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Transcriptome analysis of activated sludge
microbiomes reveals an unexpected role of
minority nitrifiers in carbon metabolism
Yuya Sato1, Tomoyuki Hori1, Hideaki Koike2, Ronald R. Navarro1, Atsushi Ogata1 & Hiroshi Habe1

Although metagenomics researches have illuminated microbial diversity in numerous bio-

spheres, understanding individual microbial functions is yet difficult due to the complexity of

ecosystems. To address this issue, we applied a metagenome-independent, de novo

assembly–based metatranscriptomics to a complex microbiome, activated sludge, which has

been used for wastewater treatment for over a century. Even though two bioreactors were

operated under the same conditions, their performances differed from each other with

unknown causes. Metatranscriptome profiles in high- and low-performance reactors

demonstrated that denitrifiers contributed to the anaerobic degradation of heavy oil; how-

ever, no marked difference in the gene expression was found. Instead, gene expression-based

nitrification activities that fueled the denitrifiers by providing the respiratory substrate were

notably high in the high-performance reactor only. Nitrifiers—small minorities with relative

abundances of <0.25%—governed the heavy-oil degradation performances of the reactors,

unveiling an unexpected linkage of carbon- and nitrogen-metabolisms of the complex

microbiome.

https://doi.org/10.1038/s42003-019-0418-2 OPEN

1 Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-
8569, Japan. 2 Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565,
Japan. Correspondence and requests for materials should be addressed to T.H. (email: hori-tomo@aist.go.jp)

COMMUNICATIONS BIOLOGY |           (2019) 2:179 | https://doi.org/10.1038/s42003-019-0418-2 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

mailto:hori-tomo@aist.go.jp
www.nature.com/commsbio
www.nature.com/commsbio


Understanding the individual microbial roles in ecosystems
is a great challenge in microbial ecology, because com-
munity function is expressed as the sum of the metabolic

activities and interactions of various microbes1–3. A powerful tool
to address this issue is metatranscriptome analysis;4 however, its
capability and reliability are reduced by an insufficiency of
reference metagenome sequences5. Accordingly, the roles of rare
microorganisms tend to be masked, which is problematic because
functional importance does not always correspond to population
abundance6–8. Recently, de novo assembly–based transcriptome
analysis (de novo RNA-seq) was developed to overcome the
dependency on reference genome data size9. Here, we applied
de novo RNA-seq to decipher individual microbial functions in
the complex ecosystem of activated sludge10.

Even though activated sludge bioreactors have been used for
wastewater treatment for over a century, the complexity of the
sludge microbiome has hindered our precise understanding of
the microbial processes (Fig. 1)3,10. It is difficult to stably manage
the microbiomes in bioreactors, in part because of the unpre-
dictable behaviors commonly observed in such complex micro-
bial ecosystems11. Therefore, bioreactor performance occasionally
deteriorates because of unknown causes; such problems are cur-
rently solved by impromptu means. Industrial and domestic
wastewaters are often contaminated by heavy oil, which inhibits
microbial activities and decreases reactor performance12.
Although the degradation of heavy oil, which contains toxic
aromatic hydrocarbons, by cultured microorganisms has been
well studied13,14, the mechanisms underlying the degradation by
complex microbiomes remain largely unknown. Here, we focused
on membrane bioreactor (MBR), which is a representative acti-
vated sludge bioreactor15. The two replicate bioreactors were run
under the same operational conditions for 37 days, during which
heavy oil was spiked-in with increasing concentrations from day
20; yet, their performances became different from each other. We
investigated these two reactors, one (reactor 1) with high heavy-
oil degradation activity and one (reactor 2) with low activity, by
metatranscriptome analysis based on de novo transcript assem-
bly, referred to as de novo RNA-seq9. The results suggested that
the small but important minorities of nitrifiers governed the
heavy-oil degradation activities of the activated sludge
bioreactors.

