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Abstract
The prevailing concept regarding the immunological function of immunoglobulin A (IgA) is that it binds to and neutralizes 
pathogens to prevent infection at mucosal sites of the body. However, recently, it has become clear that in humans IgA is also 
able to actively contribute to the initiation of inflammation, both at mucosal and non-mucosal sites. This additional func-
tion of IgA is initiated by the formation of immune complexes, which trigger Fc alpha Receptor I (FcαRI) to synergize with 
various other receptors to amplify inflammatory responses. Recent findings have demonstrated that co-stimulation of FcαRI 
strongly affects pro-inflammatory cytokine production by various myeloid cells, including different dendritic cell subsets, 
macrophages, monocytes, and Kupffer cells. FcαRI-induced inflammation plays a crucial role in orchestrating human host 
defense against pathogens, as well as the generation of tissue-specific immunity. In addition, FcαRI-induced inflammation 
is suggested to be involved in the pathogenesis of various chronic inflammatory disorders, including inflammatory bowel 
disease, celiac disease, and rheumatoid arthritis. Combined, IgA-induced inflammation may be used to either promote inflam-
matory responses, e.g. in the context of cancer therapy, but may also provide new therapeutic targets to counteract chronic 
inflammation in the context of various chronic inflammatory disorders.
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Introduction

Antibodies are an integral part of the human immune sys-
tem. Of the five different classes of antibodies that are found 
in humans (IgA, IgD, IgE, IgG, and IgM), IgA is by far the 
most produced antibody in the human body, even surpassing 
all other classes combined [1]. Most of the IgA is present 
at mucosal sites, where it is produced as a dimer by locally 
residing plasma cells. IgA is also the second most abundant 
isotype in serum, where it is normally present at concentra-
tions of 1–3 mg/mL. In circulation, IgA is generally found 
as a monomer, which is produced by plasma cells located in 
the bone marrow.

There are two IgA subtypes found in humans, IgA1 and 
IgA2. The subtypes differ at various sites in the heavy chain, 
however the most notable difference is found in the hinge 
region where IgA2 lacks 13 amino acids compared to IgA1 
(see Fig. 1a for a schematic overview). Truncation of the 
hinge region in IgA2 leads to a reduced susceptibility to 
IgA1 bacterial proteases, which possibly explains the higher 
prevalence of IgA2 in mucosal secretions.

The main function of IgA has long been considered to 
be mostly ‘passive’ or anti-inflammatory. However, recently 
IgA has emerged as an inducer of ‘active’ immunity by con-
trolling cytokine and chemokine production. In this review, 
we will briefly mention the passive function of IgA, but will 
subsequently focus on the inflammatory function of IgA in 
humans in the context of health and disease.

Passive immunity by IgA: immune exclusion, 
neutralization, and antigen excretion

The most well-known function of IgA is that it provides 
passive immunity, through immune exclusion, patho-
gen neutralization, and antigen excretion, particularly 
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at mucosal sites such as the gastrointestinal tract. In the 
intestine, IgA is produced in large quantities in dimeric 
form by plasma cells in the lamina propria, which con-
tain the joining J chain that allows transportation over the 
epithelium by the poly Ig receptor and excretion into the 
lumen as secretory IgA (SIgA) [2, 3]. SIgA binds to both 
bacteria as well as bacterial products and is thereby able 
to prevent their interaction with the epithelium. Locally 
produced IgA by plasma cells in the lamina propria of the 
intestine is tailored to recognize the microbiota present in 
the lumen and particularly targets pathogenic bacteria [4]. 
During transport of IgA through the intestinal epithelial 
cells it is already able to bind to its target, which both 
facilitates excretion of antigens back into the lumen that 
have reached the lamina propria, but also neutralizes intra-
cellular pathogens in the epithelial cells [5]. These func-
tions of IgA have been called passive immunity and have 
long been thought to be the main role of IgA. Although 
this function of IgA is very important for homeostasis, 
several excellent reviews [5–7] cover this subject in detail 
and we will not further discuss it here.

Active immunity by IgA: amplification 
or inhibition of cytokine production

In addition to the well-known passive functions, it has 
more recently become clear that IgA can also actively 
control immune responses. This immune activating func-
tion of IgA is effectuated by modulating the production of 
various key cytokines such as TNF and IL-1β by human 
myeloid immune cells, which is a pivotal step in control-
ling local and systemic immunity. In this regard, IgA has 
a dual role, as it can induce both inflammatory and immu-
nosuppressive responses. Crucial for the active immune 
function of IgA is the binding to its receptor. Although 
different IgA receptors have been described (see Box 1 for 
an overview), the main IgA receptor that has been identi-
fied to be responsible for IgA-induced cytokine responses 
appears to be Fc alpha receptor (FcαRI; also known as 
CD89) [8]. FcαRI is one of the members of the family of 
Fc receptors, although it has some key distinctions which 
sets it apart from, e.g. the Fcγ receptors (recognizing IgG) 

