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Abstract

Emotion regulation deficits are commonly observed in social anxiety disorder (SAD). We used 

manifold-learning to learn the phase-space connectome manifold of EEG brain dynamics in 

twenty SAD participants and twenty healthy controls. The purpose of the present study was to 

utilize manifold-learning to understand EEG brain dynamics associated with emotion regulation 

processes. Our emotion regulation task (ERT) contains three conditions: Neutral, Maintain and 

Reappraise. For all conditions and subjects, EEG connectivity data was converted into series of 

temporally-consecutive connectomes and aggregated to yield this phase-space manifold. As 

manifold geodesic distances encode intrinsic geometry, we visualized this space using its 

geodesic-informed minimum spanning tree and compared neurophysiological dynamics across 

conditions and groups using the corresponding trajectory length. Results showed that SAD 

participants had significantly longer trajectory lengths during Neutral and Maintain. Further, 

trajectory lengths during Reappraise were significantly associated with the habitual use of 

reappraisal strategies, while Maintain trajectory lengths were significantly associated with the 

negative affective state during Maintain. In sum, an unsupervised connectome manifold-learning 

approach can reveal emotion regulation associated phase-space features of brain dynamics.
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1. Introduction

According to the National Institute of Mental Health, the lifetime prevalence of Social 

Anxiety Disorder (SAD) among adults in the United States is 12.1% (Kessler et al., 2005). 

Disruption in regulating emotions has been observed among patients with SAD (Amstadter, 

2008) and individual differences in emotion regulation may relate to vulnerability to anxiety 

and mood disorders (Campbell-Sills and Barlow, 2007). While a few published studies have 

reported localized connectivity abnormalities in SAD (Etkin et al., 2010; Sladky et al., 2013) 

during emotion regulation, a systems-level investigation into overall brain network dynamics 

as measured using electroencephalography (EEG) has not been well explored. Here we 

utilize a novel manifold learning approach that reconstructs the phase-space of brain 

network dynamics while patients with SAD and healthy controls perform an emotion 

regulation task (ERT).

To ensure we have a sufficient connectomes sample for our phase-space construction 

procedure, we employed EEG for its high temporal resolution and selected a well-validated 

emotion regulation task (Fitzgerald et al., 2016; Parvaz et al., 2012). Further, informed by 

our own finding that in healthy individuals, ERT is sensitive to theta activity (4–7Hz) (Xing 

et al., 2016) as well as findings from other groups suggesting that theta connectivity is 

related to positive emotional states (Aftanas and Golocheikine, 2001) and cognitive 

processes (Cavanagh and Frank, 2014; Gruzelier, 2009), we tested our phase-space manifold 

learning approach on dynamic theta EEG connectomics. The theta connectome data was 

obtained using the same recording system in an overlapping sample previously reported in 

(Xing et al., 2017), where we demonstrated that SAD patients had higher overall theta 

connectivity, averaged over time as well as across all EEG channels, at rest.

The concept of a phase-space, as originally introduced in mathematics and physics, is a 

multi-dimensional space in which all states of a dynamic system were represented using a 

combination of a position vector and the corresponding momentum. In the field of 

quantitative EEG, the closely related term “state-space” has been used variably dependent on 

the specific applications. For example, it has been used to refer to an auto-regression based 

s-estimator applied to EEG time series to identify the disconnection topography in source 

localized schizophrenia brain networks (Jalili et al., 2007), as well as to evaluate EEG signal 

synchronization (Carmeli et al., 2005) and to estimate the cortical connectivity of healthy 

brains during movie watching (Cheung et al., 2010). Another related approach is the Taken’s 

embedding that seeks to find a proper embedding dimension of a dynamical system using a 

time-delayed construction. This approach has been used to reconstruct a strange attractor of 

a system in an optimal embedding dimension by examining the behavior of nearest 

neighbors (Jeong et al., 1998b). Note that the input of the Taken’s embedding is the time 

series of a scalar quantity and the output is the embedding dimension or another downstream 

scalar quantity (e.g., the Lyapunov exponent). While a few EEG resting state applications 
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have shown that such embeddings may be sensitive in capturing the temporal dynamic 

changes in certain disorders (Jeong et al., 1998b) (Jeong et al., 1998a; Stam, 2005), the 

Taken’s embedding nevertheless is likely only applicable during the resting-state and is 

computed at each sensor location, yielding a scalar quantity for each sensor instead of a 

systems-level connectome-type analysis. (Stam et al., 1996). Furthermore, the concept of 

state space analysis has been used to construct a log likelihood-based EEG time series 

mapping to yield a “sleep manifold” (Hight et al., 2014).

