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MHD flow of Maxwell fluid 
with nanomaterials due to an 
exponentially stretching surface
Umer Farooq1,2, Dianchen Lu   1, Shahzad Munir2, Muhammad Ramzan3,4, 
Muhammad Suleman1,2 & Shahid Hussain5

In many industrial products stretching surfaces and magnetohydrodynamics are being used. The 
purpose of this article is to analyze magnetohydrodynamics (MHD) non-Newtonian Maxwell fluid with 
nanomaterials in a surface which is stretching exponentially. Thermophoretic and Brownian motion 
effects are incorporated using Buongiorno model. The given partial differential system is converted into 
nonlinear ordinary differential system by employing adequate self-similarity transformations. Locally 
series solutions are computed using BVPh 2.0 for wide range of governing parameters. It is observed 
that the flow is expedite for higher Deborah and Hartman numbers. The impact of thermophoresis 
parameter on the temperature profile is minimal. Mathematically, this study describes the reliability of 
BVPh 2.0 and physically we may conclude the study of stretching surfaces for non-Newtonian Maxwell 
fluid in the presence of nanoparticles can be used to obtain desired qualities.

Heat transfer and magnetohydrodynamics in the boundary layer flows are important research topics due to their 
usage in industry and metallurgy. Several procedures such as chilling of filaments or continuous strips by taking 
them out from stagnant fluid involve stretching of these strips. The refrigeration of temperature reduction finally 
defines the quality of the end product. Further such flows are important in view of engineering applications 
related to geothermal energy extractions, crystal growing, power plants, plasma studies, paper production and 
MHD generators. Sakiadis1–3 presented pioneering research on flow induced by stretching surface. Afterwards, 
the problems for linear and nonlinear stretching surfaces have been investigated extensively (see for instance)4–6. 
Pioneer research on the flow due to an exponentially stretching surface was done by Magyari and Keller7. Sajid 
and Hayat8 discussed the importance of thermal radiation. Sahoo and Poncet9 studied partial slip effect for the 
third grade fluid flow. Mukhopadhyay investigated porous medium and thermally stratified medium in an expo-
nentially stretching surface10,11. Rahman et al.12 addressed such flow considering second order slip by utilizing 
Buongiorno’s model. Hayat et al.13 developed analysis for Oldroyd-B fluid. Patil et al.14 obtained non-similar solu-
tions for such flows for stretching surface considering mixed convection, double diffusion and viscous dissipation 
effects. Few other studies with reference to the flow and heat transfer characteristics of viscous and non-viscous 
fluids over surfaces which are stretching exponentially can be found through the refs therein15–23.

The studies related to non-Newtonian fluids have generated considerable interest in recent times. This is as 
a result of their numerous utilizations in industrial products. In general, such fluids cannot be explained by one 
constitutive equation. Hence, different constitutive equations are proposed in view of the diversity of such fluids. 
Fluids of non-Newtonian types are mainly distributed among integral, rate and differential types. Maxwell fluid 
falls under rate type non-viscous fluids category. This class illustrates the relaxation time effects. In past, Fetecau24 
obtained exact solution for Maxwell fluid flow. Wang and Hayat25 studied Maxwell fluid flow in porous medium. 
Fetecau et al.26 investigated fraction Maxwell fluid for unsteady flow. Hayat et al.27 studied two-dimensional MHD 
Maxwell fluid. Heyhat and Khabzi28 investigated MHD upper-convected Maxwell (UCM) fluid flow above a flat 
rigid region. Hayat and Qasim29 obtained series solutions for two-dimensional MHD flow with thermophoresis 
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and Joule heating. Jamil and Fetecau30 considered Maxwell fluid for Helical flows between coaxial cylinders. 
Zheng et al.31 constructed closed form solutions for generalized Maxwell fluid in a rotating flow. Wang and Tan32 
presented stability analysis for Maxwell fluid subject to double-diffusive convection, porous medium and soret 
effects. Motsa et al.33 examined UCM flow in a porous structure. Mukhopadhyay et al.34 elaborated thermally 
radiative Maxwell fluid flow over a continuously permeable expanding surface. Ramesh et al.35 numerically 
investigated Maxwell fluid with nanomaterials for MHD flow in a Riga plate. Ijaz et al.36 explored the behav-
ior of Maxwell nanofluid flow for the motile gyrotactic microorganism in magnetic field. UCM fluid model for 
non-Fourier heat flux is investigated by Ijaz et al.37.