FcγRI
CD64

FcγRIIa
CD32a

FcγRIIb
CD32b

FcγRIIc
CD32c

FcγRIIIa
CD16a

FcγRIIIb
CD16b

FcεRI FcαRI
CD89

FcRγ
ITAM ITIM

etaredoMwoLwoLwoLwoLwoLhgiH High

1q32.3 1q32.3 1q32.3 1q32.3 1q32.3 1q32.3 1q32.3 19q13.4

Name

Structure

Affinity

Chromosomal
location

Yes No Yes No Yes No Yes NoMouse
homolog

FcRβ

IgA1 IgA2
Fab

Hinge

Fc

dIgA1

J chain

A

B

Fig. 1   The human Fc receptor family. a IgA molecules consist of 
two domains, which are linked by a hinge region. IgA2 molecules 
have a shorter hinge region than IgA1, leading to a more Y-shaped 
conformation. The antigen-binding domain (Fab) binds to antigens, 
while the crystallizable fragment (Fc) domain can be recognized by 
Fc receptors. Furthermore, one molecule is made up of two identical 
heavy chains (in blue) and two identical light chains (in green). IgA 
molecules can be expressed as dimers when the Fc domains are con-

nected to each other by a joining (J) chain. b Human FcRs are divided 
according to their binding capability to antibody subtype, FcγR, 
FcεR, and FcαR. FcγRs can be further subdivided into three types: 
FcγRI, FcγRII, and FcγRIII, which can be grouped based on their 
binding affinity to IgG (with FcγRI being the only high-affinity recep-
tor). FcαRI is genetically located on a distinct location apart from 
the other receptors. The human FcR family differs quite significantly 
from the mouse FcR family
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or Fcε receptor (recognizing IgE) (Fig. 1b). FcαRI expres-
sion is restricted to the myeloid immune cell compart-
ment and has been identified on neutrophils, monocytes, 
eosinophils, macrophages, and particular subsets of DCs 
such as intestinal CD103+ DCs and monocyte-derived DCs 
[8–13]. FcαRI does not contain any signaling motives in 
its cytoplasmic tail, but instead FcαRI relays signaling 
by association with the Fc receptor gamma chain (FcRγ), 
which contains an immunoreceptor tyrosine-based activa-
tion motifs (ITAM). Previously, FcαRI activation has been 
shown to lead to a variety of immune processes including 
degranulation, phagocytosis, chemotaxis, and antibody-
dependent cellular cytotoxicity (ADCC) [14]. In contrast, 
FcαRI has long been considered to be a very poor inducer 
of cytokines by immune cells. Interestingly, FcαRI has 
no direct homolog in mice [15, 16], and since most of 
our knowledge on FcRs comes from mouse studies, this 
may partly explain why FcαRI-induced control of cytokine 
production has so long been underexposed.

Control of cytokine expression by antigen-presenting 
cells (APC) is essential for controlling inflammation and 
inducing both innate and adaptive responses [17, 18]. Gen-
erally, cytokine production is induced by APCs upon rec-
ognition of components of pathogens by several families of 
receptors, collectively known as pattern recognition recep-
tors (PRR). These include the Toll-like receptors (TLR) 
[19], NOD-like receptors (NLR) [20], C-type lectin recep-
tors (CLR) [21], and RIG-I-like receptors [22]. However, the 
immune response by APCs is not determined by stimulation 
of a single receptor, but rather a cooperation of multiple 
receptors [23–26].

A key feature of IgA-induced cytokine production is 
that FcαRI stimulation does not elicit cytokine production 
when stimulated individually, but that FcαRI collaborates 
with other receptors (mostly PRRs) to amplify or inhibit 
the production of specific cytokines. Notably, the ultimate 
FcαRI-induced cytokine profile is not uniform, but instead 
appears to be tailored to the immunological context, which 
depends on (1) the receptor that FcαRI interacts with, (2) 
the cell type involved, and (3) whether IgA binds to FcαRI 
in soluble or aggregated form. Below, we will discuss the 
role of FcαRI and IgA in regulating cytokine production in 
various tissues as well as its relevance to understanding and 
potential treatment of human diseases.

Inhibitory signaling by IgA

The immunosuppressive function of monomeric or dimeric 
IgA has been known for decades [27]. Yet, the molecular 
mechanism behind this has long been unclear. In recent 
years, it has been described that FcαRI-induced ITAM 
signaling (which originally was only considered to promote 

inflammatory responses) can also negatively control inflam-
matory responses [28, 29]. This anti-inflammatory function 
of ITAMs has been named inhibitory ITAM (ITAMi), and 
has also been described for other receptors such as FcγRIIa 
and FcγRIII [30, 31]. Due to the low affinity of IgA mono-
mers and dimers for FcαRI, circulating and unbound IgA 
bind only transiently, which results in ITAMi signaling 
under homeostatic conditions. This steady-state inhibi-
tory signaling results in inhibition of several inflammatory 
processes, such as oxidative burst activity, chemotaxis and 
IgG Fc receptor mediated phagocytosis, as well as cytokine 
production [32–35]. For example, Pasquier et al. identi-
fied that stimulation of FcαRI with soluble IgA inhibits 
FcεRI-induced degranulation of mast cells, which prevents 
IgE-mediated asthma in transgenic mice expressing human 
FcαRI on myeloid cells [28]. In addition, Olas et al. showed 
that serum IgA suppresses the production of pro-inflamma-
tory cytokines such as TNF and IL-6 from LPS-stimulated 
monocytes and PBMCs [36]. Mechanistically, the binding 
of monomeric or dimeric IgA is unable to cross-link FcαRI, 
causing transient Syk recruitment followed by recruitment 
of Src homology region 2 domain-containing phosphatase-1 
(SHP-1) to the Fc receptor gamma chain (FcRγ). FcαRI and 
SHP-1 are then recruited to lipid rafts where both activat-
ing and inhibitory receptors are present, in a cluster known 
as an inhibisome. Due to the heterologous nature of these 
inhibisomes, activating signals are inhibited by the recruited 
SHP-1 resulting in inhibitory signaling [28, 37]. In sum-
mary, inhibition through FcαRI by monomeric or dimeric 
IgA plays an active role in homeostasis by suppression of 
inflammatory functions via ITAMi signaling.