However, in these studies, recordings from electrodes were mapped onto a multi-

dimensional space that was indexed by anatomical regions-of-interest, which are placed with 

respect to anatomy and thus not with respect to the intrinsic features of brain dynamics as 

captured by the dynamic EEG connectome graphs. To explore the complex dynamics of 

human brain in the connectome-level space as opposed to the sensor-based space, our novel 

phase-space approach constructs a manifold where each position p is instead a dynamic EEG 

connectome (i.e., any position p in this manifold corresponds to a connectome graph which 

by itself is a frame or “snapshot” of a dynamic connectome time series that is constantly 

evolving as a trajectory or orbit in this space). Mathematically a connectome graph is coded 

as an N by N matrix where N is the number of sensors and each element in the matrix 

encodes the dynamic EEG relationship between the tracings of the two corresponding 

sensors.

In order to construct connectome-level phase-space manifold, we leveraged dissimilarity-

based graph embedding (Bunke and Riesen, 2011) that allows us to embed each connectome 

graph “snapshot” in a high-dimensional space. While in our case there is no clear equivalent 

to the concept of “momentum” (defined as the product of mass and velocity), we 

nevertheless could estimate the “velocity” of a dynamic EEG connectome time series at any 

given time point, if this time series has been preprocessed in such a way that consecutive 

connectome frames are separated by a fixed known time interval and that a very large 

amount of connectome “snapshots” are available, thus allowing us to estimate the manifold 

“geodesic” (i.e., the shortest distance on the manifold) between any two connectome graphs.

For the rest of the paper we used this unsupervised connectome-level manifold learning to 

construct the global geometry of EEG dynamics related to emotion processing, and to 

explore phase-space features during task performance between healthy controls and a group 

of participants with social anxiety disorder. As a person’s temporal EEG connectome while 

performing a task now corresponds to a phase-space “trajectory”, its dynamics can be 

precisely characterized using intrinsic geometric features of this phase-space. In previous 

applications, trajectory of the phase space, constructed with temporal power oscillations, 

showed promising results in predicting emotional state during movie-watching (Nie et al., 

2011; Wang et al., 2014). We hypothesized that SAD networks would exhibit abnormal 

features in a phase space comprising connectomes of all study participants and all task 

conditions. Furthermore, we hypothesized that phase-space features such as trajectory length 

per second (i.e., speed) would be associated with anxiety level, self-reported reappraisal 

tendencies, and ERT-related affective state.
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2. Materials and Methods

2.1. Participants

All participants provided written informed consent as approved by the local Institutional 

Review Board at the University of Illinois at Chicago. Diagnosis was based on the 

Structured Clinical Interview for DSM-IV (‘SCID-IV’ (First et al., 1995) and the clinician-

administered Liebowitz Social Anxiety Scale (“LSAS” (Liebowitz, 1987) and Hamilton 

Anxiety Rating Scale (Hamilton, 1959) determined symptom severity and general anxiety 

level, respectively. The Emotion Regulation Questionnaire (‘ERQ’; (Gross and John, 2003)) 

assessed subjective habitual use of reappraisal. Participants were between 18 and 55 years of 

age and free of major medical or neurologic illness as confirmed by a board-certified 

physician. SAD was required to be the primary diagnosis; however, comorbidity was 

permitted. All participants were free of psychotropic medications and none were engaged in 

psychotherapy. Healthy control (HC) participants were required to not have an Axis I 

disorder. Exclusion criteria for all participants were current substance abuse or dependence 

(within 6 months of study) or history of major psychiatric illness (e.g., bipolar disorder, 

psychotic disorder, pervasive developmental disorder). Participants were compensated for 

their time.

2.2. EEG data acquisition

EEG data were collected from 20 participants with SAD and 20 HC using the Biosemi 

system (Biosemi, Amsterdam, Netherlands) with an elastic cap with 34 recording channels. 

Each participant underwent ERT (Gross, 1998). Participants viewed pictures from a 

standardized set (Lang et al., 1997) during continuous EEG recording. Participants were 

asked to maintain their emotional state when viewing negative images (‘Maintain’), use a 

cognitive strategy to reduce negative affect when viewing negative images (‘Reappraise’), or 

view neutral pictures (i.e., ‘Neutral’). Negative and neutral images were displayed on the 

screen for seven seconds in a random order. EEG data were processed according to the 

method described in detail in (Xing et al., 2017). Additionally, participants also performed 

the same ERT during fMRI scans, during which subjective negative affect ratings were 

collected. At the end of each trial, participants were asked to rate how negative they feel on a 

five-point rating scale (1= not negative at all, 5 = extremely negative). Greater Maintain and 

Reappraise affective ratings in generalized anxiety disorder patients have been reported 

using the same ERT task (Fitzgerald et al., 2017)

2.3. EEG connectome

All EEG data were preprocessed using Brain Vision Analyzer (Brain Products, Gilching 

Germany) by first segmenting task trials into seven-second segments. A sliding window with 

a width of 0.5 seconds and a step size of 0.05 seconds was applied to create the dynamic 

data. The first and last five time points were discarded, resulting in 130-time points per 

session. (The same framework was performed on a down sampled data with less overlapping 

