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GWAS for quantitative resistance phenotypes in
Mycobacterium tuberculosis reveals resistance genes
and regulatory regions
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Bouke de Jong6, Leen Rigouts 6, Alex Sloutsky7, Devinder Kaur8, Shamil Sunyaev 1,9, Dick van Soolingen10,

Jay Shendure5,11,12, Jim Sacchettini4 & Megan Murray13

Drug resistance diagnostics that rely on the detection of resistance-related mutations could

expedite patient care and TB eradication. We perform minimum inhibitory concentration

testing for 12 anti-TB drugs together with Illumina whole-genome sequencing on 1452 clinical

Mycobacterium tuberculosis (MTB) isolates. We evaluate genome-wide associations between

mutations in MTB genes or non-coding regions and resistance, followed by validation in an

independent data set of 792 patient isolates. We confirm associations at 13 non-canonical

loci, with two involving non-coding regions. Promoter mutations are measured to have

smaller average effects on resistance than gene body mutations. We estimate the heritability

of the resistance phenotype to 11 anti-TB drugs and identify a lower than expected con-

tribution from known resistance genes. This study highlights the complexity of the genomic

mechanisms associated with the MTB resistance phenotype, including the relatively large

number of potentially causal loci, and emphasizes the contribution of the non-coding portion

of the genome.
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Tuberculosis (TB) remains a major global public health
threat. In 2016, there were an estimated 10.4 million TB
cases globally and 1.7 million deaths owing to the disease.

One of the most-challenging forms of disease is caused by mul-
tidrug resistant (MDR) Mycobacterium tuberculosis, with a global
annual incidence of over half a million cases1. The World Health
Organization (WHO) estimates that only two of every three
patients with MDR TB are diagnosed, three in every four of the
diagnosed are treated, and only one of every two of the treated
patients are cured, resulting in ~75% of the incident cases per-
sisting in the community or succumbing to their illness. Anti-
biotic resistance is also an increasing problem in other human
pathogens, and transmission of antibiotic resistance from person
to person is amplifying the public health threat2.

Improved surveillance, diagnosis, and treatment are desig-
nated priorities by the WHO and the US, European CDCs for
addressing the antibiotic resistance challenge1,3,4. These mea-
sures will rely on an improved understanding of the mechan-
isms of resistance acquisition in bacteria. The knowledge of
genetic mechanisms of antibiotic resistance has formed the
basis of several commercial molecular diagnostics for TB that
have had remarkable global uptake, despite the fact that they
only reliably test for a subset of TB drugs and hence have not
yet been able to replace the traditional more costly and slow
process of mycobacterial culture and drug susceptibility testing
(DST)1,5–7. Understanding antibiotic resistance mechanisms
and methods that compensate for lost bacterial fitness in the
context of antibiotic resistance can also pave the way for the
development of companion drugs that restore antibiotic sus-
ceptibility8,9 and can open the possibility of evolutionarily
directed therapies that can aid in primary prevention of resis-
tance acquisition10.

To date, attempts at genome-wide association for antibiotic
resistance in MTB have been limited by the relatively low
number of isolates phenotypically resistant to antibiotics, and
have exclusively relied on phenotypes defined by DST per-
formed at a single critical concentration, likely a result of
convenience sampling from clinical isolate archives in clinical
mycobacterial laboratories11–13. Although such binary DST is
currently the standard to guide patient care, MTB critical
concentrations lack consistent scientific support and several are
based only on consensus14,15. The WHO has also declared that
“the critical concentration defining resistance is often very close
to the minimum inhibitory concentration (MIC) required to
achieve anti-mycobacterial activity, increasing the probability
of misclassification of susceptibility or resistance and leading to
poor reproducibility of DST results”16. Although more labor-
ious and expensive, the quantification of the resistance
phenotype through MIC testing is considered a major
improvement in the current standard for clinical phenotyping
of drug resistance17, and MICs are more appropriate for the
assessment of the biological effects of genomic variation in
understanding the mechanism of resistance and bacterial fit-
ness. The association of this variation with MICs also promises
to refine our molecular prediction of antibiotic resistance for
clinical and diagnostic use, as considerable gaps remain in
prediction of resistance to first-line drugs like pyrazinamide
(PZA), ethambutol (EMB), and second-line drugs including the
injectable agents18,19. Here, we present a genome-wide asso-
ciation study of 1526 isolates in which MICs were measured for
12 anti-tubercular agents and validate our findings in a globally
representative public set of TB genomes with binary DST
phenotypic data. We report on 13 non-canonical loci that
associate with resistance including two non-coding regions and
investigate the role of non-coding variants and interactions for
several loci. We additionally measure the heritability of the

drug resistance phenotype in MTB and find lower than
expected contribution from the known resistance loci.

Results
Isolates and resistance phenotype. Of the total 1526 isolates
included in the primary analysis, 76 isolates were excluded
because their sequencing data did not meet coverage and
mapping criteria (methods). The remaining 1452 isolates ori-
ginated from 24 different countries, but the majority, 1226, was
from Peru. The isolates were each tested against a minimum of
four and up to 19 drugs with a median of 12 drugs/isolate
(Supplementary Data File 1). Figure 1a provides histograms of
the MIC results for isoniazid (INH), PZA, amikacin (AMI), and
moxifloxacin (MXF) (complete set of histograms in Supple-
mentary Fig. 1). Overall, 976 isolates were MDR (INH MIC >
0.2 mg per L and rifampicin (RIF) MIC > 1 mg per L) and 438
were pre-extensively drug resistant (XDR) (i.e., additionally
resistant to either a fluoroquinolone, MXF, ciprofloxacin or
ofloxacin (OFX), or a second-line injectable, SLI, i.e., capreo-
mycin (CAP), kanamycin (KAN), or AMI. A total of 157 iso-
lates were XDR, i.e., MDR and resistant to a fluoroquinolone
and a SLI. Despite testing at multiple concentrations close to
the critical cutpoint in this sample enriched for MDR, we
observed a low rate of intermediate MICs for most first and
second line agents with notable exceptions for the drugs EMB,
PZA, streptomycin, and ethionamide (ETA) (Fig. 1a and Sup-
plementary Fig. 1).

