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Abstract

The SU(1,1) interferometer was originally conceived as a Mach-Zehnder interferometer with the 

beam-splitters replaced by parametric amplifiers. The parametric amplifiers produce states with 

correlations that result in enhanced phase sensitivity. F = 1 spinor Bose-Einstein condensates 

(BECs) can serve as the parametric amplifiers for an atomic version of such an interferometer by 

collisionally producing entangled pairs of |F = 1, m = ±1〉 atoms. We simulate the effect of single 

and double-sided seeding of the inputs to the amplifier using the truncated-Wigner approximation. 

We find that single-sided seeding degrades the performance of the interferometer exactly at the 

phase the unseeded interferometer should operate the best. Double-sided seeding results in a 

phase-sensitive amplifier, where the maximal sensitivity is a function of the phase relationship 

between the input states of the amplifier. In both single and double-sided seeding we find there 

exists an optimal phase that achieves sensitivity beyond the standard quantum limit. 

Experimentally, we demonstrate a spinor phase-sensitive amplifier using a BEC of 23Na in an 

optical dipole trap. This configuration could be used as an input to such an interferometer. We are 

able to control the initial phase of the double-seeded amplifier, and demonstrate sensitivity to 

initial population fractions as small as 0.1%.

I. Introduction

Quantum coherent states of photons or matter are the workhorses for interferometric 

measurements because they can be made from large numbers of particles with well-defined 

phases. Although classical plane waves have no phase uncertainty, quantum coherent states 

of N particles have an inherent phase uncertainty that limits the interferometer’s sensitivity 
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to the standard quantum limit (SQL) ΔϕSQL ∝ 1/ N. Caves et al. [1, 2] realized that an 

interferometer exploiting quantum correlations between the input modes could surpass the 

SQL, reaching phase-sensitivities scaling with the Heisenberg limit Δϕ ∝ 1/𝒩, where 𝒩 is 

the number of correlated particles. challenge in achieving such high sensitivity is producing 

and maintaining highly non-classical correlated states of photons or atoms.

One solution to the problem of producing quantum correlations for interferometry is to 

replace the beamsplitters in a Mach-Zehnder interferometer with parametric amplifiers (Fig. 

1). Parametric amplifiers have a bright “pump” mode containing the vast majority of the 

particles, and amplify the seeded or unseeded “probe” and “conjugate” states. Such a 

parametric amplifier may be constructed from a single-mode Bose-Einstein condensate 

within the Zeeman-split ground-state hyperfine manifold |F, m〉, which is called a spinor 

parametric amplifier [3–5].

We consider the hyperfine states |F = 1, m〉having complex amplitudes represented by the 

spinor (ξ+1,, ξ0, ξ−1)T, with ξm = ρme
iθm, mean fractional populations ρm = Nm/N and 

phases θm. The initial state of the BEC of N atoms is represented by a product of the 

coherent states |αm m =| Nξm m. In the spinor parametric amplifier |α0 0 serves as the pump 

and |α± ± provide the probe and conjugate modes.

Parametric amplifiers can be modeled analytically using a linear “undepleted pump” 

approximation, resulting in an interferometer design with SU(1,1) symmetry [6]. When the 

input parametric amplifier produces an average of 𝒩 = N+ + N− ≫ 1 particles in the probe 

and conjugate states, then the minimum phase-sensitivity of the interferometer 

Δϕ = 1/ 𝒩(𝒩 − 2) approaches the Heisenberg limit [6]. This scaling with the number of 

atoms in the probe and conjugate states 𝒩 is not identical to scaling with the total number of 

particles N = Npump + 𝒩. This SU(1,1) interferometer has been explored in various systems 

theoretically [6–11], and the unseeded interferometer has been explored experimentally [12–

18].

The atomic spinor SU(1,1) interferometer is sketched in Fig. 1, where initially 0 − 1% of the 

atoms are in the probe and conjugate states m = ±1, with the remainder in the pump state m 
= 0. After the input amplifier, a phase shift ϕ is applied to the relative spinor phase θ = θ+1 + 

θ−1 − 2θ0, and the amplification reversed in a second parametric amplifier. The measured 

output of the interferometer is the sum of the atoms in the m = ±1 levels 

𝒩out = N+, out + N−, out.

Optical parametric amplifiers typically operate well within the undepleted pump 

approximation due to the weakness of four-wave mixing and down conversion processes. 

Study of the seeding of the initial probe and conjugate states of the optical SU(1,1) 

interferometer showed that sensitivity beyond the standard quantum limit is lost at ϕ = 0, 

which would otherwise be the phase yielding maximum sensitivity in the unseeded case. By 

operating the interferometer away from ϕ = 0, the interferometer could still surpass the SQL 

[7, 9, 19].
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In contrast to optical amplifiers, spinor parametric amplifiers in a single spatial mode rapidly 

deplete the finite pump resource, transferring a majority of the atoms to the probe and 

conjugate states, and breaking the linear approximation. Simulations of this nonlinear spinor 

amplifier as an input to the SU(1,1) interferometer showed that Heisenberg-limited 

sensitivity was retained, although the effects of initial seeding of the probe and conjugate 

states was not considered [10]. Extending these results, we simulate the nonlinear spinor 

amplifier as an input to the SU(1,1) interferometer, including the cases of small initial 

coherent seeds in one or both of the probe and conjugate states, which has not previously 

been considered.