(20% overlaps). Main findings of two temporal sampling are consistent. Results of the down 

sampled data are included in Appendix C.) As functional communications between two 

brain regions result in synchronized or phase-coupled EEG readouts, in this study we used 

the weighted phase lag index (WPLI)(Cohen, 2014; Vinck et al., 2011), computed between 
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the time series of two channels to form EEG connectomes (each of which is a symmetric 34-

by-34 matrix). This connectivity estimation approach has shown higher sensitivity and 

reduced the volume conduction contaminations in detecting complex and variable activity 

patterns (Lau et al., 2012). Mathematically, WPLI is defined as:

WPLIxy =
n−1

t = 1
n imag Sxyt sgn imag Sxyt

n−1
t = 1
n imag Sxyt

(Eq. 1)

Where imag(Sxyt) indicate the cross-spectral density at time t in the complex plane xy (t is 

discretized and ranges from 1 to n), and sgn is the sign function (−1; +1 or 0).

The connectivity matrices were generated with the MATLAB toolbox Fieldtrip (Donders 

Centre for Cognitive Neuroimaging, Nijmegen, Netherlands). The final output time-

dependent 34-by-34 EEG connectome for an individual task of each subject is arranged as 

[34*34]*50*130 ([channel*channel]*frequency*time). Guided by our recently published 

paper, we primarily focused on the phase-space informed by the theta frequency band (4–7 

Hz) EEG connectomes; thus, for each time point, an averaged connectome from 4–7 Hz was 

taken to represent the theta connectome.

2.4. Learning the phase-space manifold of EEG dynamics via non-linear dimensionality 
reduction

Our approach to EEG-based connectomics was to reframe it as a phase-space reconstruction 

problem. Due to its high temporal resolution, each connectivity matrix graph samples a 

distinct state of this dynamical system, with the time-dependent dynamic EEG connectivity 

for a particular participant during a particular ERT condition evolving as a trajectory in this 

abstract space. In order to yield sufficient data to learn the space comprising states of ‘on-

line’ emotion regulation ability, we combined connectomes from all 40 participants (i.e., 

collapsing across SAD and HC groups) at all time points, as collectively they sample this 

phase-space “connectome manifold of interest”. As each participant contributed 3 dynamic 

connectomes (3 ERT task conditions) each of which having 130 time point, thus the total 

number of samples we have for this connectome manifold is thus 130 * 40 * 3 =15600. To 

learn any non-linearity, we employed manifold learning via nonlinear dimensionality 

reduction.

In what follows, we will describe in detail the three computational steps (and one optional 

step) involved in our novel approach: Step I: graph dissimilarity embedding, Step II: 

recovery of phase-space nonlinearity via geodesic computation, Step III: phase-space 

visualization via geodesic-informed minimum spanning tree, and the (optional) prototype 

graph selection. (Fig. 1)

2.4.1. Step I: Graph dissimilarity embedding—Connectomes can be represented as 

a graph ℊ = (V, E, W). In EEG connectomes, the node set V corresponds to the recording 

channels, and the weights W of the edge set E in our case are informed by WPLI 

connectivity. Once the connectome graphs are computed, we used the graph dissimilarity 

Xing et al. Page 5

Neuroimage. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



space embedding (DSE) to first embed each connectome in a high-dimensional Euclidean 

space where each point corresponds to a connectome. As will be seen below, with DSE the 

dimensionality of this Euclidean space is in the same order as the number of total dynamic 

EEG connectomes across all subjects (20 HC, 20 SAD), ERT conditions (3 task senarios, 

neutral, maintain, reappraise), and time points (130 time points), which was 

(20+20)*3*130=15600.

The graph dissimilarity embedding procedure, first proposed by Bunk and Riesen in 

2008(Bunke and Riesen, 2008) (Bunke and Riesen, 2011; Duin et al., 2010), is summarized 

as follows. Given a graph set G (the set of all possible graphs under consideration) and n 
“prototype” graph observations ℊi ∈ G (i = 1, 2, 3, …n) using which we will embed every 

element in this graph set (see prototype graph selections in the optional step below) and d a 

distance metric that can be computed between two graphs d: ℊ × ℊ → [0, ∞) then any 

graph X ∈ G can be represented using φn
G:G Rn defined as the n-dimensional vector:

φn
G X = d X, ℊ1 , …d X, ℊn (Eq. 2)

This way any graph set can be vectorized by a set of n real numbers corresponding to a point 

in an n-dimensional Euclidean space.

Given two connectome matrices, X and Y in G various choices of dissimilarity metric have 

been proposed (for a comprehensive review, see (Kessler et al., 2005; PW and Elzbieta, 

2005)). A natural choice of d which we adopted here, is the Frobenius norm 

d X, Y = ∑i j Xi j − Y i j
2
 where the subscript indicates the (i, j)-th element of a matrix. 

Thus, we can compute a straight line Euclidean distance between X and Y in the embedding 

space as follows:

φn
G X − φn

G Y = ∑k = 1
n d X, ℊk − d Y , gk

2 . (Eq. 3)

By iterating through all combinations of X and Y in G, thus forming a matrix that encodes 

pairwise Euclidean distance between any two EEG connectomes, we proceed to the next 

step where we reconstruct phase-space manifold properties via geodesic computation, as 

non-linearity information is encoded using the geodesic distance between any two 

connectome graphs (each of which is a 34 by 34 matrix).

