Skip to main content
. Author manuscript; available in PMC: 2020 Feb 1.
Published in final edited form as: Neuroimage. 2018 Nov 2;186:338–349. doi: 10.1016/j.neuroimage.2018.10.073

Algorithm 1:

Manifold Learning and visualization of EEG dynamics using graph dissimilarity embedding and geodesic-informed minimum spanning tree

Input: Graph set G, where G= {1,2,n} and each i is a 34 by 34 EEG connectome
Output: Geodesic distance matrix GDM, where GDM Rn×n
Minimum Spanning Tree MST of G
    1. [Optional] Select Prototype graph set GproG,Gpro={gpro1,gpro2,gprom};mn
    2. Construct dissimilarity embedding using Eq. 2
    3. for each gi,gj in G
    4. Construct Euclidean distance matrix (EDM),EDMRn×n Euclidean distance between
        φnG(gi)andφnG(gj) is given in Eq. 3
    5. end for
    6. GDMApply Dijkstra algorithm and k nearest neighbors (k= 60) to EDM
    7. return GDM
    8. MST ← apply TreeV is to GDM to yield geodesic informed minimum spanning tree
    9. plot MST