Results
Activated sludge reactor performance. As the inlet heavy-oil
concentration increased (0, 50, 100, 200 mg l−1 at days 0–20,
21–23, 24–33, and 34–37, respectively), total organic carbon levels
and concentrations of alkanes (C14–27) and polycyclic aromatic
hydrocarbons (PAHs; naphthalene and phenanthrene) increased
in reactor 2, but not in reactor 1 (Fig. 2a, d–i). Estimated alkane-
and PAH-removal ratios in reactor 1 were above 90% throughout
the operation, whereas those in reactor 2—especially for heavier
alkanes—had decreased to around 60% by day 37 (Supplementary
Fig. 1a–g), indicating lower heavy-oil degradation activity in the
latter. During this period, transmembrane pressure increased and
the effluent flow rate decreased in both reactors, but the magni-
tude of change was greater in reactor 2 (Fig. 2b). Sixteen-S
ribosomal RNA (rRNA) gene amplicon sequencing demonstrated
similar microbial community structures in the two reactors
during the first 20 days; however, they became distinct after
heavy-oil addition (Fig. 2j, Supplementary Figs. 1h and 2).
Although differences in the dominant microorganisms in the two
reactors were observed, the microbial ecophysiological informa-
tion was not sufficient to elucidate the heavy-oil–degradation
mechanism; therefore, we conducted additional de novo RNA-seq
analyses.

De novo assembly of transcripts. Six double-stranded com-
plementary DNA (cDNA) libraries of gene transcripts were pre-
pared by using RNAs extracted from the two reactors on days 20,
29, and 37. The scheme of the sequence analysis is summarized in
Supplementary Fig. 3, and the results are listed in Supplementary
Table 1. De novo assembly of the sequence data using Trinity
generated 23,709 and 20,677 transcript assemblies for reactors 1
and 2, respectively9. We first focused on rRNA expression levels
(Supplementary Fig. 4). Relative expression levels of the class
Betaproteobacteria were abundant in the two reactors and
increased after heavy-oil addition (Supplementary Fig. 4a, b).
Genus-level analysis of Betaproteobacteria exhibited the similar
dominant members as those revealed by DNA-based analysis
(Supplementary Figs. 2c, i and 4c, d). Because rRNA, transfer
RNA (tRNA) and transfer-messenger RNA (tmRNA) accounted
for approximately 91%, 0.16% and 1.3%, respectively, of total
gene expression16, TPM values (Transcripts Per kilobase Million
representing relative abundances of transcripts) for the coding
sequence (CDS) analysis were normalized without rRNA, tRNA,
or tmRNA assemblies.

Heavy-oil degradation mechanism in sludge microbiome. The
overall trend in gene expression profiles of the two reactors were
compared using the correlation plots for relative expression levels
of 6371 genes that were commonly expressed in both reactors
(Supplementary Fig. 5a–d). The transition of the correlation plots
showed that gene expression profiles of the two reactors were
initially similar but differed after heavy oil addition, indicating the
shifts of active metabolisms in the two reactors. A similar trend was
observed in the Pearson correlation coefficients of the microbial
community compositions (Supplementary Fig. 5e). In order to
extract the key metabolic pathways from the metatranscriptome
data, genes that showed increased expression with time (i.e.,
showed increasing TPM values, see Methods) and that were
expressed by a large number of microbe species were listed (Sup-
plementary Data 4). For both reactors, the lists contained genes
involved in beta-oxidation, suggesting that alkane, a main com-
ponent of heavy oil, was degraded via the beta-oxidation pathway
after conversion to fatty acid13,14. This finding was confirmed by
detailed expression analysis of individual genes (Fig. 3c). In general,
alkane is first oxidized to fatty acid by alkane monooxygenase
under aerobic conditions13,14, but in both reactors, genes involved
in this process showed low relative expression levels (Fig. 3a).
Therefore, we paid attention to an alternative pathway, i.e., anae-
robic alkane activation and degradation, in which alkane is added
across the double bond of fumarate to form alkyl-substituted
succinates via alkylsuccinate synthase14. Results for the genes
encoding pyruvate formate-lyase and radical-SAM protein, which
are homologs of alkylsuccinate synthase and/or share a conserved
active domain14, are summarized in Fig. 3b as Alkylsuccinate
synthase-like proteins; the results suggest that the active pathway
was anaerobic degradation rather than aerobic oxidation. In
addition, the genes encoding C4-dicarboxylate transporters, which
is involved in fumarate uptake17, exhibited high expression levels
compared with the median values of all transcripts (Fig. 3b, Sup-
plementary Fig. 6), and the relative expression level increased with
time in reactor 1 only (Supplementary Data 4). Relative expression
levels of genes encoding oxygenases and degradation enzymes for
aromatic hydrocarbons were also higher in reactor 1 than in
reactor 2 (Fig. 3d, Supplementary Data 5), indicating high degra-
dation activities towards aromatic compounds in reactor 1. Nota-
bly, most of the predicted hosts of the expressed genes encoding
alkylsuccinate synthase-like proteins and aromatic hydrocarbon
degradation enzymes can catalyze nitrate reduction (denitrifica-
tion) (Supplementary Data 5 and 6)14.
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Relative expression levels of denitrification genes were as high
as those of tricarboxylic acid cycle genes and aerobic respiration
genes in both reactors (Fig. 4, Supplementary Fig. 7a, b),
indicating the importance of the anaerobic nitrate respiration
even though the sludge was continuously aerated. Because a
negligible amount of nitrate is contained in inlet synthetic
wastewater, we hypothesized that nitrifiers (ammonia-oxidizing
bacteria [AOB] and nitrite-oxidizing bacteria [NOB]) provide
nitrate by oxidizing ammonia and nitrite in the reactors18.
Interestingly, the expression of genes encoding enzymes in the
nitrification pathway after heavy-oil addition appeared higher in
reactor 1 than in reactor 2 (Fig. 4a; time points 2, 3). The
difference in nitrification activities was also supported by the
changes in ammonium and nitrate concentrations: in reactor 2,
following heavy-oil addition, ammonium accumulated sharply
but the nitrate concentration was reduced below the detection
limit (Fig. 4c, d); in contrast, in reactor 1, the ammonium
concentration was maintained at low levels, and the nitrate
concentration increased concomitantly with the decrease in
ammonium concentration at day 37 (Fig. 4c, d). Higher activities

