a fully differentiable map extending from sequence to structure with 

all of the steps in existing prediction pipelines implicitly encoded and learnable from data. 

Through their recurrent architecture, RGNs can capture sequence-structure motifs and 

multiple scales from residues to domains (Alva et al., 2015; Ponting and Russell, 2002). 

When tracking structure prediction during RGN training (Movie S1), RGNs appear to first 

learn global aspects of protein folds, then refine their predictions to generate more accurate 

local structure.

RGNs are multi-representational, operating on three distinct parameterizations of protein 

structure. The first is torsional, capturing local relationships between atoms with bond 

lengths and angles held fixed, and torsional angles as the immediate outputs of 

computational units. This virtually guarantees that predictions are structurally correct at a 

local level. The second is Cartesian, built by geometric units and capturing the global 

coordination of multiple atoms in 3D space, the catalytic triad of an enzyme’s active site for 
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example, even if the residues are distant along the protein chain. Future augmentations—e.g. 

3D convolutional networks that operate directly on the Cartesian representation—may 

further improve the detection and quality of long-range interactions. The third 

parameterization, built in the dRMSD stage, is the matrix of inter-atomic distances, and is 

simultaneously local and global. It is useful for optimizing RGN parameters de novo, as we 

have used it, but can also be used to incorporate prior knowledge expressible in terms of 

atomic distances; such knowledge includes physical features (e.g. electrostatics) and 

statistical data on interactions (e.g. evolutionary couplings).

One limitation of current RGNs is their reliance on PSSMs, which we have found to be 

helpful to achieving high accuracy predictions. PSSMs are much weaker than multiple 

sequence alignments as they are based on single residue mutation frequencies and ignore 

how each residue mutates in response to all other residues. Co-evolutionary couplings 

require pairwise frequencies, resulting in quadratically rather than linearly scaling statistical 

cost. Nonetheless, removing PSSMs and relying exclusively on raw sequences could 

robustify RGNs for many applications, including prediction of genetic variants. Achieving 

this may require more data-efficient model architectures. For protein design, RGNs can be 

used as is, by fixing the desired structure and optimizing the raw sequence and PSSMs to 

match it (i.e. by computing derivatives of the inputs—as opposed to model parameters—

with respect to the dRMSD between predicted and desired structures.) Co-evolution methods 

do not have this capability as their inputs are the inter-residue couplings themselves, making 

the approach circular.

The history of protein structure prediction suggests that new methods complementary to 

existing ones are eventually incorporated into hybrids. RGNs have this benefit, being an 

almost entirely complementary modeling approach. For example, structural templates or co-

evolutionary information could be incorporated as priors in the distance-based 

parameterization or even as raw inputs for learning. RGNs can also include secondary 

structure predicted by other algorithms. This is likely to be advantageous since the RGNs 

described here often predict global fold correctly but do less well with secondary structure 

(e.g. T0827 in Figure 3e). RGNs can also be made to predict side-chain conformations, by 

outputting a branched curve in lieu of the current linear curve, and are applicable to a wide 

range of other polymers (e.g. RNA tertiary structure.) Our demonstration that state of the art 

performance in structure prediction can be achieved using an end-to-end differentiable 

model will make available to protein folding and biophysics very rapid improvements in 

machine learning across a wide range of scientific and technical fields. We predict that 

hybrid systems using deep learning, co-evolution as priors, and physics-based approaches 

for refinement will soon solve the long-standing problem of accurate and efficient structure 

prediction. It is also possible that the use of neural network probing techniques (Alain and 

Bengio, 2016; Koh and Liang, 2017; Nguyen et al., 2016; Shrikumar et al., 2017; Simonyan 

et al., 2013) with RGNs will provide new insight into the physical chemistry of folding and 

the sorts of intermediate structures that proteins use to sample conformational space.
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STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Mohammed AlQuraishi (alquraishi@hms.harvard.edu).