2.4.2. Step II: Recovery of phase-space nonlinearity via geodesic 
computation—As elegantly illustrated by the Swiss roll example in the original isomap 
paper (Tenenbaum et al., 2000), straight line distances in the Euclidean space where a 

manifold is embedded is not the geodesic distance intrinsic to the manifold. (The non-linear 

relationship between direct Euclidean distance and geodesic distance of ERT phase space is 

presented in Fig. A2 of Appendix A) Thus, to preserve the non-linearity of the underlying 

phase-space, it is crucial to first reconstruct the local neighborhood around each point in this 
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space to construct the manifold geodesic distance. This is because that the Euclidean 

distance matrix from Step I is computed based on d (which is used to define coordinates in 

the embedding space, and not intrinsic to the manifold) and thus will not properly inform 

geodesics (the shortest paths on the “manifold” which is an intrinsic property) except in 

local neighborhoods. Here the local neighborhood was constructed using the k-nearest 

neighbors (KNN) procedure (k=60, ~0.4% of total points, see supplementary material in 

Appendix A that compared our embedding results across a range of k), followed by 

computing the geodesic distances using the Dijkstra algorithm (Dijkstra, 1959). After Step 

II, phase-space manifold properties are now encoded using the corresponding geodesic 

distance matrix (GDM, size 15600 by 15600).

2.5. Minimum Spanning Tree

To visualize this high dimensional phase-space (Fig. 1), we exploited the geodesic-informed 

minimum spanning tree (MST) by adapting the TreeVis by Qiu and Plevritis (Lee et al., 

2011; Qiu and Plevritis, 2013). Note that the phase-space is now represented by a symmetric 

geodesic distance matrix GDM, where each entry encodes the geodesic distance between 

any two connectomes; therefore we are able to visualize the phase-space as a network graph 

(essentially, a network of networks, in which each node is an EEG connectome).

Minimum spanning tree is an optimized graph representation of a network. It simplifies a 

complex graph by reducing the cycles and minimizing the total edge weight (Graham and 

Hell, 1985). MST is theoretically advantageous in that it is a sub-network that preserves 

most fundamental network properties (Tewarie et al., 2015), while simulations and brain 

network analyses have shown that MST is able to reflect the underlying topology of 

functional networks, regardless of the scale of edge weights (Stam et al., 2014; Tewarie et 

al., 2015) (Boersma et al., 2011). TreeVis orders the minimum spanning tree nodes and 

visualizes them sequentially as follows. TreeVis breaks the tree into chains of nodes. The 

longest chain is defined as the main chain. Chains that are directly connected to the main 

chain are defined as the side chains of the main chain. For complex tree structures, each side 

chain may also have its own lower level side chains. Tree nodes are arranged in an order 

such that nodes in the main chain come first, followed by nodes in the side chains of the 

main chain, and then the lower level side chains. The complete workflow of our manifold 

learning procedure is illustrated in Table 1 (Algorithm 1).

2.6. Optional Step: selection of the prototype graphs

In this section, let us briefly discuss how to determine prototype graphs. In our initial 

analyses, all the connectomes were used as prototypes (thus, the number of dimensions of 

the Euclidean space used for DGE is the same as the number of connectome graph matrices 

in the dataset, i.e., 15600) (Borzeshi et al., 2013; Brühl et al., 2014; Bunke and Riesen, 

2011; Zhang et al., 2015). However, one can select a subset of graphs as more representative 

prototypes during the graph-embedding step (i.e., n, the number of the prototype graphs in 

Step I is now < 15600). Originally proposed in the context of graph embedding for 

classification (Nie et al., 2011), an appropriate choice of a class-discriminatory prototype set 

should provide adequate coverage of the whole graph domain while avoiding redundancies 

secondary to the inclusion of similar graphs (Borzeshi et al., 2013). In this way, one can 
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obtain an efficient classifier with minimal degradation in classification accuracy and 

performance.

2.6.1. The spanning prototype selector and the center prototype selector—As 

two concrete examples, the spanning prototype selector(Bunke and Riesen, 2011) (SPS) was 

proposed such that each additional prototype selected is the graph that is the furthest away 

from already selected prototype graphs (with the first graph selected being the median graph, 

defined as the graph whose sum of geodesic distances to all other graphs is minimum); The 

center prototype selector (Bunke and Riesen, 2011) (CPS), on the other hand, selected the 

most central graphs as prototypes, which are recursively defined by the median graph from 

the remaining graph set.

Mathematically, the median graph median (G) ∈ G of a graph set G is the graph with the 

minimum sum of distances to all other graphs. In our case, after reconstructing the geodesic 

distance of the phase-space manifold, the median graph is informed by the GDM, where 

median (G)   = argmingi ∈ G∑
ℊ j ∈ GGDM ℊi, ℊ j .