IgA‑induced inflammation in host defense

Although FcαRI suppresses pro-inflammatory cytokine pro-
duction under homeostatic conditions by ITAMi signaling, 
it also plays a crucial role in promoting inflammation dur-
ing infection. The key to this switch from immune suppres-
sion to inflammation by FcαRI lies in the formation of IgA 
immune complexes. While under homeostatic conditions 
mainly monomeric and soluble IgA is present, IgA immune 
complex formation occurs when IgA aggregates are formed, 
e.g. when invading bacteria become opsonized with IgA, 
during secondary infection or by cross-reactivity of antibod-
ies to pathogen structures [38–40]. FcαRI binds monomeric 
and dimeric IgA with moderate affinity (Ka = ~ 106/M), 
while IgA immune complexes bind avidly to FcαRI [14, 
41], which upon binding induces classic ITAM signaling. 
Although IgA immune complexes can directly activate 
effector functions such as phagocytosis and degranulation 
[8], individual FcαRI stimulation does not directly induce 
cytokine production. Instead, FcαRI strongly amplifies 
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inflammatory responses through collaboration with PRRs. 
As such, IgA immune complex formation functions as a dan-
ger signal that promotes inflammation in different tissues, 
which we will discuss below.

IgA‑induced inflammation in the intestine

In the intestine, IgA is produced in vast quantities, where it 
provides both passive and active immunity. Yet, it is impor-
tant to realize that in the intestine the active and passive 
immune functions of IgA appear to be spatiotemporally 
separated. In the lumen, SIgA continually provides passive 
immunity through immune exclusion of commensal bacte-
ria. In contrast, in the lamina propria immune complexes 
of conventional IgA generate active immunity only upon 
infection by eliciting pro-inflammatory cytokine production 
by immune cells, which is a crucial feature for induction of 
protective immunity in the intestine.

In most tissues, the recognition of pathogens by innate 
immune cells through PRRs directly leads to inflamma-
tory responses. However, considering the extremely high 
amount of commensal microorganisms and their products, 
PRR activation is a steady-state phenomenon in the lamina 
propria of the gastrointestinal tract, which does not induce 
inflammation, but instead drives immune tolerance [42]. 
Therefore, the intestinal immune system requires a second 
signal to discriminate between homeostatic conditions and 
infection. Recently, it has been identified that IgA immune 
complex formation in the lamina propria functions as one 
of those second signals. Upon infection, bacteria that pen-
etrate the epithelial layer are opsonized by local (dimeric) 
IgA, which is tailored to an individual’s microbiota and is 
mostly directed against colitogenic species [4, 39]. Remark-
ably, in the intestine only few FcαRI-expressing cells are 
present under homeostatic conditions to detect these IgA 

immune complexes, since intestinal macrophages lack 
FcαRI expression [13], and neutrophils and monocytes are 
mainly recruited after infection [43–45]. Instead, one of the 
main FcαRI expressing cells for the initial recognition of 
IgA immune complexes in the intestine are a subset of DCs, 
characterized by the expression of CD103 (αEβ7 integrin) 
[46]. While under steady-state conditions PRR stimulation 
of these CD103+ DCs by bacteria promote immune toler-
ance through activation of regulatory T cells [47, 48], co-
activation of FcαRI by IgA-opsonized bacteria breaks the 
tolerance of human ex vivo and in vitro CD103+ DCs by 
strongly inducing key pro-inflammatory cytokines such 
as TNF, IL-1β, and IL-23. This FcαRI-PRR cross-talk on 
CD103+ DCs further promotes inflammation by activating 
T helper 17 (Th17) and intestinal type 3 innate lymphoid 
cells (ILC3) [46], which subsequently promotes neutrophil 
recruitment as well as tissue repair through IL-22 produc-
tion [49, 50].

Combined, IgA-induced inflammation is critically 
involved in counteracting bacterial infections in the intestine 
by functioning as a second signal that converts otherwise 
tolerogenic DCs into pro-inflammatory cells, thereby, con-
trolling the delicate balance between tolerance and inflam-
mation (Fig. 2).

IgA‑induced inflammation in non‑mucosal 
tissues by serum IgA

IgA is strongly associated with mucosal immunity. However, 
IgA is also the second most common antibody isotype in 
serum, where it is primarily expressed as a monomer [1]. 
Similar to the non-secreted form in the lamina propria of 
the intestine, serum IgA in both monomeric and dimeric 
form can also induce pro-inflammatory cytokine produc-
tion through activation of various FcαRI-expressing immune 
cells in different tissues, including liver, skin, and blood 
[51].