Demonstrating a spinor SU(1,1) interferometer capable of surpassing the standard quantum 

limit is a challenging task. The best results with a vacuum-seeded spinor SU(1,1) 

interferometer demonstrated sensitivity somewhat better than the SQL: Δϕ ≈ ΔϕSQL/

(1.6±0.5) [15]. Even in this vacuum-seeded case, it was observed that the sensitivity of the 

interferometer was suppressed near ϕ = 0, where the ideal interferometer (without losses) 

would have been maximally sensitive.

The difficulty presented by the full SU(1,1) interferometer of Ref. [6] is that at the operating 

point with maximal theoretical sensitivity, the mean and variance of the detected particles at 

the output, 𝒩out, go to zero leaving the measurement susceptible to noise from losses [9], or 

imperfect reversibility [15]. We propose that a third reason for loss in sensitivity of the 

spinor SU(1,1) interferometer is imperfect state preparation. If even very small fractions of 

atoms are present in m = ±1, then the initial probe and conjugate states are not exact 

vacuum-states and the effects of these imperfections must be considered.

Here, we simulate the nonlinear spinor SU(1,1) interferometer using the truncated-Wigner 

approximation [20, 21] in a single spatial mode for the case of coherent single and double-

sided seeding of the input states. For single sided seeding, we find a decrease in sensitivity at 

ϕ = 0 analogous to the optical interferometer [7, 9], while surpassing the standard quantum 

limit at other phases.

We also simulate the case of double-sided seeding of the input amplifier, resulting in finite 

populations in both output modes, which are therefore less susceptible to measurement 

noise. Our simulations show that a nonlinear SU(1,1) interferometer initiated using double-

sided seeding of the m = ±1 states can significantly surpass the standard quantum limit. For 

particular values of the initial spinor phase θ of the phase-sensitive amplifier with fixed 

evolution time, we find a maximum sensitivity not only surpassing the SQL, but also 

surpassing the expectation for vacuum-seeding.

Experimentally, we demonstrate the phase sensitivity of a spinor parametric amplifier that 

could be used to construct such an SU(1,1) interferometer using a 23Na BEC in a crossed 

optical dipole trap [22]. The BEC of N ≈ 3.5 × 104 atoms meets the single spatial-mode 

criterion so that the spatial wave-function can be ignored in the dynamics. We show a three 

sigma change in the amplifier output when one input to the phase-sensitive amplifier is 

seeded with a fraction of just 10−3.
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II. Entanglement in Spinor Becs

Entanglement in spinors has been produced both by transferring the atoms into an unstable 

m = 0 level that spontaneously decays into entangled pairs of m = ±1 atoms [3, 23, 24], as 

well as by adiabatic passage through quantum phase transitions [25]. The pairs of atoms 

produced from an unstable spinor state in the undepleted pump regime are analogous to the 

pairs of photons produced in downconversion or four-wave mixing [3]. The atomic state that 

results from this process in the linear approximation is a two-mode vacuum-squeezed state.

Spontaneous emission of correlated m = ±1 atom pairs can be induced in a sodium BEC 

when the |1, 0〉 level has a slightly higher energy than the average energy of the | 1, ±1〉 
levels. The gain of the parametric amplifier can be controlled by varying the time tSMD 

allowed for this spin-mixing dynamics (SMD) to proceed, from very short times for which a 

linear Bogoliubov approximation is valid, to very long times where this approximation 

breaks down and the depletion of the pump state must be taken into account. During spin-

mixing dynamics magnetization-conserving spin-flip collisions convert a pair of m = 0 

atoms into a correlated pair of m = ±1 atoms and vice-versa.

The most significant difference between entangled photons and entangled atoms is the 

interaction energy c = c2n between the atoms that introduces nonlinearity into the evolution, 

where c2 = 2πℏ2 a2 − a0 /3μ, the aF are the scattering lengths for two atoms with total spin F, 

μ is the reduced mass of two atoms, and n is the mean density of the BEC [26]. In our 

crossed optical dipole trap, the atoms remain in a single spatial wavefunction for the 

duration of the experiment, so that every pair of atoms created further increases the rate of 

pair production, exponentially increasing the number of atom pairs for short times.

When the spin-components of the BEC all share asingle spatial wavefunction we can make 

the single-mode approximation (SMA). The SMA leads to a simplification of the dynamics 

of the mean-field spinor (ξ+1,, ξ0, ξ−1)T, where |ξm =| ρme
iθm , down to two dynamical 

variables: ρ0, which is the fractional population in m = 0, and the spinor phase θ = θ+1 + θ
−1 − 2θ0, [26]. The dynamics is a function of the spin-dependent interaction energy c, and 

the quadratic Zeeman energy q = (E− + E+ − 2E0)/2, where Em is the energy of the each 

hyperfine state |1, m〉. The magnetization M ≡ ρ+ − ρ− is conserved in the SMA.

Spinor parametric amplifiers typically avoid the nonlinear regime by restricting the 

dynamics to short times so that only a very small fraction of atoms produce correlated pairs 

[15, 27]. In the linear or “undepleted pump” regime, where the initial population in m = 0 

has not changed significantly, the quantum spin-mixing dynamics is modeled by making a 

linear Bogoliubov approximation. The Bogoliubov approximation remains valid when the 

fraction of entangled atoms produced from spin-mixing dynamics (SMD) is 

ρ𝒩 = ρ+ + ρ− ≲ 0.01. Although an SU(1,1) interferometer may have phase sensitivity that 

scales with the Heisenberg limit Δϕ ∝ 1/𝒩, 𝒩 is small and the absolute sensitivity is limited. 