METHOD DETAILS

Model—We featurize a protein of length L as a sequence of vectors (x1, … , xL) where 

xt ∈ ℝd for all t. The dimensionality d is 41, where 20 dimensions are used as a one-hot 

indicator of the amino acid residue at a given position, another 20 dimensions are used for 

the PSSM of that position, and 1 dimension is used to encode the information content of the 

position. The PSSM values are sigmoid transformed to lie between 0 and 1. The sequence of 

input vectors are fed to an LSTM (Hochreiter and Schmidhuber, 1997), whose basic 

formulation is described by the following set of equation.

it = σ Wi xt, ht − 1 + bi

f t = σ W f xt, ht − 1 + b f

ot = σ Wo xt, ht − 1 + bo

ct = tanh Wc xt, ht − 1 + bc

ct = it ⊙ ct + f t ⊙ ct − 1

ht = ot ⊙ tanh ct

Wi, Wf, Wo, Wc are weight matrices, bi, bf, bo, bc are bias vectors, ht and ct are the hidden 

and memory cell state for residue t, respectively, and ʘ is element-wise multiplication. We 

use two LSTMs, running independently in opposite directions (1 to L and L to 1), to output 

two hidden states ht
( f ) and ht

(b) for each residue position t corresponding to the forward and 

backward directions. Depending on the RGN architecture, these two hidden states are either 

the final outputs states or they are fed as inputs into one or more LSTM layers.
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The outputs from the last LSTM layer form a sequence of a concatenated hidden state 

vectors h1
( f ), h1

(b) , ⋯, hL
( f ), hL

(b) . Each concatenated vector is then fed into an angularization 

layer described by the following set of equations:

pt = so f tmax Wφ ht
( f ), ht

(b) + bφ

φt = arg ptexp(iΦ)

Wφ is a weight matrix, bφ is a bias vector, Φ is a learned alphabet matrix, and arg is the 

complex-valued argument function. Exponentiation of the complex-valued matrix iΦ is 

performed element-wise. The Φ matrix defines an alphabet of size m whose letters 

correspond to triplets of torsional angles defined over the 3-torus. The angularization layer 

interprets the LSTM hidden state outputs as weights over the alphabet, using them to 

compute a weighted average of the letters of the alphabet (independently for each torsional 

angle) to generate the final set of torsional angles φt ∊ S1 × S1 × S1 for residue t (we are 

overloading the standard notation for protein backbone torsional angles, with φt 

corresponding to the (ψ, φ, ω) triplet). Note that φt may be alternatively computed using the 

following equation, where the trigonometric operations are performed element-wise:

φt = atan2 ptsin(Φ), ptcos(Φ)

In general, the geometry of a protein backbone can be represented by three torsional angles 

φ, ψ, and ω that define the angles between successive planes spanned by the N, Cα, and C’ 

protein backbone atoms (Ramachandran et al., 1963). While bond lengths and angles vary as 

well, their variation is sufficiently limited that they can be assumed fixed. Similar claims 

hold for side chains as well, although we restrict our attention to backbone structure. The 

resulting sequence of torsional angles (φ1, … , φL) from the angularization layer is fed 

sequentially, along with the coordinates of the last three atoms of the nascent protein chain 

(c1, …, c3t), into recurrent geometric units that convert this sequence into 3D Cartesian 

coordinates, with three coordinates resulting from each residue, corresponding to the N, Cα, 

and C’ backbone atoms. Multiple mathematically-equivalent formulations exist for this 

transformation; we adopt one based on the Natural Extension Reference Frame (Parsons et 

al., 2005), described by the following set of equations:

ck = rk mod 3

cos θk mod 3

cos φ k /3 , k mod 3 sin θk mod 3

sin φ k /3 , k mod 3 sin θk mod 3

mk = ck − 1 − ck − 2
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nk = mk − 1 × mk

Mk = mk, nk × mk, nk

ck = Mkck + ck − 1

Where rk is the length of the bond connecting atoms k − 1 and K, θk is the bond angle 

formed by atoms k − 2, k − 1, and k, φ⌊k/3⌋,k mod 3 is the predicted torsional angle formed by 

atoms k − 2 and k − 1, Ck is the position of the newly predicted atom k, m is the unit-

normalized version of m, and × is the cross product. Note that k indexes atoms 1 through 3L, 

since there are three backbone atoms per residue. For each residue t we compute C3t−2, 