Nanofluids consists of ordinary liquids and nanoparticles. Nanofluids are quite useful to improve the perfor-
mance of ordinary liquids. Nanofluids are developed by inserting fibers and nanometer size particles to origi-
nal fluids. Nanofluids are especially significant in hybrid powered engines, pharmaceutical processes, fuel cells, 
microelectronics. The nanoparticles basically connect atomic structures with bulk materials. Commonly used 
ordinary liquids include toluene, oil, water, engine oil and ethylene glycol mixtures. The metal particles include 
aluminum, titanium, gold, iron or copper. The nanofluids commonly contains up to 5% fraction volume of nano-
particles to obtain significant improvement in heat transfer. Further, the magnetic nanofluids have great interest 
in optical switches, biomedicine, cancer therapy, cell separation, optical gratings and magnetic resonance imag-
ing. An extensive review on nanofluids includes the attempts of38,39. One can also mention the previous recent 
studies40–45 regarding the improvement of thermal conductivity in the nanofluids.

In view of aforementioned discussion, the MHD flow of non-viscous Maxwell fluid with nanomaterials in an 
exponentially stretching surface is addressed. The BVPh 2.0 which is developed on the basis of optimal homotopy 
analysis method (OHAM) is employed to solve nonlinear differential system46–50. The convergence of the present 
results is discussed by the so-called average squared residual errors. Velocity, temperature, concentration, the 
local Sherwood and the local Nusselt number are also examined through graphs.

Problem Formulation
Figure 1 describes the MHD laminar, incompressible flow, thermal and concentration boundary layers in a 
surface which is stretching exponentially with velocity Uw and given concentration Cw and temperature Tw is 
described using boundary layer theory as follows:
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where, u is the x component and v is the y component of the Maxwell fluid velocity. Also g, DT, C, T∞, λ, ν, 
ρf, C∞, T, σ, DB and α represents gravitational acceleration, thermophoretic diffusion coefficient, nanoparticle 
volume fraction, free stream temperature, relaxation time, the ratio between nanoparticle and original fluids 

Figure 1.  Physical Configuration.
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heat capacities, kinematic viscosity, fluid density, free stream concentration, temperature, electrical conductivity, 
Brownian diffusion coefficient and thermal diffusivity, respectively. The subjected boundary conditions (BCs) are 
given by,
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The adequate transformations for the considered problem are taken as follows:
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in which the incompressibility condition (1) is satisfied identically and the parameters Le, M, Nb, β, Pr, Nt are the 
Lewis number, Hartman number, the Brownian motion parameter, Deborah number, Prandtl number and the 
thermophoresis parameter, respectively. The definitions of these numbers are,
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The non-dimensional BCs from Eqs (5)–(7) becomes
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The heat and mass transfer rates in terms of local Sherwood, the local Nusselt numbers, and the local skin 
friction coefficient are defined by
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where ji, qi, and τi are the mass, heat, and momentum fluxes from the surface. These are defined as follows:
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In dimensionless form they are represented as:
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Homotopy-Based Approach
The following methodology details should provide as a guide about OHAM aiming to solve nonlinear differential 
system (9)–(11) with BCs (13) and identify the variations of physical solutions of the differential system. In the 
framework of OHAM, we can choose auxiliary linear operators in the forms
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Obviously, the operators satisfying the below assumptions
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The corresponding auxiliary linear operator for f(η) is 1  and 2 corresponds to θ(η) and φ(η). In OHAM we 
also have flexibility to pick the initial solutions. It is mandatory that all initial solutions should satisfy the BCs 
(13). Therefore, we set the initial solutions as follows:

η λ η= − −f ( ) 1 exp( ), (21)a0

θ η λ η= −( ) exp( ), (22)b0

φ η λ η= − .( ) exp( ) (23)b0

where λa = λb = 1. We have applied BVPh 2.0 to solve nonlinear differential system (9)–(11) with BCs (13). 
With linear operators (17) and (18) and initial solutions (21)–(23), the Eqs (9)–(11) with BCs (13) can be solved 
directly by using BVPh 2.0 in quite easy and convenient way.

