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Abstract

We study the complexity of classically sampling from the output distribution of an Ising spin 

model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. 

In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution 

starting from a trivial initial state, produces a particular output configuration with probability very 

nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a 

similar spirit to boson sampling, the ability to sample classically from the probability distribution 

induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic 

consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated 

with a classical computer. Physical Ising spin systems capable of achieving problem-size instances 

(i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically 

difficult in practice may be achievable in the near future. Unlike boson sampling, our current 

results only imply hardness of exact classical sampling, leaving open the important question of 

whether a much stronger approximate-sampling hardness result holds in this context. The latter is 

most likely necessary to enable a convincing experimental demonstration of quantum supremacy. 

As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 
31st Conference on Computational Complexity (CCC 2016),Leibniz International Proceedings in 

Informatics (Schloss Dagstuhl–Leibniz-Zentrum fur Informatik, Dagstuhl, 2016)], our result 

completes the sampling hardness classification of two-qubit commuting Hamiltonians.

I. INTRODUCTION

It is often taken for granted that quantum computers can efficiently perform certain 

computational tasks that classical computers cannot. However, finding a quantum task that, 

on the one hand, admits compelling complexity-theoretic arguments against efficient 

classical simulation and, on the other hand, admits experimental demonstration with 

technology that is feasible in the near future, remains an important and challenging task in 

the field of quantum information science [1,2]. An extremely exciting line of work, starting 

with results of Terhal and DiVincenzo [3] and Bremner et al. [4], has shown that quantum 

computers are capable of sampling from distributions that cannot be sampled exactly by 

randomized classical algorithms. The boson sampling protocol [5], proposed by Aaronson 

and Arkhipov, gives a hardness of sampling result that may be within reach for near-term 

quantum experiments. The basic idea is to send photons through a network of linear optical 
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devices, arranged in such a way that the probabilities of typical output configurations of the 

photons are proportional to the squares of permanents of matrices with independent and 

Gaussian-distributed random entries. Given reasonable assumptions about the hardness of 

computing permanents of such matrices, the ability to efficiently classically sample from any 

distribution even close (in total variation distance) to this distribution would imply extremely 

unlikely complexity theoretic consequences.

A number of proof-of-principle experiments implementing boson sampling have already 

been carried out [6–9]. However, it remains experimentally challenging to build linear-

optical systems that are large enough and clean enough to realize boson sampling instances 

for which classical sampling is actually difficult (theoretically, an ongoing challenge is to 

determine what minimally constitutes “clean enough” [10,11]). By comparison, state 

preparation and readout of individual spins can be done with high fidelity and relative ease, 

and the ability to massively parallelize spin-spin interactions between large numbers of 

qubits is reasonably sophisticated; experiments have successfully implemented some simple 

instances of the Ising model with system sizes ranging from tens [12] to many hundreds of 

spins [13]. Moreover, recent developments in ion-trapping experiments raise the exciting 

prospect of implementing arbitrary Ising interaction graphs in systems of (potentially) many 

tens of trapped ions [14]. It is therefore highly desirable to identify scenarios in which, under 

extremely plausible assumptions about classical complexity theory, the dynamics of 

commuting spin Hamiltonians cannot be efficiently simulated by a classical system 

[4,15,16].

Our goal in this paper is to show that the dynamics of an experimentally implementable 

commuting spin model, the Ising model with no transverse field, can induce an output 

distribution over the spin states that is hard to sample from classically. The general strategy, 

which will be elaborated on below, is to divide a set of Ising spins into two mutually 

interacting registers, each having N spins (see Fig. 1). The N spins in the first and second 

registers can be placed in correspondence with the N row and column labels, respectively, of 

an N × N matrix J; each of the N2 pairwise Ising couplings Ji,j between a spin (i) in one 

register and a spin (j) in the other is a matrix element of J. By initializing the system in a 

spatially homogeneous product state and then letting it evolve under Ising interactions for a 

short time, it can be shown that a single probability of the output distribution induced by 

measurement is proportional to the square of the permanent of J, plus an o(1) correction. 