Invading pathogens that enter the bloodstream from the 
gastrointestinal tract will first be transported to the liver 
through the portal vein. Under homeostatic conditions, the 
resident macrophages in the liver, known as Kupffer cells, 
continually filter the blood from bacterial products originat-
ing from the intestine [52]. Under these basal conditions, 
Kupffer cells display immune tolerance to pathogen-derived 
molecules such as LPS [53, 54]. However, upon infection 
with intestinal bacteria, as frequently occurs in immunocom-
promised individuals [55–57], this tolerogenic response is 
converted to an inflammatory response. Kupffer cells highly 
express FcαRI, and it has long been known that IgA facili-
tates bacterial clearance in portal vein blood by Kupffer cells 
by promoting FcαRI-induced phagocytosis [12]. However, 
in addition to phagocytosis, FcαRI stimulation has recently 

Fig. 2   Tissue-specific FcαRI-mediated control of cytokine production 
in homeostasis and infection. FcαRI mediates both inflammatory and 
immunosuppressive responses in a cell-type and tissue-specific man-
ner. FcαRI directs cytokine production under different conditions. 
Homeostasis: in non-mucosal tissues, monomeric IgA recognition 
by FcαRI during homeostasis leads to inhibition of pro-inflammatory 
cytokine production through ITAMi-mediated SHP-1 recruitment. 
In intestinal immunity, CD103+ DCs tolerogenic conditioning leads 
to activation through PRRs, which results into induction of regula-
tory T cells and IL-10 production. Infection: bacterial infection IgA 
immune complex formation is recognized by FcαRI leading to cross-
talk with PRRs and pro-inflammatory cytokine production in Kupffer 
cells, monocytes, and macrophages through Syk and PI3K-mediated 
up-regulation of transcription resulting  in distinct expression of 
cytokines. Upon intestinal infection, IgA opsonization provides a 
second signal through FcαRI activating Syk, PI3K, and TBK1-IKKε, 
which increases the glycolytic flux and fatty acid synthesis (FAS) that 
results in an inflammatory response mediated by increased mRNA 
translation and caspase-1 activation

◂
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also been shown to promote inflammation by Kupffer cells. 
Similar to the intestinal CD103+ DCs, the formation of 
serum IgA immune complexes by opsonization of bacteria 
breaks the tolerance of Kupffer cells to portal vein bacte-
rial structures, resulting in production of pro-inflammatory 
cytokine production such as TNF, IL-1β, and IL-6 [51] 
(Fig. 2). These data indicate that in the liver IgA does not 
only mediate bacterial clearance, but that IgA also contrib-
utes to initiation of protective immunity by controlling the 
balance between immune tolerance and inflammation by 
Kupffer cells.

FcαRI is also expressed by other cytokine-producing 
myeloid immune cells such as monocytes and macrophages, 
situated in blood and tissues, respectively. Similar to Kupffer 
cells, serum IgA immune complexes enhance both phago-
cytosis and pro-inflammatory cytokine production by these 
cells, of which the latter function is again achieved through 
cross-talk with PRRs. For example, Hansen et al. showed 
that FcαRI stimulation with IgA immune complexes ampli-
fies the PRR-induced production of pro-inflammatory 
cytokines such as TNF by human monocytes and mac-
rophages [51]. However, importantly, the nature of the 
inflammatory response induced by IgA immune complex 
formation appears to be cell type-specific, since the ultimate 
cytokine profile induced by FcαRI-PRR cross-talk differs 
depending on the cell type involved (summarized in Fig. 2). 
For example, while serum IgA immune complexes strongly 
suppress the production of the anti-inflammatory cytokine 
IL-10 by monocytes, IL-10 production is increased by mac-
rophages [51]. Although the mechanism behind these cell 
type-specific cytokine profiles are still unknown, the physi-
ological function of this IgA-mediated effect is most likely 
to provide tissue-specific immune responses to invading 
pathogens.

While the cytokine profile induced by FcαRI-PRR cross-
talk is cell-type specific, there is common ground in the 
amplification of Th17-promoting cytokines, such as IL-1β, 
IL-6, IL-23, and TNF [58, 59]. This suggests that serum 
IgA-induced inflammation, either in the intestine, liver, 
blood, or skin, is particularly important for counteracting 
extracellular pathogens, such as bacteria and fungi [60].

Distinct molecular mechanisms 
of IgA‑induced inflammation

Mechanistically, FcαRI activation by complexed IgA has 
thus far been identified to amplify cytokine responses on 
three different levels, i.e. by increasing (1) gene transcrip-
tion, (2) gene translation, and (3) caspase-1 activation for 
post-translational amplification. Remarkably, the underly-
ing molecular mechanism of FcαRI-induced cytokine pro-
duction is cell-type specific. For example, FcαRI amplifies 

cytokine production in intestinal CD103+ DCs by strongly 
increasing gene translation (with no detectable effect on 
gene transcription) [46], while in Kupffer cells, mono-
cytes, and macrophages FcαRI co-stimulation increases 
pro-inflammatory gene transcription [51]. Below we will 
discuss the mechanistic differences and similarities between 
the different cell-types (for a schematic overview see Fig. 2).

The mechanism behind FcαRI-TLR cross-talk is currently 
best understood in intestinal CD103+ DCs, where it was 
identified to depend on both amplified gene translation and 
caspase-1 activation. In the intestine, the continuous PRR 
activation by microbial structures under steady-state condi-
tions induces pro-inflammatory cytokine gene transcription, 
but not gene translation, resulting in a net outcome of non-
responsiveness or immune tolerance to intestinal microbiota. 
Yet, upon infection, IgA immune complexes activate FcαRI 
on CD103+ DCs, leading to activation of the kinases spleen 
tyrosine kinase (Syk) and phosphoinositide 3-kinase (PI3K), 
which are classical components of Fc receptor gamma chain 
(FcRγ) signaling [61, 62]. Subsequently, downstream FcαRI 
signaling through kinases TBK1 and IKKε ultimately results 
in amplification of both gene translation (of TLR-induced 
mRNA) and caspase-1 activation (for post-translational 
amplification).