Genomic diversity. We identified 73,778 unique genetic variants
in the 1452 genomes. The majority of the variants, 42,871 (58%)
occurred in only one of the 1452 isolates (Fig. 1b) and the
majority of single-nucleotide substitutions (SNSs) in coding
regions were non-synonymous amounting to 36,479 vs 20,541
that were silent. We identified 7178 variants with a frequency of
> 0.01 of which 2701 had a frequency of > 0.05. In addition to
SNSs we observed an appreciable number of insertions and
deletions (indels), with 9% of the observed variants with an allele
frequency (AF) > 0.05 being indels.

The isolates’ lineage diversity was consistent with their
geographic origin with 86% being lineage 4 but diverse within
this lineage with 39% of the total being lineage 4.3 (LAM), 31%
lineage 4.1 (Haarlem), and 16% representing other L4-
sublineages. Of the total, 11% belonged to Lineage 2. There
were a total of 43 isolates that belonged to other lineages (L1,
L3, and L5). Figure 1c displays the pairwise genetic co-variance
between the isolates, and demonstrates that although the
majority were lineage 4 there was considerable diversity among
the isolates.

Testing genome-wide association. Genome-wide association was
performed for each drug separately using a gene/non-coding
region binary burden score, excluding any loci with burden fre-
quency of <0.01, and correcting for population structure by fitting
a linear mixed model. A total of 2791 loci had a burden frequency
of ≥0.01. We set the significance threshold at a false discovery
rate <0.05 as we planned to perform validation on an indepen-
dent data set. QQ plots of the resultant p value distribution
suggested that the correction for population structure was ade-
quate. This is demonstrated by the adherence of the observed P
value distribution to the expected line with the exception of the
short tail indicating the significant loci in Supplementary Figs 2
and 3. Twenty known resistance loci (methods) were identified by
genome-wide association and for all drugs known loci were
associated with the highest effect size and lowest P value of all the
significant hits (Supplementary Data File 2). The RNA
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Fig. 1 Genetic and phenotypic data of 1452 isolates. a MIC distributions for four drugs. Dotted red line represents the WHO recommended critical
concentration on 7H10 media; blue line represents the lower limit of achievable serum concentration from pharmacodynamic studies (Supplementary
Table 2). b Allele frequency distribution relative to H37Rv. The isolate count axis interrupted and scaled to accommodate the data range. c Heatmap
displaying genome-level similarity of the isolates. Similarity assessed as isolate–isolate genetic co-variance. Isolates indexed in lineage order L1, L2, L3, L4
(4., 4.1, 4.3), and L5 as shown. Co-variance ruler displayed on the far right with darker red indicating higher similarity/co-variance. Phylogenetic tree of the
same isolates is given in Supplementary Fig. 4. Figure 1a–c can be regenerated using code in Supplementary Data 8 that will refer to data items provided in
the Source Data file (compressed source data folder)
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polymerase β-subunit gene rpoB was the most significant hit
across all drugs with a RIF logMIC increase of 3.24 log(mg per L)
and Wald P value of <10–187. Of the known locus–drug asso-
ciations detected, the smallest effect size was measured for the
embA–embC intergenic region, an EMB logMIC increase of 0.45
at a Wald P value of 1 × 10–7. Notably, we did not identify a
significant association between the compensatory gene rpoA and
RIF resistance, the embA and embC genes and EMB resistance
and between gyrB and MXF resistance. Given stepwise and co-
linear development of antibiotic resistance in MTB and the pre-
valence of MDR in our sample, most of the known resistance loci
were identified to be associated with more than one antibiotic, but
in each case the known causative locus was the most significantly
associated with its respective drug (Table 1, Supplementary Data
File 2). We implicated several promoter/intergenic regions sur-
rounding known genes including not only the Rv1482c-fabG1 and
the eis-Rv2417c intergenic regions that are currently used in one
or more commercial diagnostics6,20, but also the regions
upstream of embAB (embA–embC), pncA (pncA-Rv2044c), and
ahpC (oxyR’–ahpC). The known compensatory gene rpoC was
strongly associated with resistance to both RIF and rifabutin. We
also identified the rpsA gene to be associated with PZA resistance
with an effect size and P value lower that of variants in the
intergenic region containing the pncA promoter (0.55 logMIC
increase and 2 × 10–4 vs 0.81 and 7 × 10–5, respectively, Supple-
mentary Data File 2).

We identified 50 non-canonical loci to be associated with
resistance to one or more antibiotics (Supplementary Data
File 2). Sixteen loci were associated with resistance to more than
one drug. Two such loci were associated with resistance to all
three SLI agents, the gene encoding the transcriptional
regulator WhiB6, the cytochrome P450 oxidoreductase encod-
ing fprA gene (logMIC change and Wald P value: 0.59 and 1 ×
10–4, 1.37 and 1 × 10–6, respectively). CcsA a gene in the

cytochrome P450 maturation pathway was also associated with
SLI resistance (KAN logMIC change 1.64 and Wald P value 2 ×
10–4—Table 1 and Supplementary Data File 2) with an effect
size among the top 10 measured for the non-canonical loci. The
most significantly associated non-canonical locus was the gene
ubiA (Rv3806c) with the drug EMB (logMIC 0.52 and Wald P
value 1 × 10–13). The locus Rv3083 which encodes the gene
mymA, an alternative monoxygenase to ethA21, was associated
with resistance to ETA and two other drugs and was among the
10 most significant non-canonical hits (ETA logMIC 0.60 and
Wald P value 1 × 10–4). Twelve intergenic regions were found to
be associated with resistance including the intergenic regions
thyX-hsdS.1 and glnE-glnA2, as well as regions adjacent to type
VII secretion system related genes like espK-espL (Table 1 and
Supplementary Data File 2). The secondary genome-wide
association performed at the site level identified associations
of individual substitutions (SNS) or indels within the loci
associated in the primary analysis (Supplementary Data File 2).
In addition, four SNSs in other non-canonical loci: L111M in
Rv3327, D397G in gene aftB, and 640954AG in the intergenic
regions Rv0550c-fadD8 were associated with resistance (Sup-
plementary Data File 3). No non-canonical associations were
found for the drug linezolid.