Nevertheless, an enhancement of 2.05 dB over the SQL was achieved in a measurement of 
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the hyperfine clock transition (|F, m 〉 = |1,0〉 → |2,0〉) in a spinor BEC using an average of 

just entangled atom pairs [27].

Here we consider the case of producing large fractions of entangled m = ±1 atoms such that 

the pump is significantly depleted. This nonlinear SU(1,1) interferometer is in principle 

capable of significantly enhanced absolute sensitivity since almost all the pump atoms 

participate in the measurement [10]. The challenge introduced by the nonlinear SU(1,1) 

interferometer is negating the sign of the interaction energy c and quadratic Zeeman shift q 
to achieve perfect reversal of the spin dynamics. Although an a.c. Stark shift may be used to 

reverse the sign of q, it is extremely difficult to reverse the sign of the spinor interaction 

energy c. Feshbach resonances [28] can be used to modify atomic interactions, but have 

limited applicability to the spinor system because of the need for large magnetic fields or 

short experiment times. Within the Bogoliubov approximation the reversal may be achieved 

without negation of c, q using an applied phase shift ϕ inside the interferometer [15].

III. Theory and Simulations of the Seeded Nonlinear SU(1,1) Spinor 

Interferometer

An SU(1,1) interferometer is structurally similar to the Mach-Zehnder interferometer. In an 

unseeded SU(1,1) spinor interferometer, the input is a coherent state with all atoms in |α0 0. 

Spin-mixing dynamics (SMD) of the atoms in the first amplifier produces pairs of entangled 

m = ±1 atoms in a time tSMD. Unlike in a photon amplifier, the atoms are always within the 

“gain” medium, and nearly all atoms can be transferred out of m = 0. The number of atoms 

in m = ±1 within the interferometer after the spin-mixing dynamics is 𝒩 At this point a 

phase shift ϕ is applied and the spin-mixing dynamics is reversed using a second spinor 

amplifier. Following Ref. [10] we treat the optimal case of exactly reversing the Hamiltonian 

by mapping c → −c and q → −q. The spinor is allowed to evolve back for the same amount 

of time tSMD, and the output of the interferometer is the summed atom number in m = ±1, 

𝒩out = N+, out + N−, out.

The quantum Hamiltonian of a spin-one Bose-Einstein condensate occupying a single spatial 

mode [26, 29, 30] is H = c/(2N)F ⋅ F − qa0
†a0, where F = ∑mm′am

† F mm′am′ is the total spin 

operator, F mm′ = Fmm′
x , Fmm′

y , Fmm′
z , and Fmm′

x, y, z are matrix elements of the x, y, and z spin-

one matrices. Finally, am
†  (am) are the creation (annihilation) operators for an atom in spin 

state m = +1, 0, −1 and in the relevant single spatial mode. The mean field language 

implicitly used in the first two sections follows from a unitary transformation of H under the 

displacement operator D = ∏m = − 1
1 exp αmam

† − αm* am . The part of the transformed 

Hamiltonian that is independent of the creation and annihilation operators is minimized with 

respect to the αm, and only terms that are up to quadratic in the creation and annihilation 

operators are kept. The operator-independent terms of the transformed Hamiltonian can be 

recognized as the classical or mean-field spinor Hamiltonian for the αm and αm*  or 

equivalently ρm and θm. The quadratic terms correspond to the Bogoliubov Hamiltonian. Its 

role is discussed in the next section.
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For spin-1 alkali-metal atoms in the presence of a small homogeneous magnetic field the 

parameter q corresponds to the quadratic Zeeman shift and is non-negative. For sodium 

atoms c > 0 and the ground state of the mean field Hamiltonian at zero magnetization (M = 

0) is a coherent state with all atoms in m = 0, i.e. ρ0 = 1. The application of a microwave 

field can change the sign of q and for −2c < q < 0 [31] this causes a dynamical instability as 

the classical Hamiltonian has a saddle point at ρ0 = 1. Because of this instability pairs of m = 

0 atoms will spontaneously scatter into pairs of correlated atoms in the m = ±1 states. The 

amplification process is called phase-insensitive because the spinor phases θ+1, θ−1 and θ0 

are ill- or un-defined. Even if only one of the m = ±1 states is seeded so that one of ρ±1 > 0 

and the corresponding phase is defined, the amplification remains phase-insensitive, since 

the initial spinor phase θ = θ+1 − θ−1 − 2θ0 is still undefined.

In a double-seeded SU(1,1) interferometer, the input has most of the atoms in the m = 0 

state, but also small coherent populations in m = ±1. Hence, the initial phase θ of the spinor 

is well-defined. This initial phase controls the subsequent amplification or de-amplification 

of pairs of atoms and characterizes the phase-sensitive amplifier.