C3t−1, and C3t using the three predicted torsional angles of residue t, specifically 

φt, j = φ 3t
3 , 3t + j mod 3

 for j = {0,1,2}. The bond lengths and angles are fixed, with three 

bond length (r0, r1, r2) corresponding to N-Cα, Cα-C’, and C’-N, and three bond angles (θ0, 

θ1, θ2) corresponding to N-Cα-C’, Cα-C’-N, and C’-N-Cα. As there are only three unique 

values we have rk = rk mod 3 and θ6k = θk mod 3. In practice we employ a modified version of 

the above equations which enable much higher computational efficiency (AlQuraishi, 

2019a).

The resulting sequence (C1, …, C3L) fully describes the protein backbone chain structure 

and is the model’s final predicted output. For training purposes a loss is necessary to 

optimize model parameters. We use the dRMSD metric as it is differentiable and captures 

both local and global aspects of protein structure. It is defined by the following set of 

equations:

d j, k = c j − ck 2

d j, k = d j, k
(exp) − d j, k

(pred)

dRMSD =
D 2

L(L − 1)

Where {dj,k} are the elements of matrix D, and d j, k
(exp) and d j, k

(pred) are computed using the 

coordinates of the experimental and predicted structures, respectively. In effect, the dRMSD 
computes the ℓ2-norm of the distances over distances, by first computing the pairwise 

distances between all atoms in both the predicted and experimental structures individually, 
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and then computing the distances between those distances. For most experimental structures, 

the coordinates of some atoms are missing. They are excluded from the dRMSD by not 

computing the differences between their distances and the predicted ones.

Hyperparameters—RGN hyperparameters were manually fit, through sequential 

exploration of hyperparameter space, using repeated evaluations on the ProteinNet11 

validation set and three evaluations on ProteinNet11 test set. Once chosen the same 

hyperparameters were used to train RGNs on ProteinNet7–12 training sets. The validation 

sets were used to determine early stopping criteria, followed by single evaluations on the 

ProteinNet7–12 test sets to generate the final reported numbers (excepting ProteinNet11).

The final model consisted of two bidirectional LSTM layers, each comprised of 800 units 

per direction, and in which outputs from the two directions are first concatenated before 

being fed to the second layer. Input dropout set at 0.5 was used for both layers, and the 

alphabet size was set to 60 for the angularization layer. Inputs were duplicated and 

concatenated; this had a separate effect from decreasing dropout probability. LSTMs were 

random initialized with a uniform distribution with support [−0.001, 0.01], while the 

alphabet was similarly initialized with support [−π, π]. ADAM was used as the optimizer, 

with a learning rate of 0.001, β1 = 0.95 and β2 = 0.99, and a batch size of 32. Gradients were 

clipped using norm rescaling with a threshold of 5.0. The loss function used for optimization 

was length-normalized dRMSD (i.e. dRMSD divided by protein length), which is distinct 

from the standard dRMSD we use for reporting accuracies.

RGNs are very seed sensitive. As a result, we used a milestone scheme to restart 

underperforming models early. If a dRMSD loss milestone is not achieved by a given 

iteration, training is restarted with a new initialization seed. Table S3 summarizes the 

milestones, which were determined based on preliminary runs. In general, 8 models were 

started and, after surviving all milestones, were run for 250k iterations, at which point the 

lower performing half were discarded, and similarly at 500k iterations, ending with 2 models 

that were usually run for ~2.5M iterations. Once validation error stabilized we reduced the 

learning rate by a factor of 10 to 0.0001, and run for a few thousand additional iterations to 

gain a small but detectable increase in accuracy before ending model training.