Validation in an independent data set. The 50 non-canonical
associations were tested in an independent set of globally repre-
sentative MTB isolates with public sequence and drug resistance
data. The validation set showed a higher level of genetic diversity
with 44.3% of the 792 isolates belonging to lineage 2, 40.3%
belonging to lineage 4 (15% 4.1 sublineages, 8% 4.3 sublineages)
and a higher representation of other lineages: 5% L1, 4% L3, 3%
L6/BOV/AFR. The proportion of isolates that were MDR in the
validation set was 35% (278 isolates). Second-line drug resistance

Table 1 Non-canonical regions confirmed in the second validation GWAS and four canonical regions for comparison

Locus/site Drug AF Scaled
effect size

Scaled SE P value raw Drug AF OR SE P value raw

ubiA (Rv3806c) EMB, INH, RIF,
PZA, KAN

0.071 0.52 0.07 1E-13 EMB, INH,
RIF, PZA

0.066 1.25 0.10 3.6E-03

Rv3805c - 4267647
T > C (D397G)

AMI 0.050 2.72 0.63 4E-06 AMI 0.283 1.11 0.03 4.7E-04

dinG† RIF 0.069 1.86 0.47 2E-05 AMI, STR 0.293 1.10 0.03 8.8E-04
whiB6^ CAP, AMI, KAN 0.037 0.59 0.15 3E-05 CAP, AMI 0.069 1.16 0.06 2.7E-03
RNase J (Rv2752c) INH, RIF 0.042 0.77 0.20 8E-05 KAN, AMI,

RIF, INH
0.067 1.29 0.06 2.8E-08

sirA ETA 0.070 0.78 0.21 1E-04 CAP, KAN, STR 0.015 1.27 0.09 8.0E-04
PPE35 PZA 0.112 0.54 0.14 1E-04 EMB 0.334 1.24 0.08 4.9E-04
Rv3434c* KAN, AMI 0.048 1.14 0.33 1E-04 KAN, AMI 0.047 1.18 0.06 2.3E-03
espK-espL RFB, RIF 0.053 1.21 0.34 2E-04 AMI, STR 0.283 1.11 0.03 4.7E-04
Rv2952** EMB 0.067 0.64 0.17 2E-04 STR,AMI INH,

CAP
0.203 1.29 0.08 2.6E-05

ccsA KAN 0.052 1.64 0.47 3E-04 AMI, CAP 0.274 1.11 0.03 2.7E-04
thyX-hsdS.1 AMI 0.018 0.74 0.22 3E-04 STR 0.016 1.32 0.13 3.9E-03
kefB (Rv3236c)*** PZA 0.137 0.80 0.24 6E-04 RIF,INH, PZA,

EMB STR
0.235 1.60 0.16 2.0E-06

inhA INH 0.03 1.10 0.26 2E-05 –
Rv1482c-fabG1 INH 0.10 0.63 0.16 6E-05 –
pncA PZA 0.24 1.40 0.07 4E-89 –
pncA-Rv2044c PZA 0.01 0.81 0.20 7E-5 –

All drugs to which they were found to be associated are listed. The first drug listed was the drug found to be most significantly associated and for which the GWAS results are listed in the subsequent
columns. Left half of the table represents the test GWAS results (n= 1452) and the rightward half lists results of the validation (n= 792). Four known/canonical resistance loci are also listed along with
their respective allele frequency, effect size, and P value for comparison. Full results detailed in Supplementary Data Files 2–3. Drug abbreviations detailed in Supplementary Table 2. AF: allele frequency.
OR: odds ratio. SE standard error. Scaled effect size and SE are on the logMIC scale. *transmembrane protein, **integral membrane transport protein, ***probable methyl transferase and membrane
protein, ^transcriptional regulator, †structure-specific helicase
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phenotypes were available for 25–57% of the isolates (Supple-
mentary Data File 4) and 29 isolates were XDR. Of the 50 loci
identified above, six could not be validated as there was no
appreciable variation observed in the set of 792 isolates (AF <
0.01). Twenty seven other loci were tested but had an AF < 0.05
and were not significantly associated, these included the loci
mymA and fprA. Of the remaining 17 loci, 12 were validated to be
associated with resistance to one or more drugs. These included
whiB6, ccsA, ubiA, a metal beta-lactamase Rv2752c, and two
intergenic regions including thyX-hsdS.1 (Table 1). In the site
level analysis the D397G mutation in the gene Rv3805c (aftB) was
validated as significantly associated with resistance. The strength
of association for several of the non-canonical loci was compar-
able to some canonical genes, but the allele or burden frequency
was lower for most of them. For example the effect of ubiA
mutations on the EMB MIC was measured to be 0.52 logMIC
increase, similar in magnitude to the effect of variants in the
Rv1482c-fabG1 intergenic region on INH MIC (0.63 logMIC
increase) as was the effect of whiB6 mutations on SLI MICs
(ranging between 0.56 and 0.60 logMIC increase). The respective
allele frequencies were 0.07 for ubiA, 0.03–0.04 for whiB6 and
0.10 for the Rv1482c-fabG1 intergenic region. The allele frequency
i.e. the frequency of the minor variant within our sample, was <
10% (Table 1, Supplementary Data File 2) in all but two
validated loci.