The figure of merit for an interferometer is its phase sensitivity Δϕ. We estimate Δϕ from 

simulations of the mean 𝒩out and variance Δ𝒩out
2 of the total number of atoms in m = ±1 

at the output of the interferometer as a function of the phase shift ϕ within the 

interferometer. Using error propagation to estimate the phase sensitivity gives

Δϕ = Δ𝒩out/
d𝒩out

dϕ . (1)

The Fisher information F (ϕ) can be used to quantify the presence of useful entanglement in 

a system. F (ϕ) is defined in terms of the conditional probability P 𝒩out |ϕ  of obtaining 𝒩out
atoms at the output given an interferometer shift ϕ [10]

F(ϕ) = ∑
𝒩out = 0

∞ 1
P 𝒩out |ϕ

dP 𝒩out |ϕ
dϕ

2
. (2)

The quantum Fisher information is defined as the maximum value of the Fisher information 

FQ ≡ max(F (ϕ)) [32]. The inequality FQ > 𝒩 provides a condition “sufficient for 

entanglement and necessary and sufficient for entanglement useful for quantum metrology” 

[33].

The Fisher information can be measured experimentally using the squared Hellinger 

distance [24]; however, this technique does not work for simulations using the truncated-

Wigner approximation as the distributions are broadened by quantum noise. We instead 

calculate 1/(Δϕ)2, which provides a lower-bound for the Fisher information F (ϕ) ≥ 1/(Δϕ)2 
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[10]. The ultimate phase-sensitivity produced by n repeated measurements is calculated by 

the Cramér-Rao lower bound ΔϕCR = 1/ nF(ϕ) ≤ Δϕ/ n.

The standard quantum limit for the quantum Fisher information is FQ ∝ 𝒩, while the 

Heisenberg limit is FQ ∝ 𝒩2. Therefore the standard quantum limit is surpassed any time the 

quantum Fisher information per atom f Q ≡ FQ/𝒩 ≥ 1. Scaling the Fisher information by the 

number of atoms in m = ±1 after time tSMD gives an appropriate measure of entanglement in 

the system. If, however, we ask whether the interferometer performs better than a Mach-

Zehnder interferometer with coherent state inputs, then we should scale the Fisher 

information by the total number of atoms in the BEC (N), instead of 𝒩.

A. Bogoliubov approximation for the phase-sensitive spinor amplifier

In this subsection we expand on the linear Bogoliubov theory to include the cases of single 

and double-sided initial seeding. These situations correspond to the phase-insensitive 

amplifier (PIA), and phase-sensitive amplifier (PSA) respectively. We use the Bogoliubov 

approximation to derive an expression for the early-time evolution of the spinor that is 

analogous to the phase-sensitive amplification of photons in a nonlinear medium. The 

Bogoliubov approximation simplifies the Hamiltonian by considering only small deviations 

from the initial state.

In the photon case, a strong pump laser beam interacts with two weak beams, the probe and 

conjugate. All states are initially coherent states, and the total number of photons in the 

amplified probe and conjugate beams has four terms. One term is the initial populations, a 

second term is due to spontaneous emission, a third term is due to phase-insensitive gain, 

and a fourth term is due to phase-sensitive gain [9].

For the single-mode spinor BEC, we derive a similar equation by using a Bogoliubov 

expansion of the m = ±1 states, while assuming that the much larger number of atoms in m = 

0 is a constant classical field. This has been done previously for the phase-insensitive case 

[10, 34], but here we give the result for a phase-sensitive spinor amplifier, beginning with 

coherent states in |α± ± with average initial number of atoms N±, and initial phase θ (the bar 

indicates initial values).

𝒩(t) = N+ + N− + 2
c2n 2

ω2 sinh2(ωt) + 2 N+ + N−
c2n 2

ω2 sinh2(ωt)

+4 N−N+
c2n
ω sinh(ωt) × cosh(ωt)sinθ +

c2n + q
ω sinh(ωt)cosθ .

(3)

The instability rate ω(q < 0) ≡ |q| 2c2n − |q| /ℏ is a maximum when the effective quadratic 

Zeeman shift is q = − c2n. As for the optical case, we identify four terms in the amplification 

process: initial population, spontaneous emission, phase-insensitive gain, and phase-
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sensitive gain. When q = − c2n the term proportional to θ in Eq. (3) is zero, and the atom and 

photon amplifiers behave in closely analogous ways. The most distinct difference between 

the optical and spinor parametric amplifiers is the ability to nearly completely deplete the 

pump in the spinor amplifier.

B. Fisher information

The Fisher information of the unseeded SU(1,1) interferometer in the Bogoliubov 

approximation [10] is

FBog(ϕ) = 𝒩(𝒩 + 2)
𝒩(𝒩 + 2)sin2(ϕ/2) + 1

cos2(ϕ/2), (4)

where 𝒩 = N+ tSMD + N− tSMD  is the number of atoms in m = ±1 after the initial 

amplification due to spin-mixing dynamics. The interferometer is most sensitive at an 

optimal phase ϕopt producing the maximum value of F (ϕ), which defines the quantum 

Fisher information, FQ = F (ϕopt). From Eq. (4) one can show that within the unseeded 

Bogoliubov approximation, this optimal phase is ϕopt = 0, and it yields a quantum Fisher 

information FBog,Q = 𝒩(𝒩 + 2), or a quantum Fisher information per atom of 

FBog,Q = (𝒩 + 2), with 𝒩 > 0.

C. Truncated-Wigner approximation

We numerically estimate the Fisher information both within the Bogoliubov approximation 

(short tSMD) and beyond to large depletion of m = 0 (long tSMD) by calculating Δϕ (Eq. (1)) 

using the truncated-Wigner approximation to simulate the spinor wavefunction.