This is enough, using a tool known as Stockmeyer counting [17], to imply a hardness of 

exact sampling result: No efficient classical randomized algorithm can sample from exactly 
this distribution, under a ubiquitous hardness assumption (namely, that the polynomial-time 

hierarchy does not collapse). Much like other exact sampling results, our result also 

demonstrates hardness to classically sample from any distribution in which all probabilities 

are within a constant multiplicative factor of the ideal quantum distribution. However, unlike 

boson sampling, a recent proposal of Bremner, Montanaro, and Shepherd (sometimes called 

IQP sampling), and quantum Fourier sampling, it is not yet clear whether the distributions 

we consider can be used to show an approximate-sampling hardness result [4,5,18]. This 

would show something far stronger: There is no classical algorithm that can sample from 

any distribution inverse polynomial in total variation distance from the ideal quantum 

distribution. Establishing strong approximate hardness results is the most important problem 
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left open in this work. However, in the meantime we strongly believe exact sampling results 

are worthwhile. They provide necessary, but not sufficient, evidence that these systems will 

be unable to be simulated by classical means. Indeed, several other such exact sampling 

results already exist in the literature (see, e.g., [4,19–21]).

Note that the classical complexity of simulating short-time evolution of XY spin 

Hamiltonians was recently considered in Ref. [15]. However, these spin Hamiltonians are 

not commuting and map directly onto the boson sampling problem. In particular, through the 

Holstein-Primakov transformation they map exactly onto a variant of the boson sampling 

problem in which the modes are constrained to be occupied by at most a single boson (spin 

flip). When the spin state is chosen such that the corresponding boson sampling problem has 

sufficiently dilute mode occupation, the constraint turns out not to be important and the 

dynamics generates a unitary evolution that is essentially the same as that considered in 

boson sampling. To the contrary, our work encounters the permanent in a fundamentally 

different way than in boson sampling or the closely related spin sampling of Ref. [15], as 

elaborated on below. An important difference is that our results do not rely on a diluteness 

criterion and thus N is set by (as opposed to much less than) the number of physical qubits.

II. MODEL

The model we consider consists of 2N spin-1/2 particles, which we divide into two 

sublattices of N spins each, denoted by 𝒜 and ℬ (red and blue spins in Fig. 1). We consider 

quench dynamics under an Ising Hamiltonian with exclusively two-body intersublattice 

interactions (but no interactions within either sublattice), which can take arbitrary integer 

values,

ℋ =
i j

Ji jσi
xτ j

x (1)

Here Pauli operators σ act on the spins of sublattice 𝒜, while Pauli operators τ  act on the 

spins of sublattice ℬ. These spins could be, for example, two subsets of ions in a Paul trap, 

where the |↓〉 and |↑〉 are, respectively, the electronic ground state and some long-lived 

metastable state (in general, either an excited hyperfine level of the electronic ground-state 

manifold or a dipole-forbidden optical excitation). The Ising interactions can then be 

implemented via a spatially structured Mølmer-Sørensen interaction [14,22,23].

We consider a quantum quench in which the system is initialized at time t = 0 with all of the 

spins (in both registers) in the spin-down state along the z direction,

|ψ(0)〉 =
i ∈ 𝒜

| ↓ 〉i ⊗
j ∈ ℬ

| ↓〉 j . (2)

We then allow the system to evolve under the Hamiltonian in Eq. (1) for a time t.
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III. OUTPUT DISTRIBUTION