All of the validated regions were found to have variants in two
or more of the major TB lineages, and all but three of the coding
loci harbored nonsense or frameshift variants in one or more
isolates (Supplementary Data File 5, Supplementary Fig. 3). In a
formal test for phylogenetic convergence22, ubiA, whiB6,
Rv2752c, PPE35, Rv3236c, and thyX-hsdS.1 displayed significant
homoplasy at a permutation P value < 0.005 (Supplementary Data
File 6). The distribution of variants varied by locus; ubiA, whiB6,
Rv2752c and PPE35 all displayed considerable diversity of
variants that were closely spaced in one or more segments of
the gene, in a pattern similar to that observed in known resistance
genes (Supplementary Fig. 3). For the intergenic hits, we observed
a concentration of variants around the predicted transcriptional
start site in both cases (Supplementary Fig. 3).

Resistance phenotype heritability. We examined the proportion
of variance in the resistance phenotype explained (PVE) by all of
the observed genetic variation for each drug (Table 2). The PVE
varied by drug, ranging from 0.64 ± 0.06 (standard error) for
MXF and 0.66 ± 0.04 for PZA at the lower end to 0.84 ±0.02 for
RIF and 0.88 ± 0.02 for AMI at the higher end. We measured the
PVE for the known antibiotic resistance genes, and that for non-

canonical genes captured in this study. The proportion explained
by the known genes was relatively low and at most 0.24 ± 0.08
(27% of the total PVE) for AMI. The proportion explained by the
non-canonical genes was even lower but on par with PVE of
known drug resistance loci for PZA and ETA albeit with large
error margins (Table 2).

Interactions with canonical resistance regions. We sought to
determine whether there are detectable interactions between
specific resistance sites, genes, and the genetic lineage. We
hypothesized that because antibiotic resistance arises as a result of
strong positive selection in MTB and several sites have large
effects on the phenotype that the MIC distributions observed for
such resistance mutations would not vary appreciably across
different lineages. We focused on lineage 4 and lineage 2, as they
were well represented in our sample. Examining the six muta-
tions: katG S315T, rpoB S450L, rpoB D435V, embB M306V,
inhA -15, pncA H51R for INH, RIF, RFB, EMB, ETA, and PZA,
respectively, we found the MIC distributions to not to be
appreciably different for five of the six mutation–drug pairs
(Wilcoxon P value > 0.2). We did associate the mutation rpoB
D435V with higher median rifabutin MICs among lineage 2
isolates than among lineage 4 (median 0.375 mg per L vs. ≤ 0.125
Wilcoxon P value 6 × 10–4). Examining interactions between
specific pairs of mutations and genes, we first tested if the
acquisition of additional resistance mutations causative of resis-
tance to other drugs is associated with increases in MIC. We
focused on the first line drug EMB for which the most significant
non-canonical hit ubiA was identified as well as the second line
aminoglycoside KAN. We examined the loci embB, embA, embC,
and ubiA for EMB and rrs for KAN. We found EMB MIC levels
to be higher among isolates with both an A1401G rrs variant and
an M306V embB variant, as compared with those with M306V
embB and without the rrs variant (Wilcoxon P value 0.005
median > 15 (IQR 12.5–15) vs > 15 (IQR > 15– > 15). UbiA and
embA variants were also more common among isolates with both
M306V embB and A1401G rrs compared with isolates harboring
only the former (embA OR 13.8 (95% CI 6.1–33.6, Fisher P value
< 10–12), ubiA OR 6.7 (95% CI 3.3–13.8, Fisher P value < 10–8)).
After excluding isolates with embA and ubiA variants, isolates
with both the rrs and embB variant still tended to have a higher
MIC but the P value decreased to 0.05. Isolates with both embA
and embB variants were more likely to have a higher EMB MIC
(median > 15, IQR 7.5– > 15) than those with only embB variants
(median > 15, IQR 3.5 to > 15, Wilcoxon P value 4 × 10–4). The
co-occurrence of embB and ubiA variants was also associated with
elevations in the EMB MIC relative to embB variants alone:

Table 2 PVE for each drug attributable to subsets of genetic variations

Drug All PVE All SE woDR PVE woDR SE woDRwoNC PVE woDRwoNC SE DR-related PVE NC-related PVE

INH 0.809 0.020 0.732 0.032 0.723 0.029 0.08 0.01
RIF 0.838 0.017 0.701 0.034 0.692 0.033 0.14 0.01
RFB 0.833 0.023 0.722 0.041 0.693 0.042 0.11 0.03
EMB 0.748 0.027 0.674 0.036 0.665 0.035 0.07 0.01
PZA 0.659 0.038 0.634 0.044 0.602 0.043 0.03 0.03
KAN 0.833 0.022 0.671 0.040 0.658 0.041 0.16 0.01
AMI 0.879 0.019 0.639 0.057 0.640 0.055 0.24 <0.01
CAP 0.743 0.030 0.690 0.038 0.666 0.038 0.05 0.02
ETA 0.701 0.034 0.689 0.038 0.675 0.038 0.01 0.01
STR 0.710 0.033 0.604 0.047 0.601 0.045 0.11 <0.01
MXF 0.643 0.058 0.494 0.083 0.456 0.081 0.15 0.04

PVE all measurable genetic variation given along with PVE related to variation excluding known drug resistance regions and non-canonical regions associated in this study (n= 1452 isolates). Drug
abbreviations detailed in Supplementary Table 2. PVE: proportion of variance explained. DR: drug resistance regions as detailed in the methods. NC: Non-canonical regions specified in Table 1. wo:
without. SE: standard error
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median of > 15, IQR 7.5– > 15 to a median of > 15, IQR 12.5
to– > 15, Wilcoxon P value 6 × 10–4. On the other hand, variants
in embC were not more likely to co-occur with embB variants,
Fisher P value 0.6; and there was no difference in EMB MIC
between isolates with both embC and embB variants vs. those with
only embB variants, Wilcoxon P value 0.5.