The truncated-Wigner approximation (TWA) improves upon the Gross-Pitaevskii Equation 

(GPE) method by allowing for the inclusion of quantum fluctuations [20, 21]. Briefly, the 

TWA simulations are averages over many GPE simulations with initial noise corresponding 

to the Wigner transform of the initial state. This noise has a form such that the short time 

dynamics agrees with that of Bogoliubov theory. We simulate 104 cation, 𝒩(t), in the 

Bogoliubov approximation is trajectories to achieve good statistics on both the average 

values and standard deviations. Using the TWA we obtain the average number of atoms at 

the output of the interferometer 𝒩out(ϕ) and its uncertainty (Δ𝒩) as a function of 

interferometer phase. We calculate the derivative d𝒩out/dϕ for each particular instance of the 

random initial conditions using a symmetric phase step of 10−6 rad. In order to avoid the 

problem of maintaining high precision in the averages for the small changes in atom number 

caused by the 10−6 rad change in phase, we take the derivative of each iteration (for instance, 

in Eq. (1)) before averaging instead of taking the derivative of the averaged quantities. Note 

that when simulating using the TWA it is important to compensate the raw averages and 

variances for Weyl ordering of the operators [35].
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D. Simulation results

The parameters used for the simulation are typical of a sodium spinor BEC with N = 3 × 104 

atoms, c/h = 25 Hz, and q/h = −1 Hz. The results do not depend significantly on c or q so 

long as comparisons are made with the same 𝒩. The number of atoms is increased by 

increasing the time for spin-mixing dynamics tSMD up to about 100 ms or until ρ0 is nearly 

depleted.

We estimate the Fisher information with F<(ϕ) = 1/ Δϕ 2 ≤ F(ϕ), and the Fisher information 

per atom with f <(ϕ) = F<(ϕ)/𝒩. Figure 2(a) shows a plot of f<(ϕ) for various fractions of 

single-side seeding in m = −1 with tSMD = 20 ms. For vacuum seeding the lower bound from 

the TWA simulation agrees well with the Bogoliubov theory. Eq. (4) for vacuum-seeding. 

The TWA simulation is most sensitive to noise due to random quantum fluctuations near ϕ = 

0 where Δ𝒩out and d𝒩out/dϕ out both approach zero.

The effect of even very small seed fractions is quite pronounced. For a fraction as small as 

10−6, f<(ϕ) is significantly suppressed at ϕ = 0. As the fractional seed increases, the narrow 

dip gets wider, and the maximum of f<(ϕ) decreases until saturating near 0.1% seeding. For 

2.0% seeding the amplified fraction of atoms is ρ = 𝒩/N ≈ 0.5, and for larger seed fractions 

the peak decreases as we enter the heavily depleted regime.

An important consequence of the increasing seed fraction ρseed = 𝒩seed/N is the increased 

gain of the amplifier for fixed tSMD, resulting in significantly larger numbers of atoms 𝒩
after the initial amplification. This is demonstrated in the inset to Fig. 2(a) that shows the 

amplified fraction ρ versus ρseed for tSMD = 20 ms. Increasing the seed fraction also 

increases the fraction of atoms produced by the amplifier, effectively increasing the gain of 

the amplifier.

Bogoliubov theory suggests that the width of f(ϕ) versus ϕ should decrease as 𝒩 increases, 

but this is not what is observed. Instead the full-width at half-maximum (FWHM) of f<(ϕ) in 

Fig. 2(a) is nearly constant and similar to the FWHM in the unseeded case, whereas the 

width of the dip at ϕ = 0 does increase with 𝒩. The deep dip at ϕ = 0 demonstrates that even 

small initial coherent populations suppress the Fisher information, as the mean and variance 

no longer approach zero. Despite the loss of sensitivity at ϕ = 0, there exists instead an 

optimal value of ϕ for each seed fraction and tSMD that gives the largest lower-bound for the 

quantum Fisher information.

Another way of viewing the effects of single-sided seeding is to plot the lower bound on the 

quantum Fisher information f<,Q = max[f<(ϕ)] versus ρ = 𝒩/N (see Fig. 3(a)). For a fixed 

seed fraction we increase the spin-mixing time tSMD until ρ ≈ 1 where the pump is nearly 

depleted. It is observed in Fig. 3(a) that increasing the seed fraction causes f<,Q to decrease. 

Even with just 0.02% seed, f<,Q has decreased by about a factor of 30 compared to the 

unseeded interferometer, suggesting significant effects of imperfect state preparation on the 

sensitivity of the interferometer. As ρ increases, the quantum Fisher information peaks at a 

value orders of magnitude above the standard quantum limit before decreasing when ρ → 1. 
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The dashed line in Fig. 3(a) in dicates FQ = N, or fQ = 1/ρ. For f<,Q above this line, the 

interferometer is more sensitive than a Mach-Zehnder interferometer with coherent inputs 

using all N atoms in the BEC. This is the limit where the nonlinear spinor SU(1,1) 

interferometer has truly improved measurement precision by exploiting quantum 

correlations.

Seeding the initial state has the advantage that the output of the interferometer has 

approximately the same number of atoms as in the initial seed, 𝒩out ≈ 𝒩seed. For a BEC 

with N = 3 × 104, 2% seeding corresponds to a measurement of 600 atoms, which is 

experimentally less susceptible to noise than an average near zero. Another advantage is that 

the time required to perform an experiment is significantly decreased, since the dynamics 

proceed more quickly. The unseeded case takes tSMD = 96 ms to reach ρ = 0.50, whereas the 

0.2% seeded case takes just tSMD = 35 ms to reach the same fraction.