of AOB in reactor 1 than in reactor 2 were also indicated by the
following: (i) relative expression levels of ammonia monoox-
ygenase and hydroxylamine oxidoreductase increased with time
in reactor 1 only (Supplementary Data 4; No. 24, 39); (ii) high
relative expression levels of nitrification genes after heavy-oil
addition were observed in reactor 1 only, as shown by the
mapping of mRNA reads onto the Nitrosomonas sp. Is79A3
genome (GenBank accession number: NC_015731) (Supplemen-
tary Data 7; bold type); (iii) relative expression levels of rRNA
genes for Nitrosospira and Nitrosomonas in reactor 1 were 84-
and 6.7-fold those in reactor 2, respectively (Supplementary
Fig. 4c, d); and (iv) relative abundances of Nitrosomonas sp. in
reactor 1 kept increasing after heavy-oil addition, whereas those
in reactor 2 decreased after day 27, as revealed by 16S rRNA gene
amplicon sequencing (Supplementary Fig. 8). On the other hand,
anaerobic alkane degradation has been reported to be catalyzed
by sulfate-reducing bacteria as well as denitrifiers14. Although
sulfate consumption and relative expression levels of genes
encoding enzymes in the sulfate reduction pathway were higher
in reactor 2 than in reactor 1 (Supplementary Fig. 9),
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Fig. 1 Heavy-oil degradation model in the sludge microbiome. Because the complete metabolic map of the ecosystem was unduly complex, several vital
metabolic pathways were extracted by evaluating the microbial transcript diversity of the expressed genes (i.e., the number of microbial species expressing
a gene) as well as the expression level (upper figure; Supplementary Table 2). On the basis of the extracted pathways, we proposed heavy-oil degradation
mechanisms in the sludge microbiome, in which denitrifiers and nitrifiers indirectly cooperate. Red arrows indicate the metabolic pathways highly enriched.
Blue and red boxes emphasize pathways possibly performed by denitrifier and nitrifiers, respectively. Gray lines in the background denote the
representatives of metabolic pathways that were common but not directly related to the targeted key metabolisms. The lower figure shows the predicted
interaction between denitrifier and nitrifiers. AOB and NOB denote ammonia-oxidizing bacteria and nitrite oxidizing bacteria, respectively
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alkylsuccinate synthase-like proteins were apparently not
expressed by dissimilatory sulfate reducers. Because the energy
available from sulfate reduction is approximately 15-time lower
than that from denitrification19, sulfate might not induce the
effective heavy-oil degradation.