Resistance effect of promoter vs. gene body variants. Given the
number of intergenic regions found to be associated with resis-
tance we tested the hypothesis that intergenic variants have
smaller effects on drug MIC compared with gene body mutations
for the three genes and the promoter-containing upstream
intergenic region that were independently associated with resis-
tance in the GWAS; namely inhA, pncA, and embB and their
upstream intergenic regions, respectively. We focused on the
codon and promoter site with the largest allele frequency in each
case. Isolates not infrequently had both a gene body and a pro-
moter mutation: 12% of isolates with embB promoter mutations
also had an embB codon 306V, and 18% of isolates with an inhA
promoter mutation also had a mutation at inhA codon 21. None
of these variants were phylogenetically restricted (Supplementary
Table 1). No isolates had both a pncA promoter mutation and a
pncA mutation at codon 51. Figure 2 shows the marginal MIC
values for each site pair and drug. Variants in promoter regions
consistently showed lower MICs than gene body mutations,
although in most cases both medians were above the clinical
cutoff (P values 0.03, 0.002, 0.01, 0.009 for the drugs INH, ETA,
PZA, and EMB, respectively). This findings were also supported

by the relative magnitude of the GWAS regression coefficients at
the locus level for each drug (Table 1) with the notable exception
of ETA (Supplementary Data File 2). We also tested the possi-
bility that genes that harbor promoter variants associated with
resistance were more likely to be essential genes than genes that
exclusively harbor variants in the gene body in association with
resistance. Of the latter, 7/11 were essential, whereas only 3/7
genes with promoter resistance variants were essential, suggesting
that gene essentiality is limited in assessing the functional impact
of a variant.

Discussion
Here, we examine 1452 clinical MTB isolates, enriched for phe-
notypic resistance, and quantify their antibiotic resistance phe-
notype using the MIC method. Our GWAS results using this
quantitative phenotype are notable for the capture of several non-
coding genetic regions. In aggregate, > 20% of the loci associated
with antibiotic resistance were intergenic regions. This stands in
contrast to the relatively low proportion of the MTB genome
annotated to be non-coding, 10.5% by length for the H37Rv
reference. Although only a subset of these regions are known
promoter regions, their association with antibiotic resistance, and
the concentration of the variants around predicted transcriptional
start sites raises the possibility that the non-canonical regions
may also play a role in gene regulation. Canonically, antibiotic
resistance is caused by protein-modifying mutations in drug
targets or in pro-drug to drug-converting enzymes in MTB. Also,
to date, commercial-based assays for detecting antibiotic
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resistance in TB have largely focused on gene based variants, with
the notable exception of the inhA and eis promoters. We find that
isolates harboring mutations in promoter regions tend on average
to have lower drug MICs than those isolates with a corresponding
non-synonymous gene body variant, and although these tend to
exceed the critical cutpoint in both cases, if the MICs are close
enough to the cutpoint the isolates may be treatable in some cases
with higher doses of drug or a more potent drug from the same
class23,24. This highlights the importance of understanding the
underlying genetic cause of resistance and personalizing therapy
based on this, but definitely requires further investigation
including potentially clinical trials exploring the efficacy of higher
dose antibiotic therapy in patients with such isolates.

We identify and validate 12 genetic regions and one SNS as
associated with resistance in MTB. Although these loci have, to
date, not been used to predict or diagnose antibiotic resistance in
patients with TB18,19,25, several have been recently associated
with resistance either in vitro or in other genome-wide associa-
tion studies performed on binary resistance read outs (Supple-
mentary Data File 7)11–13. We summarize these by drug or class,
detailing the full results in Table 1 and Supplementary Data
Files 2–3 and 7.

The gene with the most significant p value in the primary
GWAS was ubiA. This locus is validated further by the results of
two prior GWAS studies13,26, and mutations introduced at ubiA
codon 237 were shown to increase gene function and elevate
decaprenylmonophosphoryl-B--ribose or arabinose (DPA)
levels27,28. DPA is the donor substrate for arabinosyltransferases
that include EmbB, the main target of the drug EMB, and
increases in DPA levels likely result in competitive inhibition of
the EMB drug effect measurable as an increase in the EMB MIC.
The downstream gene aftB that encodes an enzyme catalyzing the
final step in arabinoglycan arbinan biosynthesis was also found to
have a SNS significantly associated with resistance in our study.
The association was not with EMB but rather with the drug AMI,
as most AMI resistance isolates are also EMB resistant we suspect
this mutation to be compensatory to EMB resistance rather than
resistance causing, reinforcing aftB to be a potentially valuable
drug target as has been previously suggested29,30.

The gene Rv2752c encodes a bifunctional beta-lactamase
/ribonuclease31,32, and was found to be associated with resis-
tance in one prior survey26. We found this gene to be associated
with resistance to either INH or RIF, with an effect size com-
parable to that of inhA promoter mutations on INH resistance,
but with an allele frequency that was half of that of inhA pro-
moter mutations (at 0.05). The integral membrane transport
protein KefB (Rv3236c) is a K+/H+ antiporter that releases K+ to
the phagosomal space and prevents its acidification. We found
variants in the encoding gene to associate with resistance most
strongly with PZA resistance, which is compelling given the
known modulating effect of the medium’s pH on PZA’s drug
activity33.

We found several non-canonical associations most strongly
with the AG class of anti-tuberculosis drugs. These include the
transcriptional regulator whiB6 that is known to activate
expression of the DosR regulon, and controls aerobic and anae-
robic metabolism and virulence among other pathways34. Pre-
vious work has implicated another whiB-like transcriptional
regulator, whiB7, in resistance to AGs35 and whiB6 and the
upstream intergenic region were previously associated with
resistance in a prior GWAS albeit to non-AG agents12. The
cytochrome-c maturation gene ccsA encodes an integral mem-
brane protein that binds heme in the cytoplasm and exports it to
the extracellular domain of ccsB that in-tail primes it for covalent
attachment to apocytochrome c. Deficient cytochrome-c oxidase
activity is tolerated in MTB owing to the flexibility of its electron

transfer chain36, it is plausible that this may incur a fitness
advantage by slowing growth under drug pressure. CcsA and katG
variants commonly co-occurred in one genomic analysis of 288
isolates from China and the pairs were found to be significantly
associated with resistance37.