2.6.2. The modified center prototype selector—In this study, as our overarching 

goal is precise manifold learning informed by as many available connectome graphs as 

possible, we further explored the removal of connectomes that may be considered outliers 

(thus unlikely to be representative prototypes of the underlying manifold), which we call the 

modified CPS. Similar to CPS, a median graph was first defined as the center; then for all 

remaining graphs whose geodesic distance to this center are considered outliers by the 

Hampel identifier (Davies and Gather, 1993) as implemented in Matlab are removed as 

prototypes. In a data set of scalars X, where X = (x1, …, xN). Hampel identifier recognizes x 
as an outlier, if |x − median(X)| ≥ threshold ∗ MAD(X). The median absolute deviation 

(MAD) of X is defined as MAD(X) = median(|x1 − median(X)|, …, |xN − median(X)|), Here 

we used the default threshold in Matlab, which is set to 3. (For a detailed description of 

examples of threshold functions, see Davies & Gather, 1993.) With our data set, 640 graphs 

were removed from the graph set (14690 graphs remaining). To more fairly compare our 

modified CPS procedure to the standard SPS and CPS, using the latter two we selected two 

sets of prototypes with the same size as our modified CPS (14690). This framework is 

validated with the simulated multi-channel data. The correct manifold structure was 

recovered in noise free and noisy conditions. (See details of simulation study in Appendix 

B.)

2.6.3. The MST prototype selector—Last, informed by the MST construction we 

propose one additional approach to prototype selection which we termed the MST prototype 
selector. Here, connectome graphs making up the main chain of the MST are defined as the 

primary prototypes; then the prototype set can be expanded by including connectome graphs 

from the subsequent lower-level chains. Fig. 7 demonstrated levels of prototypes selected by 

MST selectors (up to second-level chains).
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2.7. Trajectory length

The trajectory length of a participant’s brain dynamics in a task condition was estimated by 

adding up the geodesic distances between consecutive time-dependent EEG connectomes in 

this phase-space. Let Ct=1, Ct=2, …, Ct=130 ∈ ℝ34*34 denote the dynamic 130-time point 

EEG connectome time series of a specific task condition for an individual, then the 

corresponding trajectory length (Ltrajectory) is defined as:

Ltra jectory = t = 1
130 GDM Ct + 1, Ct (Eq. 4)

We used a repeated measures ANOVA to detect significant task effects, group effects, and 

task x group interactions for trajectory length in all 3 condition segments of the ERT. Two-

tailed Pearson’s correlations were calculated to evaluate relationships between these lengths 

and symptom measures, affective state, and self-reported reappraisal tendencies.

3. Results

Clinical and demographic data in Table 2 demonstrate that there were no significant 

differences in age and gender distribution between groups. As expected, SAD participants 

had higher anxiety scores on the LSAS and HAM-A and they were less likely to use 

reappraisal as assessed with the ERQ. Fig. 2 A and Fig. 3 A visualize the phase-space 

manifold using its geodesic-based MST, which reveals highly complex nonlinear dynamics 

during emotion regulation (note, for example, the cluster comprising mostly neutral 

connectomes in section 4 in Fig. 2 A). In addition, we provided a two-dimensional isomap 

representation of the phase space (Fig. 2 B, enlarged 2D isomap in Fig. A1, Appendix A). 

Overall, no task or groups formed a distinct cluster (Fig. 3 B and Fig. 3 C). In general, the 

trajectory of a series of connectomes during any ERT condition (130 time-points) traverses 

along most of the main MST branch. Interestingly, careful inspection revealed that the “left 

end” of the main branch primarily comprises SAD connectomes during Neutral and 

Maintain (enlarged view in Fig. 2 C and bar graph in Fig. 3).

To investigate this further, since each point in the MST represents one connectome, we can 

define a “mean connectome” for different segments of the MST, by averaging element-wise 

over connectomes within any selected segment. As shown in Fig. 2 D, these mean 

connectomes along the MST exhibit distinctive patterns, informing the underlying patterns 

of EEG connectivity typical in this part of the phase-space. Overall, there is a decrease in 

global EEG connectivity from section 1 to 4, which then increases again from section 4 to 5, 

in particular over occipital and parietal channels (See Fig A3 in Appendix A for a further 

demonstration of sensor level connectivity patterns along the MST).

Relating MST findings to anxiety, we further note that participants with SAD had 

trajectories that more frequently traversed the “left end” of the main branch (Fig. 4 A, B). 

Repeated ANCOVA analyses were performed to explore the group and task effect of the area 

under the distribution curve. Indeed, the area under curve analyses for Fig. 4 B revealed a 
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significant condition effect (p = 1.8 × 10–7), a significant group effect (p = .019), and trend 

level task x group effect (p = .051).