Importantly, both FcαRI-induced gene translation and 
caspase-1 activation crucially depend on the induction 
of metabolic changes in CD103+ DCs. In recent years, it 
has become clear that for induction of pro-inflammatory 
responses these intracellular metabolic changes in immune 
cells are of crucial importance, which is collectively referred 
to as metabolic reprogramming [63]. Metabolic reprogram-
ming is necessary to meet the high demands associated 
with inflammation, and is an essential process that occurs 
in various immune cells, including DCs, macrophages and 
T cells [64, 65]. While previously particularly PRRs were 
considered to induce metabolic reprogramming, it has 
recently been identified that also IgA, through FcαRI, is 
able to induce metabolic changes in DCs [46]. FcαRI acti-
vation strongly increases the glycolytic rate in CD103+ DCs, 
which drives de novo synthesis of fatty acids for the expan-
sion of the endoplasmic reticulum, which then enables gene 
translation of pro-inflammatory cytokines such as TNF [46] 
(Fig. 2).

In contrast to most of the pro-inflammatory cytokines, 
FcαRI co-stimulation on CD103+ DCs does not enhance 
the gene translation of the pro-inflammatory cytokine IL-1β. 
Instead, IgA immune complexes amplify IL-1β production 
through caspase-1 activation, which is also dependent on 
FcαRI-induced metabolic reprogramming. IL-1β is generally 
produced after PRR stimulation as an inactive pre-cursor, 
known as pro-IL-1β, which has to be cleaved by caspase-1 
into its bioactive form [66]. FcαRI activates caspase-1 
most likely through Syk-induced glycolysis and fatty acid 
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synthesis, similar to the pathway that is activated by cas-
pase-1 activation by NLR family pyrin domain containing 
3 (NLRP3) [67–69]. Thus, in CD103+ DCs, FcαRI-induced 
amplification of cytokine production at both the translational 
and post-translational level crucially depend on metabolic 
reprogramming.

Compared to intestinal CD103+ DCs, less is known about 
the molecular mechanisms of IgA-induced inflammation 
in liver, blood, and skin. Upstream signaling of FcαRI in 
Kupffer cells, monocytes, and macrophages is largely similar 
to CD103+ DCs in its dependence on Syk and PI3K [51]. 
However, the downstream mechanisms are clearly distinct, 
since in Kupffer cells, monocytes, and macrophages FcαRI 
co-stimulation amplifies cytokine gene transcription, instead 
of translation. The reason for distinct FcαRI signaling in 
intestinal CD103+ DCs is still speculative, but could be 
related to the unique immunological milieu in the intestine 
[70, 71]. Although FcαRI-dependent caspase-1 activation 
has not been studied in Kupffer cells, monocytes, and mac-
rophages, this does seem likely to occur considering the 
discrepancy between IL-1β gene transcription and protein 
production [51]. Similarly, it is yet unknown whether FcαRI 
stimulation also induces metabolic reprogramming in these 
cells. While metabolic reprogramming is not commonly 
involved in affecting gene transcription [72], it could be 
responsible for caspase-1 activation in these cells, similar 
to the CD103+ DCs.

IgA deficiency: compensation through IgG?

Considering the crucial function of IgA-induced passive and 
active immunity, it is remarkable that IgA deficiency has 
relatively mild effects and is in fact one of the most common 
primary immunodeficiency [73]. The absence of symptoms 
in IgA deficiency points towards a high level of redundancy. 
Regarding the passive immune function of SIgA, IgM is 
considered to compensate for the lack of IgA, since IgM 
can be transported to mucosal surfaces using the same poly-
meric IgR as IgA [74, 75]. In contrast, it is less clear how 
the human immune system can compensate for the capacity 
of IgA to induce cytokine production, since this is unlikely 
to also depend on IgM. Here, we propose that IgG may be 
important to compensate for this active immune function 
of IgA. IgG is present in the lamina propria of the intestine 
[76] and is expressed in serum in even higher concentra-
tions than IgA [77]. Furthermore, most cytokine-producing 
FcαRI-expressing myeloid cells also express FcγRs, includ-
ing intestinal CD103+ DCs, monocytes, and macrophages 
[78, 79]. In addition, cytokine production and subsequent 
immune cell activation is remarkably similar between FcαRI 
and FcγRs, since they both promote Th17 responses upon 
recognition of opsonized bacteria [80, 81]. In this regard, it 

is also interesting that IgA-deficient patients with concurrent 
deficiency of IgG2, the main IgG subclass directed against 
bacteria [82], are more symptomatic, which includes upper 
respiratory tract infections and diarrhea [83, 84]. Since 
FcγR-induced cytokine production has indeed been dem-
onstrated for intestinal CD103+ DCs [46], monocytes [85, 
86], and several macrophage subsets [87–89], it, therefore, 
seems likely that IgG can compensate for the loss of IgA in 
various tissues, including the lamina propria of the intestine, 
blood, and skin.

Remarkably, IgA deficiency is associated with several 
chronic inflammatory disorders, including rheumatoid 
arthritis, systemic lupus erythematosus, and celiac disease 
[75]. The reason for the association between IgA deficiency 
and these disorders is still largely unclear. One possibility is 
that low concentrations of soluble IgA result in less ITAMi-
dependent immune suppression under homeostatic condi-
tions, thereby lowering the threshold for immune activation. 
In contrast to this lack of soluble IgA, the presence of IgA 
immune complexes can also contribute to the development 
of these chronic inflammatory disorders, as discussed in the 
next paragraph.