After evolution for a time t under the action of ℋ, measurement in the z basis samples from 

the induced probability distribution

Pt(σ1, …, σN, τ1, …τN) = |〈σ1, …, σN, τ1, …τN | exp( − iℋt) | , …, 〉 |2 , (3)

where σj, τj = ↓, ↑. We are interested in just one such probability

Pt ≡ Pt( , …, ) = |〈 , …, |exp( − itℋ)| , …, 〉 |2 ≡ | Mt |2 ,

to end in the state with all spins in both registers pointing up. By writing an individual term 

in the Hamiltonian as

σi
xτ j

x = σi
+τ j

+ + σi
+τ j

− + σi
−τ j

+ + σi
−τ j

−, (4)

it is straightforward to see that repeated applications of ℋ, and thus time evolution, 

generates population in all possible spin states in the z basis. Expanding e−iℋt as a power 

series in time, the lowest-order-in-time nonvanishing contribution to the matrix element 

Mt = 〈 , …, |exp( − itH | , …, 〉 arises at order tN, because every spin needs to be flipped 

at least once. The contributing terms contain exactly N powers of operators σi
+τ j

+, with no 

repetitions of the indices i and j, so that each qubit gets flipped from |↓〉 to |↑〉 exactly one 

time; see Fig. 2 for an illustration of such a term for N = 3. It is straightforward to show that, 

to order tN, the matrix element Mt is given by

Mt = ( − it)N

N ! × N !
σ j 1

N
Jσ( j) j + O(tN + 2)

= ( − it)NPer(J) + O(tN + 2),

(5)

where the summation is over all permutations σ of the integers i = 1, …, N. As a result, 

defining 𝒫 = ∣ Per J ∣2, we have

Pt = t2N[𝒫 + O(t2)] . (6)

We next aim to place a constraint on how t must scale with N in order to ensure that the 

O(t2) additive error to the permanent is o(1) with respect to the system size N. Because J is 

an integer-valued matrix, estimation of 𝒫 up to this small additive error is equivalent (for 

large N) to an exact calculation of 𝒫, a #P-hard problem. As we will show, however, 
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demanding such asmall additive errorwill requireus to consider time evolution under ℋ for a 

time that is inverse exponential in the number of spins.

IV. HIGHER ORDERS IN TIME

As discussed above, the lowest-order-in-time contribution to the matrix element Mt comes at 

order N. It is not hard to see that all other contributing terms occur at order m such that m – 

N is a positive even integer. In particular, take N+− to be the number of times an operator 

σi
+τ i

− occurs inside the matrix element, and similarly for N−+, N++, and N−−, such that N++ + 

N−− + N+− + N−+ = m. Since we need to flip the same number of qubits in both registers, we 

must have N+− = N−+. Also, the total number of flipped qubits is equal to 2(N++ − N−−), and 

since all qubits need to be flipped, we have N++ − N−− = N. Now defining p(n) to be the 

parity of the integer n, we have

p(m) = p(N+ + + N− − + 2N+ −)
= p(N+ + + N− −)
= p(N+ + − N− −)
= P(N),

(7)

which shows that m − N is an even integer. The matrix element in question can therefore be 

expanded as

Mt =
α 0

∞
〈 ↑ ↑ | ( itℋ)N 2α

(N 2α) | ↓ ↓〉 ≡
α 0

∞
Mt

(α), (8)

and from above we have

Mt
(0) = ( − it)NPer(J) . (9)

Defining δMt = α 1
∞ Mt

(α) such that Mt = Mt
(0) + δMt, we can write

Pt = | Mt
(0) |2 + 2Re Mt

(0)δMt + |δMt |
2

= t2N(𝒫 + ηt),
(10)

where

ηt ≡ 2Re Mt
(0)δMt + |δMt|

2 t2N

⩽ |δMt | (2 | Mt
(0) | + |δMt | ) t2N .