We extend these simulations to the case of double-sided seeding, which is sensitive to the 

initial spinor phase. In Fig. 2(b) we simulate the SU(1,1) interferometer with 0.1% coherent 

seeds in both m = ±1 states and plot f<(ϕ) for several representative initial spinor phases θ 
with tSMD = 20 ms. Because the initial spinor phase θ is well-defined for double-sided 

seeding, the initial stage of the interferometer becomes a phase-sensitive amplifier, and the 

performance of the interferometer changes significantly with θ. There are two special values 

of the spinor phase that for a given seed fraction separate the mean-field spinor dynamics 

into regions of oscillating phase and running phase [26]. The phases which define this 

separatrix can be calculated for c2n > 0 and −2c2n < q < 0 using

θsep = ± cos−1
ρ+ + ρ− 1 + q

c2n 1 − ρ+ − ρ−
4ρ+ρ−

. (5)

For the 0.1% seeds in Fig. 2(b) these values are θsep = ±2.86 rad.

One of the consequences of double-sided phase-sensitive seeding is the loss of symmetry 

about ϕ = 0 in the Fisher information in Fig. 2(b). For an average initial spinor phase ϕ = 

ϕsep = −2.86 rad, the Fisher information peaks at f<(ϕ = −0.02) = 46, which is significantly 

larger than f(0) = 28 for the unseeded case. We conclude that for a fixed spin-mixing time, 

the phase-sensitive input amplifier can yield a spinor interferometer with greater sensitivity 

than the unseeded case, depending on initial spinor phase θ.

The inset to Fig. 2(b) plots f<,Q versus θ with the colored dots indicating the phases used for 

the main figure, and two dotted vertical lines indicating the phases of the separatrix. There 

are two broad peaks centered on θ = −2.8, 2.0 rad that extend significantly above the 

unseeded quantum Fisher information per atom f<,Q = 28. In between those peaks is a broad 

region with decreased sensitivity and a minimum at θ = −0.25 rad. The phases of the 
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separatrix produce initial conditions corresponding to near maximum (θ = 2.86 rad) and near 

minimum (θ = +2.86 rad) Fisher information.

The effect of the spinor phase can also be illustrated for double-sided 0.1% seeding by 

plotting f<,Q versus ρ(see Fig. 3(b)). We follow the performance of the interferometer by 

increasing tSMD, which again increases ρ. As in the single-side seeded interferometer, we 

see that seeding decreases f<,Q for a given value of ρ, but that for sufficient tSMD such that ρ 
→ 1, we have a Fisher information per atom much larger than the standard quantum limit. 

Again we find that the optimal value of θ is near to the one that defines the separatrix.

The peak Fisher information per atom for 0.1% double-sided seeding is f<,Q ≈ 1200 and 

occurs for ρ ≈ 0.47. This value of f<,Q is significantly larger than at the standard quantum 

limit and, as for the case of single-sided seeding, occurs at much earlier times than in the 

unseeded case. For double-sided seeding and sufficiently high gain, the sensitivity is better 

than that attainable using coherent state inputs in a Mach-Zehnder interferometer (dashed 

line in Fig. 2(b)).

IV. Experiment

To experimentally demonstrate control of seed number and phase, we begin with a greater-

than-90%-pure condensate of approximately 1.4 ×105 23Na atoms in the |1, 0〉 hyperfine 

ground state. The atoms are held in a crossed optical dipole trap with final trap frequencies 

of w(x,y,z) = 2π(137.7(8), 140.0(8), 210(6)) Hz. The indicated measurement uncertainties in 

this paper are one standard deviation of the mean statistical uncertainties, unless otherwise 

noted. The initial atomic state is purified by using microwave adiabatic rapid passage to 

transfer the atoms in m = ±1 to the F = 2 manifold, and subsequent removal from the trap 

with a 100 μs resonant optical pulse. In a similar way, the total atom number is reduced to 

3.5 × 104 atoms to ensure single-mode dynamics.

A. Single spatial-mode approximation

An estimate for whether the BEC stays within the single mode approximation while 

undergoing spinor oscillations can be made by considering a BEC of N atoms with a 

Thomas-Fermi radius RTF = aho 15Nac/aho
1/5, where aho = ℏ/ MNaω , MNa is the atomic 

mass, ω ≈ 2π × 160 Hz is the geometric mean angular trap frequency, and ac = (a0 +2a2)/3 = 

2.79(2) nm [36]. Spin-waves can be ignored when the half-wavelength of the lowest-energy 

combined spatial and spin-wave is larger than 2RTF, or λs/2 > 2RTF. The wavelength λs = 

2πξs, where ξs = 1/ks = ℏ/ 2MNa|c2|n is the spin-healing length of a spin-wave with 

wavevector ks [37]. Within the Thomas-Fermi approximation, the single-mode condition 

reduces to NSMA < π2aho/ 8 a2 − a0
5/4 15ac/aho

1/4. The scattering length difference for 

sodium is (a2 – a0) ≈ 0.29 nm [22], giving an estimate of NSMA ≲ 2.6 × 104 atoms for the 

maximum number of atoms for the validity of the SMA. Conversely, using N = 3 × 104, and 

c2n/h ≈ 23 Hz, we find a geometric mean Thomas-Fermi diameter of 2RTF = 12.6 μm, and 

λs/2 ≈ 9.5 μm, close to the Thomas-Fermi single-mode criterion. We experimentally find 
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that additional spatial modes are not populated even for large negative q, where the BEC 

should be unstable and populate higher-order spatial modes [4, 5, 38, 39].