IgA‑induced inflammation in inflammatory 
diseases

Although the physiological function of IgA-induced inflam-
mation is to provide host defense by counteracting bacterial 
infections, undesired or excessive activation of this mecha-
nism may lead to pathology by contributing to the develop-
ment of chronic inflammation. IgA-induced inflammation 
could worsen pathology in IBD patients, since the damaged 
epithelium leads to massive presence of IgA immune com-
plexes (from opsonized commensal bacteria) in the lamina 
propria. In addition, several autoimmune disorders, such as 
RA, SLE and celiac disease, are characterized by the pres-
ence of IgA autoantibodies. These autoantibodies can form 
immune complexes, thereby undesirably instigating local 
and/or systemic inflammation. Next, we will discuss FcαRI-
mediated inflammation in the context of various chronic 
inflammatory disorders.

Inflammatory bowel disease

IBD is a chronic relapsing disorder of the intestinal tract 
which is characterized by gastrointestinal inflammation and 
disruption of the epithelium. IBD encompasses all inflam-
matory bowel disorders, of which there are two major forms, 
Crohn’s disease and ulcerative colitis [90]. These disorders 
differ in both clinical as well as pathological features, sug-
gesting distinct pathogeneses. However, already decades ago 
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it has been described that altered cytokine expression by 
immune cells in the intestinal lamina propria is associated 
with inflammation in both IBD forms [91, 92].

IBD patients are characterized by impaired barrier func-
tion of the intestinal epithelial layer, resulting in influx 
of IgA-opsonized bacteria. As a result of the presence of 
these IgA immune complexes in the lamina propria, FcαRI-
induced inflammation is very likely to be chronically acti-
vated in IBD patients. Indeed, the cytokines that are ampli-
fied by FcαRI cross-talk in the intestine are also strongly 
associated with the pathogenesis of IBD. TNF plays a central 
role in IBD pathogenesis, which is evident by the current 
use of TNF inhibition for as a standard therapy for both 
Crohn’s disease and ulcerative colitis [93, 94]. In addition, 
both IL-1β and IL-23 are implicated in the pathogenesis of 
Crohn’s disease, with anti-IL-23 antibodies as an important 
candidate for therapeutic use [95].

Although IgA-induced inflammation is very likely to 
occur in the intestine of IBD patients, it is less clear how it 
affects the pathogenesis of the disease. Theoretically, FcαRI-
induced inflammation could play a role in IBD pathogenesis 
by either being overactive, or by being impaired. On the one 
hand, considering the powerful pro-inflammatory response 
induced by IgA-induced inflammation, a predisposition of 
individuals for prolonged and/or excessive activation of this 
mechanism could lead to extensive collateral damage, and as 
such contribute to IBD pathogenesis. But on the other hand, 
impaired IgA-induced inflammation could lead to chronic 
inflammation as well. The main physiological function of 
IgA-induced inflammation is to provide protective immu-
nity against invading pathogens, and, therefore, impaired 
functionality could hamper the orchestration of intestinal 
anti-bacterial immune responses, which eventually could 
also lead to chronic bacterial infection and inflammation. In 
this regard, it is important to note that FcαRI stimulation of 
intestinal DCs does not only induce inflammation, but also 
stimulates tissue repair in the intestine, by strongly increas-
ing the production of IL-22 by ILC3 [46].

Thus, while IgA-induced inflammation is active in 
inflamed tissue of IBD patients, it is still unclear whether it 
contributes to IBD pathogenesis by either being overactive 
(leading to excessive activation), or by being impaired (lead-
ing to insufficient host defense against bacteria, ultimately 
also resulting in chronic infection and inflammation).

Celiac disease

Celiac disease is an inflammatory disorder of the small intes-
tine, which is characterized by presence of autoantibodies 
and T cell-mediated destruction. In celiac disease patients, 
exposure to the dietary antigen gluten is the causative patho-
logical factor [96, 97]. Exposure to gluten leads to lesions in 

the small intestine characterized by villous blunting, epithe-
lial crypt cell hyperplasia and leukocyte infiltration includ-
ing plasmacytosis in the lamina propria [97].

In addition to antibodies against gluten, celiac disease 
patients express high levels of autoantibodies against the 
enzyme transglutaminase 2 [98], which is produced locally 
in the mucosa of the intestine [99]. On average 10% of 
plasma cells in a disease lesion are directed against trans-
glutaminase 2 and, importantly, most of these plasma cells 
produce antibodies of the IgA isotype [100]. The abundant 
presence of the autoantigen, leading to the formation of IgA 
immune complexes, in combination with commensal bac-
teria that can enter via the lesions is, therefore, very likely 
to promote inflammation through FcαRI-PRR cross-talk. 
Hence, FcαRI-induced inflammation by IgA autoantibodies 
are likely to worsen the pathology in patients suffering from 
celiac disease.

Rheumatoid arthritis

RA is a chronic autoimmune disease occurring in 1% of 
the population and is characterized by inflammation and 
damage of the joints. Although the pathogenesis is not fully 
understood, it is clear that pro-inflammatory cytokines such 
as TNF play a crucial role, which is underlined by the great 
clinical improvement after neutralization of these cytokines 
[101, 102]. One of the hallmarks of RA is the presence of 
autoantibodies. The most prominent of these autoantibodies 
present in RA patients are anti-citrullinated protein antibod-
ies (ACPA) and rheumatoid factor (RF), which are already 
present long before the onset of disease [103, 104]. ACPA 
recognize citrullinated extracellular matrix proteins in the 
joint, while RF binds to the Fc part of IgG antibodies. The 
binding of these autoantibodies to their antigens leads to 
the formation of large insoluble immune complexes [105], 
which in turn enable their recognition by Fc receptors.