The gene mymA, an alternative monoxygenase to ethA21,
which encodes an enzyme known to activate the pro-drug ETA,
was associated with an increase in ETA MIC. In vitro, mymA
deletion mutants were previously found to be resistant to ETA,
and double mymA and ethA knock out mutants had even higher
ETA MICs that the individual mutants21. We were not able to
validate mymA in the independent data set against the binary
ETA resistance phenotype, possibly owing to limited statistical
power as only 116 isolates in the validation data set were ETA
resistant, and mymA variants are more rare occurring in < 5% of
the isolates in the test set. It is also possible that mymA mutations
increase ETA MIC to a smaller extent in clinical isolates making
the GWAS against binary phenotypes less sensitive. The diag-
nostic utility of mymA mutations for improving the prediction of
ETA thus requires more study.

Mutations in the intergenic region upstream of thyX (thyX-
hsdS.1) have been shown to modulate thyX expression and have
been associated with resistance in two MTB GWAS13,26. Given
that thyX is involved in folate metabolism, mutations in these
regions may be causative of or compensatory for PAS resis-
tance13. It is notable that the association we measured was with
respect to other drugs, INH, KAN, and AMI, as we did not have a
sufficient number of isolates tested for PAS resistance. This likely
resulted from drug-drug resistance collinearity and emphasizes
the need to carefully interpret novel GWAS results in MDR-
bacteria.

The measurement and genome-wide association with MICs
allowed us to quantify, for the first time, the proportion of the TB
resistance phenotype that is explained by bacterial genetic var-
iation. We estimate that 64–88% of the MIC variance to be
explained by genetic effects, with standard errors ranging from 2
to 6%. The remaining proportion may be explained by other
factors such as genetic interactions, mutation heterogeneity, or
environmental or other testing related factors that result in MIC
level variability. It is notable that we found the known resistance
loci to explain a relatively low amount of the total variation
ranging as low as 0.01 for ETA to 0.24 for AMI. The gap between
total PVE and that attributable to known drug resistance loci, is
not completely explained by the presence of the non-canonical
genetic loci as these explained an even lower proportion than
known drug resistance loci, likely related to their low mutation
frequency. This gap may be better explained by lineage or
gene–gene interactions. We did examine a set of specific inter-
actions between six canonical resistance mutations and genetic
lineage (lineage 4 vs 2), and between variants in the loci embABC
and ubiA one of the non-canonical candidates. Although for
several of the loci we examined that individually had large effects,
like katG S315T and rpoB S450L, we could not detect an inter-
action with the genetic background, in the case of ubiA, embA,
and rpoB D435V we found evidence for the presence of at least
additive interactions on the drug MIC38. It thus seems likely that
such interactions exist for other mutations, and may be wide-
spread in bacterial genomes, especially between variants with
smaller effects. These conclusions are consistent with prior evi-
dence from allelic exchange experiments39.

In this study, we demonstrate the utility of genome-wide
association for examining bacterial phenotypes relevant to
infectious disease. Our study was not without limitations. To
achieve sufficient statistical power to detect associations between
genetic variation and clinically relevant resistance phenotypes we
oversampled isolates that had higher levels of drug resistance. It is
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possible that this over-representation of high level resistance
enriched for a subset of genetic variants and make it less likely to
capture variants that are rarer or have smaller effects. Given the
recognized step-wise acquisition of resistance in MTB40, it is very
challenging to determine accurately which drug resistance is in
fact associated with a particular gene or genetic region. For
example, resistance to any of the second line agents, fluor-
oquinolones like MXF, SLI’s like AMI, or to first-line agents like
PZA and EMB, nearly always co-exists with resistance to INH
and RIF, and it is thus not possible to perform association con-
ditioning on the absence of resistance to those agents. This also
significantly limits our ability to assess for mutations that can
result in cross-resistance between drug classes; however, our
results do support recognized associations between genetic loci
and drug members of the same class such as inhA promoter
variants with INH and ETH resistance, rrs variants and AMI,
KAN, or CAP resistance and rpoB variants and RIF or RFB
resistance (Supplementary Data Files 2 and 3). Further, the per-
formance of linear mixed models for performing GWAS in bac-
teria has not been systematically studied, although applied
recently to MTB and other bacteria with demonstrated suc-
cess13,41–43. We acknowledge that we cannot be certain that these
models adequately control for population structure in clonal
bacteria and because of this we performed validation in an
independent data set with a different lineage distribution. We also
provide the lineage breakdown of variants in our hit loci that in
each case demonstrated evidence for convergent evolution11. We
also demonstrate the power of using a binary gene-burden score
for bacterial GWAS, as this decreased the number of necessary
tests relative to GWAS of individual sites and allowed the
incorporation of rare genetic variants that appear to be important
for drug resistance in MTB44. This approach is however, reliant
on the accuracy of the available genomic annotation for MTB,
and is most sensitive for capturing genes under diversifying
selection, i.e., where multiple different genetic mutations may
contribute to a functional genetic change, and entirely ignores
synonymous variation as potentially contributing to the pheno-
type. More refined measures of gene burden in bacteria, for
example, measures that incorporate protein structural data, are
worth investigating systematically in the future.

In summary, with the increasing availability of genomic data,
powered by the formation of TB genomic data consortia45, our
ability to identify more-rare variants with smaller effects on
resistance will increase. Our improved understanding of the
genetic mechanisms of resistance in MTB can perhaps lead to
more-targeted drug development efforts, but more imminently
will allow for improved diagnosis and surveillance given the
increased uptake of genomic technologies in public health
laboratories in high income countries46. Improvement in portable
sequencing technology47 and decreased cost of sequencing is
promising to facilitate adoption in settings with lower resources
where TB is most prevalent. However, even if sequencing tech-
nology is available, our results suggest that genomic data inter-
pretation will likely necessitate the use of statistical models or
machine learning18,44,48 given the number of genetic loci asso-
ciated with resistance and the likely contribution of gene–gene
interactions, especially if a quantitative prediction of the drug
MIC is desirable17. The portability of the potential benefits of
these advances to areas of the world where TB is most prevalent
and will require continued efforts in open sharing of data and
analysis tools49.