Discussion
Whether or not aromatic compounds in heavy oil were detoxified
by denitrifying bacteria seemed to differentiate the nitrification
activities of the respective reactors. Because of their low abun-
dances, nitrifiers could be easily washed out from the sludge
microbiome through growth inhibition by the toxic aromatic
compounds remaining (Fig. 2g, h, Supplementary Fig. 8). Deni-
trifiers’ genes encoding degradation enzymes for aromatic
hydrocarbons showed high relative expression levels in reactor 1
only (Fig. 3d), presumably removing the toxic compounds to
maintain the activity of the susceptible nitrifiers20. In turn,
nitrifiers helped denitrifiers by providing nitrate. In fact, relative
expression levels of AOB-derived rRNA were notably high only in
reactor 1 even at the beginning of the heavy-oil addition (Sup-
plementary Fig. 4e, f). This indirect cooperation in the sludge
microbiome was vital for sustaining reactor performance.
Ammonia monooxygenase and degradation enzymes for aro-
matic hydrocarbons are generally functional under oxic condi-
tions, whereas enzymes involved in denitrification and anaerobic
alkane degradation are activated under anoxic conditions.

Dissolved oxygen concentrations in the reactors decreased after
the heavy oil addition (Fig. 2c), possibly due to the increase in
viscosity of the sludge and the resulting oxygen mass transfer
limitation21,22. Consequently, both oxic and anoxic conditions
existed locally and temporally even in the continuously aerated
activated sludge. We proposed that the co-existence of aerobic
and anaerobic environments enabled a link between carbon
metabolism (alkane and aromatic hydrocarbon degradation) and
nitrogen metabolism (nitrification and denitrification), leading to
the heavy-oil degradation performances of reactor 1 (Fig. 1).

Here, de novo RNA-seq was proven effective for deciphering
functioning metabolisms in a complex sludge microbiome.
However, determining which metabolic pathways or reactions
cause a phenomenon observed in an ecosystem is challenging,
because the phenomenon is usually the sum of diverse biological
processes1–3. This is especially difficult when the reaction of
interest is not identical to, or has little relationship with, the
phenomenon, e.g., when these reactions are located far from each
other on the metabolic map (Fig. 1). To bypass this drawback, we
extracted the vital pathways on the metabolic map by evaluating
diversity of the expressed genes (Supplementary Fig. 7d, Table 1).
De novo metatranscriptome assembly generated several to dozens
of homologous sequences for most assemblies, identifying the
higher priority genes that a greater number of microbial species
expressed. Given the importance of microbial richness to main-
taining ecosystem functionality23, the information on the tran-
script diversity of functioning key genes would be of tremendous
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benefit. By contrast, RNA-seq studies have so far prioritized genes
on the basis of their expression levels alone, because only a few
homolog sequences have been available from the limited number
of reference genomes or metagenomes. This advantage of de novo
RNA-seq can also unmask the ecophysiology of rare micro-
organisms. The big contribution of minorities, such as AOB and
NOB, might not have been identified by a metagenome-based
RNA-seq approach.

The results by de novo RNA-seq suggested that the small but
important minorities of nitrifiers, AOB and NOB, the relative
abundances of which were <0.15% and <0.25%, respectively,
governed the heavy-oil degradation activities of the activated

sludge bioreactors. Nitrifiers and denitrifiers indirectly cooperated
with each other by supplying the respiratory substrate nitrate and
by detoxifying heavy-oil components, respectively, thereby help-
ing maintain the reactor performance. Taken together, our de
novo RNA-seq strategy deciphers the unexpected linkage between
carbon- and nitrogen-metabolisms in the complex microbiome.

Methods
Setup and operation of a pilot-scale membrane bioreactor. Schematic config-
uration of the pilot-scale MBR used in this study, which was the same as our
previous studies22,24,25, is shown in Supplementary Fig. 10. Operation of the MBR
was performed according to previous studies24,25. The employed activated sludge
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was obtained from a municipal wastewater treatment plant (Kinu aqua-station,
Ibaraki, Japan). Throughout the experimental period, the bioreactor was constantly
fed with a synthetic wastewater stored in a 20-l feed tank at 4 °C. The flow rates of
both the input wastewater and the output membrane-filtered treated water were
115 l day−1, resulting to a hydraulic retention time of 2 days. The flow of the return
sludge from rightmost to leftmost compartments was also set at 115 l day−1. No
sludge was withdrawn from the reactor, except for periodic sampling. The con-
centration of the original synthetic wastewater was set at 450 mg-chemical oxygen
demand (COD) l−1 and the composition was the same as the previous
studies22,24,25. In addition to synthetic wastewater, heavy oil was supplied to the
MBRs at concentrations of 50 mg l−1 for days 21–23, 100 mg l−1 for days 24–33,
and 200 mg l−1 for days 34–37 using syringe pump (Pump 11 Elite; Harvard
Apparatus, Holliston, MA, USA).