Follow-up pairwise analysis for the main effect of condition showed Neutral was 

significantly different from Maintain (p = 7.7 × 10−7) and Reappraise (p = 3 × 10−6), but 

Maintain and Reappraise did not significant differ from each other (p = .14). Pairwise group 

differences were reported in Neutral (p = 0.019) and Maintain (p=0.012), such group 

difference was absent in Reappraise (p=0.112). Similarly, repeated measures ANOVA for 

trajectory length demonstrated a significant condition effect (p = 7.7 × 10−8), a significant 

group effect (p = .024), and a trend level task x group interaction (p = .058). (Fig. 5 A). 

Follow-up pairwise analysis for the main effect of condition showed Neutral differed from 

Maintain (p = 7 × 10−6 and Reappraise (p = 2 × 10−6) and Maintain was marginally different 

than Reappraise (p = .049). The main effect of the group showed Neutral and Maintain 

trajectory are significantly longer in SAD (Neutral: p = 0.018, Maintain: p = 0.043), while 

Reappraise trajectory length was similar between two groups (p=0.21). Similar analyses 

using theta power alone failed to yield any significant main effects of task or group, while a 

permutation analysis using trajectory length confirmed our significant main effect of task 

condition (Appendix D). Furthermore, ‘on-line’ Reappraise trajectory length was inversely 

correlated with the tendency to reappraise, as indexed with the ERQ (r=−0.64, p=0.002) 

(Fig. 5 B). Regarding emotional reactivity, higher negative affective state during the 

Maintain condition tended to have longer Maintain trajectories (r=0.381, p=0.022) (Fig 5 C). 

Trajectory lengths for Reappraise or Maintain did not correlate with measures of anxiety.

Additionally, similar group and task differences were reported using three of our alternative 

prototype sets. (Fig. 6). Trajectory results from CPS, modified CPS and SPS prototype 

selectors demonstrated consistent task differences (CPS: 5.3 × 10−8; modified CPS: 1.0 × 

10−6; SPS: 2.2 × 10−6;) and group differences (CPS: p=0.022; modified CPS: p=0.015; SPS: 

p=0.020) in the phase-space, with no significant task*group interactions (CPS: p=0.076; 

modified CPS: p=0.052, SPS p=0.055). For the MST prototype selector, we first included 

the backbone and the first-level side chain as the initial prototype set (connectomes included 

=1956), later the second-level of side chains were further included to expand the size of 

prototypes (connectomes included =4712). Both MST prototype sets exhibit consistent 

trends in group and task differences, there were significant task effects (backbone with first 

level side chain: p= 0.001, backbone with first two levels: p=2.1 × 10−5) and a significant 

group effect (backbone with first level: p=0.020, backbone with first two levels: p=0.013) 

(Fig. 7). No statistical analyses were performed at the backbone level due to the number of 

nodes (only 5% of the total connectomes were represented on the backbone).

4. Discussion

In this paper, we proposed a phase-space connectome manifold reconstruction approach to 

computational EEG connectomics via unsupervised manifold learning to quantify 

abnormalities in EEG dynamics during emotion regulation in SAD participants. In this 

phase-space, intrinsic geometric properties can be encoded using the geodesic distance, thus 

further permitting a MST-based visualization. Sampling the connectome along the main 

branch of the MST revealed a pattern of overall increased theta connectivity in the “left-
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most” part of the branch, which was comprised primarily of SAD participants. This finding 

replicates our previous study demonstrating increased theta connectivity at rest associated 

with SAD (Xing et al., 2017). Connectomes sampled from the “right” part of the branch 

(where the Neutral condition predominated) demonstrated increased theta coupling in 

parietal and occipital leads, consistent with the visual component of the task. Moreover, the 

dynamic EEG connectome as a function of time obtained from one participant while 

performing a specific ERT task corresponded to a phase-space “trajectory”“, also as a 

function of time. SAD participants had longer trajectories during Neutral and Maintain, 

while the trajectory length of the latter correlated with negative with negative affective state. 

Additionally, Reappraise trajectory lengths were inversely correlated with the habitual use of 

reappraisal as an emotion regulation strategy meaning subjects who were more likely to use 

reappraisal outside the laboratory setting had reduced trajectory lengths. Thus, our results 

showed that manifold trajectory length overall separated conditions and diagnoses, and thus 

can be thought of as a proxy measure for the cognitive load of emotion processing and 

regulation.

Here we discuss the important potential implications of our novel phase-space manifold 

approach. In this space, intrinsic manifold properties such as trajectory length per second 

reflect the underlying cognitive processing. Indeed, given that the complex nonlinearity in 

EEG dynamics is decomposed in this novel phase-space, where 1) each possible state 

corresponds to a distinct connectivity pattern, and 2) an isometric mapping (i.e., geodesic 

distance preserving) is constructed pair-wise across all possible states, we conjecture that the 

trajectory length normalized over a fixed time interval (i.e., the “normalized” trajectory 

length or “speed”) reflects the perceived amount of thought transition. Or put more bluntly, 

we posit that a longer normalized trajectory length is subjectively perceived as a more 

rapidly-transitioning or “faster” dynamical process (which when occurs at rest may simply 

relate to the feeling of “racing thoughts”). In this context, given that the trajectory lengths 

we reported were already “normalized” as all task conditions were seven seconds, our 

findings can be interpreted very intuitively as follows: People who experience anxiety in 

general tend to experience higher degrees of thought overactivation (i.e. “racing thoughts” or 

thought accumulation (Emily and Elana, 2008)), while more cognitively complex tasks 

require more rapid thought transitions (Fig. 4; order of cognitive complexity: Reappraise > 