(11)
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For notational simplicity, here we will assume that the entries of J are drawn from the set 

{−1, 0, 1}; note that nothing about our argument would change if arbitrary integers were 

used, except that the time t would be rescaled in the bounds below by max(Ji,j). Using 

〈 , …, |ℋm | , …, 〉 ⩽ N2m | |σx | |2m = N2m, Mt
(α) can be bounded as 

|Mt
(α) | ⩽ (N2t)N + 2α/(N + 2α)!. Therefore,

|Mt
(0) | ⩽ (N2t)N

N ! , (12)

|δMt | ⩽ (N2t)N

N ! α 1

∞
(N4t2)α ⩽ 2(N2t)N

N ! (N4t2) . (13)

The final inequality in Eq. (13) is valid for t2 ⩽ 1/(2N4), because 0 ⩽ α 1
∞ xα ⩽ 2x

whenever 0 ⩽ x ⩽ 1/2. Plugging Eqs. (12) and (13) into Eq. (11) leads to

ηt ⩽ 4N4t2 N4N

N ! 2 (1 + N4t2) (14)

⩽ 6N4t2 N4N

N ! 2 ⩽ t2poly(N)e2N(lnN + 1), (15)

with the final inequality obtained by Stirling’s approximation. It follows immediately that ηt 

= o(1) is guaranteed as long as

t = o(e−2NlnN) . (16)

Notice that for this exponentially short time, approximate sampling is classically easy, since 

the resulting distribution is exponentially close in total variation distance to the initial 

distribution, with all probability mass on a computational basis state. However, there 

remains hope that we could obtain such approximate hardness results by considering longer 

times. In this case, higher-order-in-time terms will contribute to the outcome probability we 

care about, resulting in a nontrivial additive approximation to the permanent. While in the 

worst case the sizes of these terms may overwhelm the value of the permanent, it is likely 

that a better understanding of their concentration could be used to upper bound the size of 

these contributions for a typical matrix in a random ensemble. We leave this as an open 

direction for future work.

Fefferman et al. Page 6

Phys Rev A (Coll Park). Author manuscript; available in PMC 2019 May 13.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



V. HARDNESS OF SAMPLING

Here we prove our main theorem, establishing a very unlikely complexity-theoretic 

consequence that would arise naturally from the presumed existence of a classical algorithm 

that samples exactly from the output distribution described in the prior sections. Similar 

arguments to the one sketched here are implicit in other works on quantum hardness of 

sampling results starting with the boson sampling proposal [5].

We begin with a very brief overview of the computational complexity-theoretic components 

necessary to understand this hardness of sampling result. Computing exactly the permanent 

of an N × N matrix X with integer entries is as hard as computing the number of satisfying 

assignments to a Boolean formula. We therefore say it is a #P-hard problem, as established 

by Valiant [24]. When X has non-negative integer entries this problem is also in #P.

For our purposes, we will be interested in the complexity of computing multiplicative 

estimates to the permanent. We say an algorithm 𝒜 efficiently computes a multiplicative 

estimate to a function f if, given input x, the output of 𝒜 is within a 1 ± ϵ multiplicative 

factor of f(x) in time-polynomial in N and 1/ϵ. A famous result of Jerrum et al. gives an 

algorithm for efficiently computing a multiplicative estimate to the permanent of a matrix 

with non-negative entries [25]. On the other hand, it can be shown using a binary search and 

padding argument that computing such an estimate to the permanent (or even the square of 

the permanent) of a matrix with general integer entries is in fact#P-hard (see, e.g., [5,26]). 

Therefore, computing these estimates is as hard as computing the permanent exactly. How 

powerful is #P? We know from Toda’s theorem that any problem in the polynomial-time 

hierarchy PH can be solved using the ability to solve a #P-hard problem [27]. Being a bit 

more formal, Toda’s theorem tells us that PH ⊆ P#P.

Now, for any N × N matrix X define 𝒟X to be the outcome distribution from Sec. III that 

arises from starting in the |↓, …, ↓〉 state, evolving for a particular time t under the action of 

the Hamiltonian from Eq. (1) with coupling constants Ji,j set to the entries of X, and 

measuring in the z basis. As shown in Secs. III and IV, the probability of observing the |↑, 

…, ↑〉 outcome at time t is proportional to the square of the permanent of X plus an o(1) 

correction, provided that t is chosen to be o(e−2N ln N). Notice that this probability is 

exponentially small. Therefore, to get any reasonable estimate by repeated sampling we 

would need an exponential number of samples. Indeed, this does not imply an efficient 

quantum algorithm for computing the permanent. Nonetheless, we can use the fact that a 

single exponentially small amplitude is proportional to the permanent to argue about the 

classical intractability of sampling from this distribution.