The autoantibodies present in RA patients can be of 
various isotypes, including IgA [106]. The presence of IgA 
rheumatoid factor (RF) has been recognized as a predic-
tive marker for RA, leading to increased systemic cytokine 
production [106, 107]. Furthermore, ACPA immune com-
plexes formed in the presence of IgA RF lead to increased 
expression of RA-associated cytokines [108]. Myeloid 
immune cells such as monocytes and macrophages that 
recognize these immune complexes are also the main cel-
lular source of pathogenic pro-inflammatory cytokines 
such as TNF, IL-1β, and IL-6. However, similar to its 
function in host defense against bacteria, FcαRI essen-
tially needs to collaborate with PRRs to induce cytokine 
production. In RA synovia, PRR activation is not induced 
by microbial compounds, but by endogenous ligands that 
are present as a result of tissue damage and cell death, 
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and which are generally referred to as damage-associ-
ated molecular patterns (DAMPs) [109]. Combined, IgA 
immune complexes and PRR ligands particularly drive the 
production of RA-associated pro-inflammatory cytokines 
by myeloid immune cells [51, 81].

Taken together, FcαRI, particularly in synergy with 
PRRs, may contribute to RA pathogenesis by promoting 
pro-inflammatory cytokine production in response to IgA 
autoantibodies, similar to the more established pathogenic 
function of FcγRs [110–113].

Other autoimmune diseases: IgA 
nephropathy, linear IgA bullous disease, 
and dermatitis herpetiformis

In addition to aforementioned diseases, there are various other 
disorders that are characterized by the presence of autoanti-
bodies of the IgA isotype. In principle, FcαRI-PRR cross-
talk will occur in any disorder in which the combination of 
IgA immune complexes, (endogenous or microbial) PRR 
ligands, and FcαRI/PRR expressing immune cells are pre-
sent. Although at this time there is still little direct evidence, 
several diseases are likely to fulfil these criteria. An important 
example is IgA nephropathy, the most prevalent form of pri-
mary glomerulonephritis that often leads to end-stage kidney 
failure. In IgA nephropathy patients, IgA immune complexes 
accumulate in the glomerular mesengium [114]. These IgA 
immune complexes promote macrophage infiltration and 
induce the release of pro-inflammatory cytokines in FcαRI 
transgenic mice, which interestingly is not only dependent on 
FcαRI but also on transferrin receptor I [115, 116].

IgA immune complexes may also play a role in skin blis-
tering diseases such as linear IgA bullous disease and der-
matitis herpetiformis. Linear IgA bullous disease patients 
are characterized by expression of IgA autoantibodies 
against collagen XVII, a transmembrane protein involved in 
maintaining cell–matrix adhesion in the skin [117]. In addi-
tion to neutrophils that are recruited to the inflamed skin and 
are activated by FcαRI stimulation to induce tissue damage 
[118], IgA immune complexes may promote inflammation in 
a similar manner by eliciting FcαRI-induced pro-inflamma-
tory cytokines. Dermatitis herpetiformis is clinically similar 
to linear IgA bullous disease, and is also characterized by 
the presence of IgA autoantibodies in the skin. Dermati-
tis herpetiformis is strongly associated with celiac disease 
[119] and, therefore, could induce IgA-induced inflamma-
tion in skin in a similar manner as celiac disease drives intes-
tinal inflammation. Future studies are needed to establish 
whether IgA-induced pro-inflammatory cytokine production 
is indeed involved in the pathogeneses of these diseases.

Therapeutic opportunities

As discussed above, the stimulation of FcαRI with IgA 
immune complexes, in cooperation with PRRs, promotes 
inflammatory cytokine responses. During infection, 
IgA-induced inflammation allows for a tailored immune 
response to counteract invading pathogens. However, when 
overactive or deficient, it may also lead to the development 
of chronic inflammation. Therefore, modification of IgA-
induced cytokine responses may provide opportunities for 
therapeutic intervention, either by reducing or enhancing 
these inflammatory responses.

Intravenous immunoglobulin (IVIG) treatment has been 
used for several decades now to treat inflammatory disor-
ders. Initially it was used as therapy for immunocompromised 
patients as a replacement therapy but was shown to have anti-
inflammatory effects. IVIG is mostly based on the immu-
nomodulatory function of IgG [120]. However, as discussed 
earlier, in its monomeric form IgA also has the ability to induce 
inhibitory signaling via FcαRI. In transgenic mice that express 
human FcαRI on monocytes/macrophages this leads to a reduc-
tion of arthritis via ITAMi signaling [121]. While IgA has been 
associated with immunosuppression, to date still very few stud-
ies have been performed with intravenous IgA. This is most 
likely a combination between the difficulty of purifying IgA, as 
well as the fast turn-over rate that IgA has in the systemic cir-
culation, although Fc engineered IgA2 molecules have shown 
an improved pharmacokinetics in vivo [122, 123].