B. Initial phase control

Unlike in optical four-wave mixing experiments, the single-mode atomic BEC does not have 

spatially distinguishable states, and we work instead with spin superposition states, where 

the fractions in m = +1 and m = −1 serve as the probe and conjugate beams respectively. 

First we prepare a probe state by transferring a small fraction of the m = 0 state into m = −1 

using two sequential microwave pulses: |1,0〉 → |2,−1〉, and then |2,−1〉 → |1,−1〉 We can 

vary the probe population between zero and 1%. Next, the conjugate fraction is established 

for m = +1 using similar microwave pulses. For our experiments we fix the fraction in m = 

+1 at 1%.

The initial spinor phase θ is controlled by slightly de-tuning one of the population transfer 

microwave pulses from resonance or by using a far-detuned phase-shifting microwave pulse. 

Figure 4 shows our ability to set the initial phase θ with a 500 μs long microwave pulse by 

verifying the mean-field prediction of the spinor evolution. With single-sided seeding the 

final atom fraction is independent of initial phase, demonstrating phase-insensitive 

amplification. For seeding both m = ±1 the amplification is phase-sensitive.

C. Procedure

The spinor amplifier is switched on with a continuous-wave o -resonant microwave field that 

shifts the relative energy of the levels due to the AC stark effect [22, 31, 40, 41]. In 

particular, for a bias magnetic field of B = 50 μT (equivalent to a 350 kHz linear Zeeman 

shift), we blue-detune 150 kHz from the clock transition |1, 0〉 → |2, 0〉. The effective 

quadratic Zeeman shift q is then

q = γB2 − ΔE0 + 0.5 ΔE−1 + ΔE+1

ΔEm = − ∑
n

Ωm, n
2

4Δm, m + n
,

(6)

where the sum is over all microwave photon angular momentum quantum numbers n = −1, 

0, 1 with Rabi frequencies Ωm,n = ωnCm,n that couple between atomic states with Clebsch-

Gordan coefficients Cm,n 〈1,m; 1,n|2,m + n 〉, each with detuning Δm,m+n and γ/h = 27.7 

kHz/(mT)2 [22]. The measured microwave frequencies for σ−, π, and σ+ coupling are 

respectively w−1 = 2π × 8.22(8) kHz, w0 = 2π × 23.7(3) kHz, and w+1 = 2π × 11.76(3) kHz. 

This mixed microwave coupling complicates the calculation of q, but we intentionally 

operate in this way so that we are able to make rapid transfers to all possible magnetic 

sublevels. The experimental value of q/h determined by the calibrated microwave fields is 

−1.3(4) Hz.
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While the value of q is stable for the duration of the experiment, c2n varies from one 

experimental realization to the next due to fluctuations in N. In order to capture these 

variations within the TWA simulations, we measure N for each experimental realization and 

use it to scale the interaction energy c2n = c2n0 N / 3 × 104 2/5
, where c2n0 is the interaction 

energy for 3 × 104 atoms. This scaling is expected from the Thomas-Fermi approximation 

for which n ∝ N2/5. We also compensate for slow variations in trap frequencies by fitting 

each series of 35 data points to find the best value of c2n0. The mean and standard deviation 

of the distribution from the fits for the entire data set are c2n0/h = 22.8 ± 0.7 Hz.

After the microwave dressing field is applied, the atoms are allowed to evolve for a fixed 

time tSMD = 27 ms. At that time the dipole trap is switched o, and the total number of atoms 

N and the fractional populations ρ±1 are measured by Stern-Gerlach separation and 

absorption imaging after a short time-of-flight. By monitoring the fluctuations in the 

magnetization (M ≡ ρ+ −ρ− we estimate that our atom measurement uncertainty is 190 

atoms for each spin state.

D. Experimental results

In Fig. 5 we present experimental data on the initial phase-sensitive amplifier stage of the 

SU(1,1) interferometer for constant seeding into m = +1 of ρ+,seed = 0.01 versus the fraction 

seeded into m = −1 (ρ−,seed). For all data, tSMD is long enough to that the system has evolved 

into the depleted pump regime for which the TWA simulations are necessary. The system 

transitions from a phase-insensitive amplifier with single-sided seeding for ρ−,seed = 10−6 to 

a balanced double-sided phase-sensitive amplifier when ρ−,seed = 0.01. The two sets of data 

differ in their initial phase with θ ≈ 0 (black circles), and θ = 2.46 rad (red diamonds). The 

initial phases have no effect on the spinor evolution when ρ−,seed is very small, but become 

increasingly important as ρ−,seed → ρ+,seed.

For double-sided seeding with θ = 00.16 rad (black circles), the seeded atoms stimulate the 

production of more pairs of atoms, resulting in a larger amplified fraction after a fixed 

amount of time. For θ = 2.45 (red diamonds), the seeded m = ±1 atoms first recombine to 

form pairs of m = 0 atoms before spontaneous and stimulated emission produces new pairs 

of m = ±1 atoms. For a fixed tSMD the time required for the initial deamplification results in 

a smaller measured fraction of atoms.