Procedures for chemical analyses. Fifteen ml of the activated sludge samples
were collected and separated into pellet and supernatant by centrifugation. The
COD, total organic carbon (TOC) and total nitrogen (TN) values and con-
centrations of NH4

+, NO3
−, and SO4

2− in the supernatant and MBR-treated water
were analyzed according to the previous reports22,25. Heavy oil components were
measured as described below: the mixture of 0.25 ml of sludge samples and 2 ml of
hexane in a glass test tube was vortexed for 1 min. After separating the two layers,
components of the heavy oil in the hexane layer were determined by a Shimadzu
GC-mass spectrometer (GCMS-QP 2010, Shimadzu, Kyoto, Japan) that was
equipped with a mass spectrometric detector and auto-injector (AOC-20i). For the
analysis, 0.25 mm × 25 m by 0.25-μm Quadrex MS capillary column made of 100%
dimethyl polysiloxane was used. The GC mass conditions and the temperature
program for the GC oven during the analysis were as described previously22. Mass
data were analyzed at a range of 60.00mz−1 to 650.00mz−1. All data were
represented as the mean values from at least two measurements, except for TOC
and TN.

DNA extraction and PCR amplification. One hundred fifty-six activated sludge
samples (i.e., 26-time points × triplicates × two MBRs) periodically obtained from

the two MBRs were washed once with a 50 mM sodium phosphate buffer (pH 7.0)
and stored at −20 °C as a pellet until use. DNA extraction and purification were
performed according to previous studies24–26. The V4 region of 16S rRNA genes
was amplified using the universal primers 515F and 806R and the purified DNA as
a template4. Both primers were modified to contain an Illumina adapter region,
and the reverse primer contained a 12-bp barcode for multiplex sequencing27. The
thermal condition of PCR were the same as that in a previous report24,25.

High-throughput sequencing of 16S rRNA gene amplicons. High-throughput
sequencing was carried out as described previously28. An appropriate amount of
the 16S rRNA gene segments and an internal control (PhiX Control V3; Illumina,
San Diego, CA, USA) was subjected to paired-end sequencing with a 500-cycles
MiSeq reagent kit (Illumina) and a MiSeq sequencer (Illumina). The total number
of the sequences obtained from 156 sludge samples (26 time points with triplicate
for two reactors) was around 3.51 million, corresponding to an average of
22,473 sequences per library (minimum, 9893; and maximum, 67,099). Removal of
PhiX sequences using a Burrows-Wheeler Aligner version 4.0.5 with the database
of Greengenes29,30, joining the paired-end sequence by ea-utils software package
version 1.1.2-30131, removal of low-quality (Q < 30) and chimeric sequences by
QIIME version 1.7.0 and Mothur version 1.31.232,33, and assembly of the paired-
end sequences were carried out according to a previous report34. Microbial
diversity of each sequence library was characterized by calculating α-diversity
indices (i.e., Chao1, Shannon, and Simpson reciprocal) and the weighted UniFrac
distances for PCoA using the QIIME software. The closest relative of the OTU was
determined by aligning 16S rRNA sequences using Blast search (https://blast.ncbi.
nlm.nih.gov/Blast.cgi) with NCBI nucleotide sequence database.

RNA extraction and sequencing. Two-milliliter samples of activated sludge were
collected on days 20, 29, and 37 from the two reactors (i.e., total 6 samples) and
immediately centrifuged (15,300 × g, 5 min, 4 °C), and the resulting pellets were
stored at −80 °C until use. RNA was extracted from the pellet by the direct lysis
protocol, as described above. The DNA-contaminated extract was digested with
DNase (RQ1 RNase-Free DNase, Promega, Fitchburg, WI, USA) and purified by
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using an RNeasy Mini Kit (QIAGEN, Venlo, Netherlands). The resultant total
RNA was treated by using a RiboMinus Transcriptome Isolation Kit for bacteria
(Thermo Fisher Scientific) to reduce rRNA amounts, and purified by using an
AMPure XP kit. Double-stranded cDNA libraries were prepared from the rRNA-
depleted RNA samples by using a NextUltraRNA library prep kit (NEB). The target
size of cDNA (200–300 bp) was purified by using an AMPure XP kit followed by
agarose-gel electrophoresis, as described above. The size distribution and con-
centration of the purified cDNA samples were determined by using a Bioanalyzer
(Agilent 2100; Agilent) and the Quant-iT PicoGreen dsDNA reagent and kit,
respectively. An eight picomolar cDNA sample was subjected to paired-end
sequencing with a 300-cycle MiSeq reagent kit and a MiSeq sequencer. RNA
sequencing using the MiSeq platform provided 31,882,097 reads in total, corre-
sponding to an average of 5,313,683 sequences per library (minimum, 2,604,746;
maximum, 7,979,418; Supplementary Table 1).