As an alternative to inducing immune suppression, it may be 
promising to specifically interfere with the downstream sign-
aling that is responsible for FcαRI-TLR cross-talk. Signaling 
molecules such as Syk, PI3K and TBK1-IKKε have been iden-
tified as pivotal players in the induction of cytokines by FcαRI 
[46, 51]. Interestingly, disease activity in RA patients was sig-
nificantly reduced by therapeutic inhibition of Syk using oral 
small-molecule inhibitor R788 [124]. In addition, Syk expres-
sion in intestinal DCs was shown to play an important role in 
inducing colitis in mice [125] indicating that inhibition of Syk 
could be helpful for IBD patients. Therapeutic inhibitors for 
PI3K are being developed as well, most for treatment in cancer, 
but some are also being tested for application in inflammatory 
disorders [126, 127]. It is yet unclear which form of PI3K is 
required for FcαRI-PRR cross-talk, and, therefore, narrow-
ing this down could help with precisely targeting IgA-induced 
inflammation in chronic inflammatory disorders. Therapeutic 
TBK1-IKKε inhibitors Amlexanox and Rebamipide are already 
in clinical use for inflammatory disorders such as asthma and 
gastric ulcers [128, 129] and may be used to target IgA-induced 
inflammation. Additionally, FcαRI-TLR cross-talk was identi-
fied to depend fatty acid synthase (FAS) activity, for which 
inhibitors are now being developed and tested in the context of 
cancer treatment [130, 131]. When effective, inhibition of FAS 
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could have therapeutic potential in inflammatory disorders as 
well. Further elucidation of the involved signaling pathways 
in FcαRI-TLR cross-talk may extend the repertoire of small-
molecule inhibitors that can be used for the treatment of chronic 
inflammatory disorders.

While interfering with FcαRI-induced cytokine production 
may be beneficial in the treatment of autoimmune disorders, 
enhancing inflammation could provide new opportunities in 
the treatment of diseases such as cancer [132]. The local envi-
ronment of solid tumors is dominated by the presence of mye-
loid derived suppressor cells, including the presence of anti-
inflammatory M2 macrophages, which inhibit the generation 
of effective anti-tumor responses [133–135]. Since M2 mac-
rophages express FcαRI, (co-)stimulation of these cells may 
convert these anti-inflammatory cells into pro-inflammatory 
cells, similar to the conversion of other tolerogenic immune 
cells such as Kupffer cells and intestinal DCs [46, 51]. In this 
regard, it is interesting that human M2 macrophages have pre-
viously been shown to be converted to pro-inflammatory cells 
upon stimulation with IgG immune complexes that activate 
FcγRs [89]. This is especially interesting since IgA has been 
shown to have a greater therapeutic potential in treating solid 
tumors than IgG, since IgA is far more effective in mediating 
recruitment of and killing by neutrophils [122, 123, 136–138]. 
Hence, the combination of IgA antibodies and an adjuvant 
such as a PRR agonist or IFNγ to promote local inflammation, 
as well as the direct killing of tumor cells, may be a useful tool 
in the treatment of solid tumors.

Taken together, understanding the underlying mecha-
nisms and cell-type specific responses of IgA-induced 
cytokine production could provide new therapeutic oppor-
tunities for a large variety of disorders, including chronic 
inflammatory disorders, autoimmune diseases, and cancer.

Concluding remarks

Here, we have discussed a novel property of IgA in induc-
ing inflammation via FcαRI in various tissues by direct-
ing cytokine responses. Yet, it is important to realize that 
FcαRI also mediates various other immunological processes, 
including phagocytosis, degranulation, and ADCC. Notably, 
many of these processes will occur simultaneously, although 
sometimes by different cell types. Therefore, in view of 
therapeutic opportunities, it would be useful to specifically 
induce or interfere with one feature of FcαRI, while leaving 
other functions unharmed. In this regard, the recent find-
ings that indicate that FcαRI signaling uses cell type-specific 
signaling pathways may provide opportunities to modulate 
IgA-induced cytokine responses in a tissue-specific, and 
perhaps even disease-specific, manner. However, to really 
exploit the targeting of distinct FcαRI functions, more 
knowledge about the underlying molecular mechanisms of 

the different FcαRI functions in different human immune 
cells is required.
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Box 1: Other IgA receptors

Several different receptors have been described to bind 
IgA. There are major differences in both affinity and 
function, which is summarized below.

•	 Poly Ig receptor is expressed on epithelial cells and 
is crucial for the transport of immunoglobulin to the 
lumen of mucosal tissues. The ligand for the PIgR is 
the J-chain and, therefore, it is able to bind both IgA 
and IgM. After binding, the receptor is internalized 
and transported across the cell, whereupon the immu-
noglobulin is released into the lumen [2, 3].

•	 Fc alpha/mu receptor is a receptor expressed on 
hematopoietic and non-hematopoietic cells, includ-
ing B cells [139]. It binds both IgM and IgA but has a 
much higher affinity for IgM [140]. IgA binding likely 
occurs during complex formation and has been associ-
ated with removal of IgA complexes from circulation.

•	 Transferrin receptor expressed on mesangial cells, 
epithelial cells, and B cells, where it is able to bind 
IgA1, but not IgA2 [141]. Transferrin receptor has 
been implicated in the formation of IgA1 complexes 
in IgA nephropathy [142, 143].

•	 Asialoglycoprotein receptor is a C-type lectin recep-
tor, expressed on hepatic cells. It recognizes and binds 
to terminal galactose or N-acetylgalactosamine resi-
dues. ASPGR has been shown to be involved in clear-
ance of IgA from the circulation [144–146].

Other receptors, including FcRL4 [147], DC-SIGN/
SIGNR1 [148], SC-receptor [149], and M-cell receptor 
[150] have been described to bind IgA, but the exact 
role the binding plays is not well defined yet.
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