Methods
Sample collection. MTB sputum-based culture isolates were selected from (1) a
Peruvian patient archive of culture isolates enriched for resistance based on prior
targeted resistance gene sequencing and binary DST phenotype18 (n= 496), or (2)

sampled from a longitudinal cohort of patients with Tuberculosis from Lima
Peru50 enriched for multidrug resistance based on prior binary DST (n= 568).
These 1064 isolates had phenotypic resistance testing by MIC for 12 drugs repeated
(see below) at the National Jewish Hospital (NJH) Denver, CO, and underwent
whole-genome sequencing. Data from these isolates were pooled with data from
two additional samples: a convenience sample from three national or supranational
reference laboratories selected based on the availability of MIC data: the Institute
for Tropical Medicine–Antwerp, Belgium, the Massachusetts State TB Reference
Laboratory–Boston, MA, and the National Institute for Public Health and the
Environment–Bilthoven, Netherlands (n= 411) and a sample of 83 pan-susceptible
isolates from the Peruvian TB cohort50 added to increase the representation of
sensitive isolates. This study protocol was reviewed by the Harvard Medical School
Institutional Review Board and was designated not to constitute research on
human subjects as it included only de-identified microbiological samples.

Culture and drug resistance/MIC testing. Lowenstein–Jensen (LJ) culture was
performed from sputum specimens using standard NALC–NaOH decontamina-
tion. Prior to DNA extraction and sequencing most cultures had been cryopre-
served as follows: Inside a biosafety container, all colonies of each culture were
extracted from the LJ slants and dissolved in 7H9 broth with 20% glycerol to reach
a bacterial suspension similar or higher than McFarland 5. Then, the bacterial
suspension was aliquoted in volumes of 0.3–0.5 mL and stored overnight at 4 °C to
ensure the glycerol uptake of the cells. Then, all tubes were placed into the − 80 °C
freezer for long term storage.

All isolates, except the 83 pan-susceptible isolates described above, underwent
MIC testing. Testing for the 1064 isolates at NJH was performed for 11 anti-TB
drugs on 7H10 media using agar proportion and for PZA in MGIT 960 in a staged
fashion. Isolates were first tested at three low concentrations that include the WHO
recommended critical concentration. If the isolate was resistant at the critical
concentration then testing at six higher concentrations was additionally performed.
The testing concentrations deviated from the traditional doubling to better detect
intermediate level MICs that are close to the clinical critical concentration and
within theoretically achievable levels in patient sera based on available
pharmacodynamics data51. The concentrations are detailed in Supplementary
Table 2. Culture, MIC, and DST testing at the other laboratories is outlined in
Supplementary Table 3. Testing methods and concentrations are also listed for
each isolate in Supplementary Data File 1.

MIC quality control procedures at the NJH consisted of the following two
measures. (1) The repeat testing, with every batch, of two external control MTB
strains, one resistant to all drugs except MXF and linezolid and the other sus-
ceptible to all drugs. Testing of these two reference strains was repeated using the
same method (indirect proportions on 7H10 agar) with each batch of ~ 30 clinical
isolates to confirm the reference MICs replicate at the exact level. If either or both
of the reference strains failed to replicate the expected MIC for one or more drugs,
the whole batch of isolates was re-tested. Of the 33 batches and replicate reference
MTB strain tests conducted during the 2.5 years of testing, only one failed to
replicate and was repeated. The reference MICs were reproduced upon the repeat
testing.

(2) Internal controls: every clinical isolate was tested on an agar plate split into
four quadrants, three quadrants contained increasing concentrations of the drug
and the fourth was a control quadrant free of drug. If the isolate failed to grow in
the control quadrant (at least 50 colonies), the isolate was re-tested (i.e., on a new
plate) given the concern for inadequate innoculum. The culture plates were also
monitored for contamination. If any contamination was observed the isolate was
also re-tested. Over 29/1091 isolates were re-tested because of there was either no-
growth or contamination. Two isolates of the 29 could be grown and MICs for
these isolates were run twice repeated. In both cases the MICs were replicated to
within one MIC dilution.

DNA extraction and whole-genome sequencing. DNA from sputum samples of
TB patients was extracted from cryopreserved cultures. Each isolate was thawed
and subcultured on LJ and a big loop of colonies were lysed with lysozyme and
proteinase K to obtain DNA using CTAB/Chloroform extraction and ethanol
precipitation. DNA was sheared into ~ 250 bp fragments using a Covaris sonicator
(Covaris,Inc.), and prepared using the TruSeq Whole-Genome Sequencing DNA
sample preparation kit (Illumina, Inc.). Samples were sequenced on an Illumina
HiSeq 2500 sequencer. Paired-end reads of length 125 bp were collected. Base-
calling was performed using HCS 2.2.58 and RTA 1.18.64 software (Illumina, Inc.)