Maintain > Neutral). Further, the habitual use of reappraisal corresponds to less rapid 

transitioning during Reappraise, suggesting an efficiency resulting from life-long learning 

and practicing of these strategies. Future studies can explicitly test this hypothesis by 

examining whether phase-space trajectories are associated with indices of thought over-

activation (i.e. the Subjective Thought Overactivation Questionnaire (Keizer et al., 2014)). 

With graph dissimilarity embedding, we constructed a manifold which captures the 

underlying phase-space structure of dynamic EEG connectomes insensitive to how the 

prototype graph sets were selected. Indeed, the average trajectory length of all five prototype 

sets (selected via CPS, SPS, modified CPS, and two levels of MST) exhibits a consistent 

trend as in the whole 15600-connectome prototype graph set. Moreover, we proposed two 

additional approaches to prototype selection that may be more appropriate in our case: the 

Modified CPS, which removes the outlier graphs with Hampel identifier; and MST informed 

selector, which selects levels of MST branches in a hierarchical manner.
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Several study limitations are briefly discussed. First, our analyses are not based on source-

localization, although manifold learning as we proposed here is capable of, at least in theory, 

uncovering the underlying intrinsic geometric properties of brain dynamics regardless of 

whether the connectivity was channel-based or source-localized. Second, it can be 

challenging to objectively measure emotion regulation, due to the known complexity and 

diversity of emotion regulation strategies (Gross and John, 2003) (to our knowledge 

currently available instruments to clinically evaluate ERT performance are all based on 

subjective ratings). Results with the negative affect ratings should be interpreted with 

caution due to the fact that ratings were collected during an fMRI ERT and not during the 

EEG ERT. Furthermore, in the graph dissimilarity embedding framework (Bunk and Riesen 

2008), a matrix norm is used to quantify the difference between two connectome graphs. 

However, concerns in applying standard matrix norms to connectomes have been raised as 

matrix norm may be sensitive to extreme outliers and incapable of capturing higher order 

similarity (Chung et al., 2017). Additionally, although results from different prototype 

selectors were consistent, thus likely collectively recovering the true properties of the phase 

space, different selectors nevertheless resulted in various numbers of prototype 

connectomes. Last, the local neighborhood construction step is dependent on the choice of k 
when determining the k nearest neighbors of each connectome (Wang et al., 2005), although 

the overall trend of our findings is consistent across a range of k values (Fig. A4).

In conclusion, our connectome manifold learning approach provides a novel analytic and 

visualization framework for understanding EEG dynamics. When applied to EEG data 

obtained in participants with and without SAD during emotion processing and regulation, 

this novel framework revealed complex differences in brain dynamics between SAD and 

healthy control groups as well as across tasks. In the future, these novel phase-space features 

may be used to determine brain-based biomarkers for treatment selection and monitoring 

treatment response.
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2D Two Dimensional

CPS Center prototype selector

ERQ Emotion Regulation Questionnaire

ERT Emotion regulation Task

GDM Geodesic Distance Matrix
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HAM-A Hamilton Anxiety Rating Scale

HC Healthy Control

LSAS Liebowitz Social Anxiety Scale

MST Minimum Spanning Tree

SAD Social Anxiety Disorder

SPS Spanning Prototype Selector

WPLI Weighted Phase Lag Index
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Fig. 1: Constructing the dynamic phase-space and visualizing the minimum spanning tree
This figure illustrates the basic idea of our phase-space manifold reconstruction framework. 

Dynamic connectomes are generated from EEG data using a sliding window approach. Each 

connectome (from all subjects and all time points), mathematically defined as a 34 by 34 

matrix, is mapped onto a point on a manifold that is embedded in a high dimensional space 

(here the manifold is depicted as a Swiss roll, a 2-dimensional structure that is rolled up and 

embedded in 3D). +-Thus, the distance in the high dimensional space (straight arrow) is not 

the manifold geodesic distance (curved arrow), which encodes the intrinsic geometric 

features of the manifold. This distance is used to create the neighborhood graph visualized 

as minimum

Xing et al. Page 16

Neuroimage. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: The reconstructed MST (A) and the corresponding 2D isomap representation (B) of the 
reconstructed phase-space manifold.
Visually, the “left” MST branch primarily comprises connectomes from SAD subjects while 