Sequence analysis of transcripts. Paired-end Illumina reads from each of six
samples were checked for quality with FastQC (a quality control tool for high-
throughput sequence data, available online at: http://www.bioinformatics.
babraham.ac.uk/projects/fastqc). To ensure high sequence quality, the remaining
sequencing adaptors and the reads with a cutoff Phred score of 15 (for leading and
tailing sequences, Phred score of >20) and a length of less than 100 bp were
removed by the program Trimmomatic v0.30 using Illumina TruSeq3 adapter
sequences for adapter clipping35. After the removal of low-quality sequences,
15,338,269 reads survived in total, corresponding to an average of 2,556,378 reads
per sample (minimum, 1,460,332; maximum, 3,605,484; Supplementary Table 1).
The remaining paired reads were reconstructed into long transcripts by using the
de novo assembly program Trinity 2.1.19, generating 23,709 and 20,677 assemblies
for reactors 1 and 2, respectively (Supplementary Table 1). Using constructed
assemblies as references, paired-end RNA reads were mapped with the Bowtie 2
program36. An average of 74.1% of RNA sequences were mapped onto the con-
structed assemblies (minimum, 69%; maximum, 80%; Supplementary Table 1).
After conversion of the output BAM files to BED files with the bamtobed program
in BEDTools ver. 2.14.337, relative expression levels of transcripts were evaluated
by calculating TPM (Transcripts Per kilobase Million) values by using in-house
scripts; relative gene expression levels were calculated by first dividing the mapped
read counts by the length of each gene in kilobases, giving reads per kilobase
(RPK); then, all the RPK values in a sample were counted up and divided by
1,000,000 (per million scaling factor), giving TPM value. For evaluating the simi-
larity of gene expression profiles between the two reactors, the correlation plots for
relative expression levels of 6,630 genes that were commonly expressed in both
reactors were used. The commonly expressed genes were extracted by bidirectional
homology search using Blastn program, in which the assembly sets exhibiting the
highest homology with each other (bi-direction best hits) were selected. Relative
expression levels of three reference genes commonly used as housekeeping genes in
transcriptome analysis, and those for genes encoding tricarboxylic acid cycle
enzymes, which are conserved across various microorganisms and are known to
actively function in aerobic environments, were summarized to confirm the validity
of the evaluation on the basis of TPM values (Supplementary Figs. 6 and 7).
Furthermore, frequency distribution plots of relative expression levels of all genes
were prepared to confirm the overall profiles of the expression levels and to esti-
mate the criteria for highly expressed genes. For generating the frequency plots,
first the relative expression levels of assemblies which are assigned to the same
functional gene were summed up (e.g., when expression levels of assemblies 1, 2,
and 3, all of which are assigned to gene A, were 10, 20 and 30, respectively, the total
expression level of gene A is 60); then, the frequency of the total expression levels
and median value were calculated.