Dataset—We use the ProteinNet dataset for all analyses (AlQuraishi, 2019b). ProteinNet 

recreates the conditions of past CASP assessments by restricting the set of sequences (for 

building PSSMs) and structures used to those available prior to the start of each CASP 

assessment. Each ProteinNet entry is comprised of two inputs, the raw protein sequence, 

represented by a one-hot vector, and the protein’s PSSM and information content profiles, 

derived using 5 iterations of JackHMMer with an e-value threshold of 10−10. PSSM values 

are normalized to lie between 0 and 1. The output for each ProteinNet entry is comprised of 

the Cartesian coordinates of the protein’s backbone atoms, annotated by metadata denoting 

which atoms are missing from the experimental structure. These atoms are excluded from 

the dRMSD loss calculation, which enables use of partially resolved experimental structures 

that would otherwise be excluded from the dataset.
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For ProteinNet7–11, the publicly available CASP structures were used as test sets. For 

ProteinNet12, the publicly available CASP12 structures are incomplete, as some structures 

are still embargoed. We obtained a private set of structures from the CASP organizers that 

includes all structures used in CASP12 (except one or two), and we used this set for model 

assessment. For training all RGN models, the 90% “thinning” version of ProteinNet was 

used.

DATA AND SOFTWARE AVAILABILITY

TensorFlow (Abadi et al., 2016) code for training new RGN models, as well as pre-trained 

RGN models used in reporting results for CASP 7–12, are available on GitHub at https://

github.com/aqlaboratory/rgn.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Neural network predicts protein structure from sequence without using co-

evolution

• Model replaces structure prediction pipelines with one mathematical function

• Achieves state of the art performance on novel protein folds

• Learns a low-dimensional representation of protein sequence space
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Figure 1: Conventional pipelines for protein structure prediction.
Prediction process begins with query sequence (top, green box) whose constituent domains 

and co-evolutionary relationships are identified through multiple sequence alignments. In 

free modeling (left), fragment libraries are searched to derive distance restraints which, 

along with restraints derived from co-evolutionary data, guide simulations that iteratively 

minimize energy through sampling. Coarse conformations are then refined to yield the final 

structure. In template-based modeling (right pipeline), the PDB is searched for templates. If 

found, fragments from one or more templates are combined to assemble a structure, which is 
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then optimized and refined to yield the final structure. Orange boxes indicate sources of 

input information beyond query sequence, including prior physical knowledge. Diagram is 

modeled on the I-Tasser and Quark pipelines (Zhang et al.).
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Figure 2: Recurrent geometric networks.
Protein sequences are fed one residue at a time to the computational units of an RGN 

(bottom-left), which compute an internal state that is integrated with the states of adjacent 

units. Based on these computations, torsional angles are predicted and fed to geometric 

units, which sequentially translate them into Cartesian coordinates to generate the predicted 

structure. dRMSD is used to measure deviation from experimental structures, serving as the 

signal for optimizing RGN parameters. Top-Left Inset: Geometric units take new torsional 

angles and a partial backbone chain, and extend it by one residue. Bottom-Right Inset: 
Computational units, based on Long Short-Term Memory (LSTMs) (Hochreiter and 

Schmidhuber, 1997), use gating units (blue) to control information flow in and out of the 

internal state (gray), and angularization units (purple) to convert raw outputs into angles. 

Rightmost Inset: Angularization units select from a learned set of torsion angles 

(“alphabet”) a mixture of torsions, which are then averaged in a weighted manner to 

generate the final set of torsions. Mixing weights are determined by computational units.
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Figure 3: Results overview.
Scatterplots of individual FM (A) and TBM (B) predictions made by RGN and top CASP 

server. Two TBM outliers (T0629 and T0719) were dropped for visualization purposes. (C) 
Distributions of mean dRMSD (lower is better, white is median) achieved by servers 

predicting all structures with >95% coverage at CASP 8–12 are shown for FM (novel folds) 

and TBM (known folds) categories. Thick black (white on dark background) bars mark 

RGN dRMSD. RGN percentile rankings are shown for the TBM category (below whiskers). 