The transition from phase-insensitive to phase-sensitive amplifier can be understood by 

considering the standard deviation in the initial phase of the condensate calculated from 

TWA simulations (green dashed line). Δθ decreases as ρ−,seed increases, and for ρ−,seed > 

10−4 agrees well with the analytical expectation Δθ = 1/ρ+ + 1/ρ− + 4/ρ0/(2 N), derived 

from the coherent state standard deviation of the components Δθm = 1/ 2 Nm . At the point 

that ρ−,seed = 10−3, θ is sufficiently well-defined that the atom-fractions differ by three full 

standard deviations from the fraction for single-sided seeding, corresponding to less than 35 

atoms seeded into m = −1. Due to spinor amplification, we achieve a sensitivity to initial 
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numbers of atoms far below the 190 atoms per spin state measurement noise determined 

from the magnetization data (open circles).

V. Conclusion

We have used the truncated-Wigner approximation to simulate a spinor nonlinear-SU(1,1) 

interferometer seeded with coherent populations in the “probe” and “conjugate” states. In 

the case of single-sided seeding this realizes a phase-insensitive amplifier, while for double-

sided seeding the input is a phase-sensitive amplifier. We quantify the performance of the 

interferometer by calculating the phase-sensitivity Δϕ, which we use to estimate the Fisher 

information per atom, f(ϕ). We have shown that coherent seeds suppress f(ϕ) around ϕ = 0, 

while retaining Fisher information per atom significantly beyond the standard quantum limit 

for the optimal phase shift. An advantage of seeding the amplifier is that the outputs have a 

larger mean and smaller variance, giving better signal-to-noise ratio for the experimental 

measurements.

Experimentally, we have demonstrated that seeding the m = ±1 input states of a 23Na spinor 

BEC leads to an amplifier that is sensitive to probe and conjugate coherent states with less 

than 35 atoms or 0.1% of the total number of atoms. Using microwave pulses we can control 

the initial phase of the spinor condensate and therefore the subsequent dynamics. Nonlinear 

spinor SU(1,1) interferometers constructed from these phase-sensitive amplifiers are 

potential systems for achieving sensitivity beyond the standard quantum limit.
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FIG. 1. 
Configuration of the seeded spinor SU(1,1) interferometer. The initial spinor amplifier (first 

green box) mixes the pump coherent state |α〉0 (dashed black line) with the probe and 

conjugate coherent seeds |α± ± (blue solid lines) depending on the relative spinor phase θ. 

For a given set of input states, the amplifier gain is determined by the parameters for spinor 

dynamics c, q, and tSMD (defined in section II). A shift in the spinor phase within the 

interferometer ϕ is sensed when a second parametric amplifier (second green box) reverses 

the dynamics by negating the values of c and q, and evolving the state for the same time 

tSMD. The output of the interferometer is the number of atoms N+,out + N−,out (color online).
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FIG. 2. 
Lower bound on the Fisher information per atom obtained from TWA simulations versus 

interferometer phase ϕ for tSMD = 20 ms with (a) increasing percentages of single-sided 

seeding into m = −1, and with (b) increasing spinor phase for 0.1% double-sided seeding. 

The dashed line shows f(ϕ) calculated from Eq. (4) for the unseeded case. The inset to (a) is 

the amplified fraction after spin-mixing dynamics versus the initial seed fraction ρseed. The 

inset to (b) is f<,Q versus initial spinor phase, with colored dots corresponding to the traces 

shown in the main figure. Vertical dotted lines indicate the phase of the separatrix (sep) θsep 

= ± 2.86 rad that divides oscillating phase and running phase spinor dynamics [26].
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FIG. 3. 
The lower bound on the quantum Fisher information per atom versus ρ with (a) increasing 

percentages of single-sided seeding into m = −1, and with (b) double-sided 0.1% seeding at 

various initial phases. The solid black line is f Bog,Q = (𝒩 + 2), which is the prediction for 

the unseeded case (open circles). The grey shading indicates the region of Fisher information 

per atom that does not reach standard quantum limit fSQL = 1 (based on 𝒩 atoms in the 

interferometer arms). The dashed line corresponds to FQ = N (or fQ = 1/ρ), which is the limit 

achievable using coherent states in a Mach-Zehnder interferometer having a total of N 
particles. The phases of the separatrix are θsep = ±2.86 rad.
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FIG. 4. 
The atom fraction in m = ±1 after 14 ms of evolution time versus the phase shift achieved by 

a microwave pulse. The amplifier is seeded with 1.0% of the atoms in m = +1 (blue squares) 

or with 1% of the atoms in each of m = ±1 (black circles) out of N = 3.6(5) × 104 atoms. 

Solid lines are predictions from the single-mode spinor theory. Single-sided seeding 

represents multiple experiments and we quote the mean and standard deviation of the mean. 

Double-sided seeding represents one experiment per phase.
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FIG. 5. 
Experimental atom fraction after amplification for the seeded nonlinear amplifier versus 

seeded atom fraction in m = −1, with m = +1 initially populated with a fraction ρ+,seed = 

0.01 of the atoms. Solid black circles (N = 3.4(3) × 104, q/h = have −1 Hz, θ = 0.016 rad, 

tSMD = 27 ms) an initial spinor phase θ causing amplification, while red diamonds (N = 

7.8(9) × 104, q/h =25 −1.4 Hz, θ = 2.45 rad, tSMD = ms) have an initial phase causing 

deamplification. The shading indicates the standard deviation of the mean, and the solid 

black lines are results based truncated-Wigner approximation simulations. The green dashed 

line shows the decrease in the standard deviation (Δθ) of the distribution of initial phases 

from the TWA simulations.
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