Suppose we have an efficient classical sampler that samples from the same distribution. We 

define this to be an efficient randomized algorithm that takes as input an N × N integer 

matrix X and outputs a sample from the distribution 𝒟X. A classic result of Stockmeyer 

gives an algorithm for computing a multiplicative estimate to the probability of any given 

outcome of an efficient classical sampler in the third level of the PH, or Σ3 [17]. Using this 

result, together with the presumed existence of an efficient classical sampler for our 

quantum distribution, we can compute a multiplicative estimate to the square of the 
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permanent of an arbitrary integer matrix in the third level of the PH. As mentioned above, 

this is a #P-hard problem. This tells us we can solve any problem in #P in the third level of 

the polynomial-time hierarchy, or formally that P#P ⊆ Σ3. Combining this with Toda’s 

theorem, we have that PH ⊆ P#P ⊆ Σ3 and so the entire polynomial-time hierarchy collapses 

to the third level, as claimed. Therefore, it is very unlikely that an efficient classical sampler 

for the distribution with probabilities given by Eq. (3) exists.

VI. DISCUSSION AND IMPLICATIONS

These results extend several key ideas of boson sampling to the context of spin dynamics 

under Ising spin Hamiltonians. Just like noninteracting bosons, the Ising model without a 

transverse field is often viewed, from the perspective of many-body quantum physics, to be 

trivial, since it can be trivially diagonalized. However, just as with noninteracting bosons, 

this point of view stems from a restricted notion of what it means to simulate a quantum 

system. As in the case of noninteracting bosons, it is indeed classically efficient to compute 

low-order correlation functions of operators in the model we study [28,29], but sampling 

from the output distribution is simply a more general (and less trivial) task.

Another interesting motivation for our result comes from the desire to classify all two-qubit 

commuting Hamiltonians. Suppose we start in a computational basis state of n qubits and 

can apply a fixed two-qubit Hamiltonian to any pair of qubits. A recent result of Bouland et 
al. gave a hardness of sampling classification for this model [30]. They prove, in all cases 

except the one we consider (in which the two-qubit Hamiltonian is X ⊗ X), that the 

corresponding exact sampling task (which they call weak simulation) is classically hard as 

long as the commuting Hamiltonian is capable of generating entanglement from a 

computational basis state. Otherwise, the output is in a product state and clearly classically 

simulable. Thus our hardness result completes the sampling hardness classification of the 

complete class of two-qubit commuting Hamiltonians (see their paper for additional details 

[30]).
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FIG. 1. 
Schematic of the model. Spins in sublattice 𝒜 (red, σi) are coupled to spins in sublattice ℬ

(blue, τ j) via Ising couplings σi
xτ j

x and all of them start off in |↓〉. To lowest order in time, the 

matrix element of the time-evolution operator between an initial state with all spins 

initialized in |↓〉 and a final state with all qubits in |↑〉 receives contributions in which each 

spin is flipped precisely once (one such contributing term, between the spin on the second 

site of 𝒜 and the spin on the first site of ℬ, is shown).
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FIG. 2. 
Example of a single term contributing to the matrix element Mt at lowest order in time (tN, 

here with N = 3). Here, all spins are flipped from down to up by a particular pairing off of 

the spins between the 𝒜 and ℬ sublattices. The depicted process contributes a term (J1,2 × 

J3,1 × J2,3) × (t3/3!) to Mt. The set of all possible ways to pair the spins in sublattice 𝒜 with 

the spins in sublattice ℬ is in one-to-one correspondence with terms in the permanent of the 

matrix Ji,j and thus Mt is proportional to this permanent.
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