Definition of known and non-canonical drug resistance loci. We define the
MTB known resistance loci as the following genes katG, inhA, and its promoter,
ahpC promoter, kasA, rpoB, embA, embB, embC, and embA–embC intergenic
region, ethA, gyrA, gyrB, rrs, rpsL, gid, pncA, and its promoter, tlyA, thyA, rpsA, eis
promoter, and the compensatory genes rpoC, rpoA based on prior published
work6,13,18,20,25,52–54 and the use of many of these regions in commercial molecular
diagnostics for MTB. We define loci other than those listed above as non-canonical
loci if they were found to be significantly associated in the GWAS.
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Variant calling and phylogeny construction. Genome coverage was assessed
using SAMtools 0.1.1855 and FastQC56 and read mapping taxonomy was assessed
using Kraken57. We aligned the Illumina reads to the reference MTB isolate H37Rv
NC_000962.3 using Stampy 1.0.2358 and variants were called by Platypus 0.5.259

using default parameters. Strains that failed sequencing at a coverage of < 95%
at ≥ × 10 of the known drug resistance regions, or that had a mapping percentage of
< 90% to M. tuberculosis complex were excluded. Genomic regions not covered
at ≥ × 10 in at least 95% of the remaining isolates were filtered out from the
analysis, i.e., no attempt at association with variants in those regions was made. In
the remaining regions, variants were further filtered if they had a quality of < 15,
purity of < 0.4 or did not meet the PASS filter designation by Platypus. We used the
purity threshold of 0.4 as in a previous comparison with a lower threshold (of 0.1)
there was no significant improvement in sensitivity over specificity18. We also
excluded any indels > 3 bp in size or large sequence polymorphisms. Further
quality control was performed after genome-wide association when associated PE/
PPE gene and indels were visualized and manually inspected using IGV v2.4.960.
TB genetic lineage was called using the Coll et al.61. SNP barcode and confirmed by
constructing a Neighbor joining (NJ) phylogeny using MEGA-562, excluding
known resistance genes and potentially repetitive regions63 and including lineage
representative MTB isolates from Sekizuka et al.64.

Phenotype. The MIC data were recorded as an interval indicating the last highest
concentration tested where growth was seen and the MIC itself. Because critical
concentrations on LJ media (for isolates tested at ITM) are in general higher than
those on 7H10, the MIC intervals were normalized to allow for comparability by
dividing by the critical concentration for each drug as defined by the WHO65. The
interval midpoints were computed and converted to ranks as has been previously
suggested for genotypic association with MIC data22; ties were assigned an average
rank. A sensitivity analysis was performed to confirm that the results are not
sensitive to the rank transformation of the phenotype, by comparing the region hits
obtained in a parallel GWAS analysis using the natural log transformed phenotype
instead of the rank transform.

Genotype, GWAS, and control for population structure. Association analysis
was performed at the gene/non-coding region level using a binary gene burden
score that was set at one if any non-synonymous SNS or indel (insertion or
deletion) was observed in a gene, or any SNS or indel was observed in a non-
coding region, and zero otherwise. We excluded known lineage markers in drug
resistance genes from the burden score calculation18. Association was also
performed at the site level in a secondary analysis excluding synonymous var-
iants. Any gene/region or SNS with a minor allele frequency (MAF) of <0.01 was
not tested. We controlled for population structure by computing a genetic
relatedness matrix (GRM) that measures genetic similarity as the co-variance
between the individual isolate genetic variant vectors. For the GRM computation
we included all synonymous and non-synonymous SNSs and indels but
excluding variants in known drug resistance loci and variants occurring at a
MAF of < 0.01 using the software package GEMMA66. Genome-wide association
was performed using a linear mixed model with the phenotype as the rank-
transformed MICs also using GEMMA. Regions with a false discovery rate <0.05
were selected for validation. We verified control for population structure
with QQ plots using the qqman package in R v3.2.3. As the regression was
performed on rank-transformed MIC values, we scaled the resulting effect size
back to the MIC scale by first performing a linear regression between the natural
logMIC values and their rank transform and then using the resulting slopes as a
scaling factor. LogMIC change in units of log(mg per L) are reported through-
out. In a parallel analysis we ran a test for phylogenetic convergence11 using the
MEGA-5 NJ tree (Supplementary Fig. 4) and the treeWAS R package22 utilizing
the simultaneous score and a permutation P value threshold of <0.005 to assess
significance. For comparisons of isolate proportions harboring a specific geno-
type we used the Fisher exact test, and compared MIC distributions using the
Wilcoxon rank sum test. For these latter two, the P value threshold was <0.05.

Validation. We validated the genomic regions identified above in an independent
public data set with binary phenotype data. The validation data set consisted of a
convenience sample of 792 MTB isolates obtained by pooling data from the
ReSeqTB knowledge base (https://platform.reseqtb.org/)45 with additional MTB
whole-genome sequences and phenotype data curated manually from two addi-
tional references26,67 (Supplementary Data File 4). We did not select isolates for the
validation set based on lineage or drug resistance profiles. Association analysis was
performed using a linear mixed model approach as was outlined above for the test
data and using a GRM for population structure correction. A locus was considered
validated if it had a Wald p value of < 0.005.

PVE. We computed the PVE as the proportion of total phenotypic variance
explained by the genetic relatedness between the isolates, using the restricted
maximum likelihood approach as implemented in GEMMA, as a measure of
heritability. We computed the PVE attributable to known drug resistance
regions by recomputing the GRM after removing all variation (synonymous,
non-synonymous, and indels) in the known resistance loci. Similarly, we

computed the PVE attributable to all other loci validated to be significantly
associated with resistance in this study, as PVE attributable to the non-canonical
loci. Given the phenotypes were coded as ranks of the MIC distribution, we
performed a sensitivity analysis to confirm that rank transformation did not
affect our PVE measurements. In this sensitivity analysis we dichotomized the
MICs using the WHO-established critical concentration as the threshold, and
recomputed the PVE on the liability scale. The PVEs changed by <10% for all
drugs in the sensitivity analysis.

Data availability
All data used in this study are available in the supplementary material or deposited on
NCBI with accession numbers detailed in Supplementary Data 1. The source data and
code underlying manuscript figures as well as the results described are provided in the
Source Data file (compressed source data folder) and in Supplementary Data 8 (R-code
described in the Code Availability section above). Figure 1a–c, Fig. 2, Tables 1, and 2 can
be regenerated using code in Supplementary Data 8 that will refer to data items provided
in the Source Data file. Any other information is available upon reasonable request from
the corresponding author

Code availability
R-code for constructing figures and processing GWAS output can be accessed in
Supplementary Data 8 (source code), and additional bash code for running the GWAS
and heritability calculations is available within the Source Data file (compressed source
data folder).
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