Neutral connectomes appear to form a distinct cluster (sections 1 and 4). Enlarged “left 

branch” view is in (C). Since each point corresponds to a connectome, we averaged within 

key sections along the main MST branch and visualized the respective average connectomes 

in (D). These representative average connectomes exhibit an ordered transition, with 

emerging connections among parietal and occipital channels (indicated with arrows in 

section 5 and red channels on the head map) as we move towards the “right branch”.) Two-

dimensional isomap representation of the same manifold exhibits similar task and group 

distribution compared with MST (B).
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Fig. 3: Composition of tasks (B) and groups (C) from “left” side to the “right” side of the MST.
Most of the segment along the tree is occupied by multiple task conditions and groups, 

indicating that taskand subject-spaces are not completely separate from each other.
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Fig. 4: Neutral connectomes marked by HAM-A scale on MST (A) and Frequency of 
connectomes to the left of the x-axis threshold (B).
Phase-space trajectories from SAD participants are more likely to visit the “left side” of the 

MST. With a sliding threshold (x-axis), the frequencies of trajectories (y-axis) crossing to 

the left of the threshold are computed and compared between SAD participants and healthy 

controls (HC). Area under the curve analysis revealed a significant task effect (p = 1.8 × 10–

7), a significant group effect (p = .019), and trend level task x group effect (p = .051).
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Fig. 5: Phase-space trajectory metrics of ERT.
Across all three task scenarios, there was a significant effect of task (p = 7.7 × 10–8), group 

(p = .024), and trend level interaction effect (p = .058) on phase-space trajectory lengths(A). 

Reappraise trajectory lengths negatively correlated with Reappraise scores on the ERQ in 

SAD participants (r=−0.64, p=0.002) (B). Maintain trajectory lengths positively correlated 

with negative affect ratings during the Maintain task scenario in the total sample (r=0.381, 

p=0.022) (C).
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Fig. 6: Selecting representative prototype graph set.
Histogram of graph-to-center geodesic distance (A) and the trajectory length as computed 

using prototype sets given by modified CPS (B). Results obtained using SPS (C) and CPS 

(D) showed similar findings as Modified CPS, as well as the original 15600-connectome 

prototype set (i.e., each connectome is used as a prototype). There were significant group 

effects of task and group, no interaction effect on phase-space trajectory
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Fig. 7. MST-based prototype selection.
Levels of selected prototypes on the MST (A) and the prototype trajectory Length (B). The 

first prototype set includes 1956 connectomes from all backbone and all first level branches 

(middle figure in A); second prototype set includes 4712 connectomes from backbone, first 

level branches and second level branches (bottom panel in A).
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Algorithm 1:

Manifold Learning and visualization of EEG dynamics using graph dissimilarity embedding and geodesic-

informed minimum spanning tree

Input: Graph set G, where G =   ℊ1, ℊ2, …ℊn  and each ℊi is a 34 by 34 EEG connectome

Output: Geodesic distance matrix GDM, where GDM ∈ Rn × n

Minimum Spanning Tree MST of G

    1. [Optional] Select Prototype graph set Gpro ⊆ G, Gpro = gpro
1 , gpro

2 …, gpro
m ; m ≤ n

    2. Construct dissimilarity embedding using Eq. 2

    3. for each gi, g j in G

    4. Construct Euclidean distance matrix EDM , EDM ∈ Rn × n
 Euclidean distance between

        φn
G gi and φn

G g j  is given in Eq. 3

    5. end for

    6. GDM← Apply Dijkstra algorithm and k nearest neighbors k =  60  to EDM

    7. return GDM

    8. MST ← apply TreeV is to GDM to yield geodesic informed minimum spanning tree

    9. plot MST
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Table 2.

Demographic and Task Performance

Social Anxiety Disorder
(N=20)

Healthy Controls
(N=20)

Mean (SD) Mean (SD)

           Demographic

Age 26.80 (8.38)
26.95 (9.64)

a

Education in years 15.85 (2.11)
15.70 (2.39)

a

Gender (% male) 45%
40%

a

           Clinical

LSAS 77.30 (14.13)
17.15 (12.25)

b

HAM-A 7.50 (4.69)
0.75 (1.21)

b

ERQ reappraise 25.15 (5.52)
33.60 (7.05)

b

           Affective State

(N=20) (N=18)

Neutral Condition 1.24 (0.37) 1.13 (0.25)

Maintain Condition 3.10 (0.53) 2.75 (0.77)

Reappraise Condition 2.60 (0.88) 2.25 (0.76)

LSAS, Liebowitz Social Anxiety Scale; HAM-A: Hamilton Anxiety Rating Scale; Two healthy controls participants didn’t select the mood rating 
before the next session began, thus their performance ratings are not available.

a
There is no gender (X2(2, N=40), p>0.05), age (two sample t-test, p>0.05) or years of education difference (two sample t-test, p>0.05) between 

healthy controls and social anxious patients.

b
Healthy controls were less socially anxious (LSAS) and less generally anxious (HAM-A) than SAD participants (two-sample t-test, p < 0.05). 

Healthy controls more commonly use reappraisal (ERQ reappraise) as a daily emotion regulation strategy (two-sample t-test, p<0.05).
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