CASP 7 is omitted due to lack of server metadata. (D) Distribution of RGN dRMSDs on 
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ProteinNet validation sets grouped by maximum % sequence identity to training set over all 

CASPs (medians are wide white lines, means are short white lines.) (E) Traces of backbone 

atoms of well (left), fairly (middle), and poorly (right) predicted RGN structures are shown 

(bottom) along with their experimental counterparts (top). CASP identifier is displayed 

above each structure and dRMSD below. A color spectrum spans each protein chain to aid 

visualization. See also Figure S1.
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Figure 4: Correlation between prediction accuracy and template quality.
Scatterplots of fragment RMSDs, ranging in size from 5 to 50 residues, comparing the best 

CASP templates to the best CASP server predictions (top) and RGN predictions (bottom). 
R2 values are computed over all data points (non-parenthesized), and over data points in 

which predictions achieved <3Å accuracy (parenthesized). TBM domains were used 

(excluding TBM-hard which do not have good templates), and only templates and 

predictions covering >85% of full domain sequences were considered. Templates and 

predictions were selected based on global dRMSD with respect to experimental structure. 

CASP 7 and 8 are omitted due to lack of full template information.
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Figure 5: The latent space of RGNs.
2D projection of the separate (A) and combined (B) internal state of all RGN computational 

layers, with dots corresponding to individual protein sequences in the ProteinNet12 training 

set. (B) Proteins are colored by fractional secondary structure content, as determined by 

annotations of original protein structures. (C) Contour plots of the probability density (50–

90% quantiles) of proteins belonging to categories in the topmost level of the CATH 

hierarchy (first from left) and proteins belonging to categories in the second-level CATH 

classes of “Mainly Alpha” (second), “Mainly Beta” (third), and “Alpha Beta” (fourth). 
Distinct colors correspond to distinct CATH categorizations; see Figure S2–S5 for complete 

legends. The topmost CATH class “Few Secondary Structures” is omitted because it has no 

subcategories.

AlQuraishi Page 24

Cell Syst. Author manuscript; available in PMC 2020 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

AlQuraishi Page 25

Table 1:
Comparative accuracy of RGNs using dRMSD.

The average dRMSD (lower is better) achieved by RGNs and the top five servers at each CASP is shown for 

the novel folds (left) and known folds (right) categories. Numbers are based on common set of structures 

predicted by top 5 servers during each CASP. A different RGN was trained for each CASP, using the 

corresponding ProteinNet training set containing all sequences and structures available prior to the start of that 

CASP. See also Table S1–S3.

FM (novel folds) category (Å) TBM (known folds) category (Å)

CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 CASP7 CASP8 CASP9 CASP10 CASP11 CASP12

RGN 9.3 7.3 8.7 10.0 8.5 10.7 5.6 5.9 6.5 6.9 7.4 6.9

1st Server 9.3 8.3 9.0 10.3 9.3 11.0 4.0 4.3 5.2 5.3 5.8 4.7

2nd Server 9.9 8.6 9.1 10.6 9.6 11.2 4.0 4.6 5.2 5.4 6.0 4.8

3rd Server 10.0 9.2 9.7 10.9 11.2 11.3 4.1 4.8 5.4 5.7 6.5 5.6

4th Server 10.1 9.9 10.1 11.7 11.7 11.4 4.2 5.0 5.4 5.9 6.8 5.8

5th Server 10.4 10.4 13.5 12.0 12.9 13.0 4.8 5.0 5.5 7.2 6.9 5.9
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Table 2:
Prediction and training speeds of structure prediction methods.

Top row corresponds to the most complex and established set of methods, which rely heavily on simulation 

and sampling, and typically have only a minimal learning component. Second row corresponds to methods 

combining co-evolution-based contact prediction with deep learning, which rely on a learning procedure, plus 

the CONFOLD method to convert predicted contact maps into tertiary structures. Time estimates are based on 

workflows used for CASP predictions, which (excepting RGNs) generate a large ensemble of structures, 

increasing prediction time. RGN predictions are deterministic and thus necessitate only a single prediction. All 

time estimates exclude MSA generation times.

Model Prediction Speed Training Time

Rosetta, I-Tasser, Quark hours to days N/A

Raptor X, DeepContact + CONFOLD one to few hours hours

Recurrent geometric networks (RGNs) milliseconds weeks to months
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

TensorFlow Abadi et al., 2016 tensorflow.org

ProteinNet AlQuraishi, 2019b https://github.com/aqlaboratory/proteinnet
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