Assignment of transcript functions. Functions of the transcripts were predicted
by a homology search using four analytical programs and eight gene databases
(Supplementary Table 1). Ribosomal RNA sequences were assigned by riboPicker
0.4.3 with reference to SILVA rRNA database version 12338,39. Sequences for 5S
rRNA, and tmRNA were assigned by Fasta36 aligner with reference to 5S rRNAdb
and tmRDB40–42, respectively, when the e-value of the output was less than 1e−10.
For Fasta36 analyses, 5S rRNAdb and tmRDB were prepared in FASTA format by
using in-house scripts. Transfer RNA sequences were assigned by tRNAscan-SE-
1.3.1 with the general tRNA model option43. The functions of coding sequences
(CDSs) were predicted by a homology search using Blastx (ncbi-blast-2.2.29+)
with reference to the NCBI reference sequence database (RefSeq, release 64)44,45,
EggNOG database v4.0, or GO database46,47, or by using PfamScan with reference
to the Pfam database after converting nucleic acid sequences to amino acid
sequences by using TransDecoder (available online at http://transdecoder.
sourceforge.net/)48. Only the functions with high scores (alignment length, >50
amino acids; homology, ≥25%) were assigned to CDSs49. Here, the gene annotation
by RefSeq was used, because the most gene functions were assigned by using RefSeq
from among the four databases (Supplementary Table 1). The proportions of CDSs
and rRNA, tRNA, and tmRNA sequences aligned to assemblies were estimated at
approximately 85%, 11%, 0.36%, and 1%, respectively. However, because rRNA,
tRNA and tmRNA accounted for approximately 91%, 0.16%, and 1.3%, respec-
tively, of the total expression level, TPM values for the CDS analysis were recal-
culated without the rRNA, tRNA, or tmRNA assemblies50.

Ribosomal RNA expression analysis. To investigate which microbial taxa con-
tributed to the heavy-oil degradation, relative expression levels of ribosomal RNA
were calculated. Ribosomal RNA sequences discriminated by using riboPicker were
phylogenetically classified by using Fasta36 with reference to the SILVA rRNA
database (both large and small subunit) with a cutoff e-value of 1e–10. TPM values of
each taxonomic group (at class and genus levels) were assigned with in-house scripts.

Extraction of increasingly expressed genes. To explore the overall trends in
gene expression profiles, genes that were highly expressed after heavy-oil addition
were investigated. First, genes with relative expression levels that increased with
time (i.e., genes with TPM values at day 20 < day 29 < day 37) were extracted;
accordingly, 2078 and 1515 genes were identified in reactor 1 and 2, respectively.
Then, the number of gene homologs, which were discriminated as different tran-
script assemblies by using Trinity, were counted; we considered this number to be
correlated with the importance of the gene, because genes that play an important
role in the environment would be expected to be expressed by various organisms.
For this analysis, gene functions were assigned with various criteria (i) alignment
length, >50 amino acids; homology, ≥25%; (ii) alignment length, >50 amino acids;
homology, ≥50%, (iii) homology, ≥50%, (iv) bit score, ≥40; homology, ≥50%, and
(v) bit score, ≥40. We confirmed that all analyses using the various annotation
criteria showed almost the same gene-expression trends, although several genes,
such as those encoding nitrate reductase or C4-dicarboxylate transporter, were
detected by criterion (i) only. Therefore, the results obtained using criteria (i)
(cutoff value ≥5 homologs) are shown in the manuscript (Supplementary Data 4).

Evaluation of transcripts by integrating expression levels. For several metabolic
pathways that we focused on (e.g., alkane degradation), stacked bar graphs of relative
expression levels were generated by integrating the TPM values (Supplementary
Fig. 7d). Because annotations of genes are diversified (i.e., various names are assigned
to the same functional gene), we manually summarized annotations into one
representative annotation according to the KEGG database (http://www.genome.jp/
kegg/genes.html). In addition, although the subunit composition of isozymes often
varies among host microorganisms, we did not discriminate subunit information,
and this may have led to some bias in the relative expression levels. Furthermore,
when an assembly showed a notably high TPM value (e.g., >500), the annotation of
the assembly was analyzed again by using Blastn or Blastx with reference to non-
redundant NCBI databases (http://www.ncbi.nlm.nih.gov/RefSeq/), to avoid
misannotation.

Mapping of RNA sequences onto the Nitrosomonas genome. Because the
expressed ammonia monooxygenase genes shared high homology with the
homologs of Nitrosomonas sp. Is79A3, Nitrosomonas sp. AL212, or Nitrosomonas
eutropha, the RNA sequences (after quality control by Trimmomatic) were mapped
onto the publicly available Nitrosomonas sp. Is79A3 genome by using the Bowtie 2
program. Calculation of TPM values was performed as described above.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The amplicon sequencing data and the metatranscriptome data of this study have been
deposited in the DDBJ Sequence Read Archive under accession code DRA006299 and
DRA006303, respectively. All source data underlying the graphs presented in the main
figures are available as Supplementary Data 1–3.
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