Results and Discussion
The OHAM approximations contains unknown convergence enhancing parameters θc c,f

0 0  and φc0 . Liao46 pro-
posed Minimum Error Method that can be used to compute values for convergence enhancing parameters. These 
optimal convergence control parameters ensure the fast convergence of OHAM solutions. The mechanism for the 
choice of optimal convergence enhancing parameters is explained by an illustrative example. Let us assume 
β = Nb = M = Nt = 0.1, Le = Pr = λ = 1.0, the optimal values of θc c,f

0 0  and φc0 are computed through the minimi-
zation of squared residual error as shown in Table 1. It is noted that the total error is decreased by increasing the 
order of iteration. Optimal convergence-control parameters corresponding to 5th-order OHAM iteration are 
then used to check the convergence of our results at various orders of approximation. The OHAM iterations at 
various orders are shown in Table 2. The presented results demonstrate the high efficiency and reliability of 
OHAM series solutions. The graphical analysis has been accomplished for the flow pattern, concentration, tem-
perature, the local Sherwood number and the local Nusselt number for various values of β, Le, Pr, M, Nt and Nb.

Figure 2 illustrates the impact of β on the velocity graph for different M. It is visible that fluid flow is maximum 
in the ambient fluid for smaller β. However, the fluid changes its properties from Newtonian to non-Newtonian 
characteristics for higher β, and hence the flow shows decreasing behavior. The boundary layer thickness reduces 
as we increase β and M.

Figure 3 displays the influence of β and M on concentration and temperature graphs. It is observed that the 
increase in β and M enhances concentration and temperature.

m c f
0

θc0
φc0 εm

t t (seconds)

1 −1.02 −0.04 −1.48 0.15 × 10−1 0.968055

3 −1.19 −0.82 −1.48 0.37 × 10−2 11.357

5 −1.34 −0.91 −1.56 0.17 × 10−2 85.337

Table 1.  Choice of convergence enhancing parameters for β = Nb = M = Nt = 0.1, Le = Pr = 1.0.

m 10 20 30

εm
f 2.07 × 10−7 1.17 × 10−7 7.08 × 10−8

ε θ
m 0.28 × 10−4 8.68 × 10−6 4.77 × 10−6

ε φ
m 0.62 × 10−3 0.22 × 10−3 0.13 × 10−3

εm
t 0.64 × 10−3 0.23 × 10−3 2 × 10−3

t (seconds) 59.2263511 707.5565964 5623.3201208

Table 2.  Squared residual errors with = − . = − . = − .θ φc c c1 34, 0 91, 1 56f
0 0 0  for β = Nb = M = Nt = 0.1, 

Le = Pr = 1.0.
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Figure 4 describes the dimensionless concentration and temperature for various values of Nb. The temperature 
increases with the increase of Nb but concentration decreases in the boundary layer region.

Figure 5 illustrates that due to increase in the values of Nt, the concentration profile increases but temperature 
decreases. The overshoot in the concentration is observed that is highest concentration occurs in the ambient 
fluid but not at the surface.

Figure 2.  Graphs of f ′(η) for different β and M.

Figure 3.  Graphs of θ(η) and φ(η) for different values of β and M.
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Figure 6 describes the influence of Pr on the concentration and temperature profiles. Temperature is a decreas-
ing function of Pr. The dimensionless temperature decreases for higher Pr and hence the thermal boundary layer 
reduces. Concentration overshoot is observed near the wall.

Figure 4.  Graphs of θ(η) and φ(η) for different Nb.

Figure 5.  Graphs of θ(η) and φ(η) for different Nt.
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Figure 7 displays the local Nusselt number for several values of β and M. The local Nusselt number is an 
increasing function of Pr but the increase in β and M decreases the local Nusselt number.

Figure 8 shows that the local Nusselt number is a decreasing function of Nb. The increase in either Nt or Le 
decreases the local Nusselt number. The local Sherwood number is plotted as a function of Nb in Fig. 9. It can be 
seen that local Sherwood number is an increasing function of Nb and Le. However, the increase in Nt decreases 
the local Sherwood number.

Figure 6.  Graphs of θ(η) and φ(η) for different Pr.

Figure 7.  Graphs of the local Nusselt number for Pr with varying M and β.
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Figure 10 exhibits the local skin friction coefficient as a function of Prandtl number. The change in Prandtl 
number does not affect the local skin friction coefficient. It is also observed the increase in β and M reduces the 
local skin friction coefficient.

Figure 8.  Graphs of the local Nusselt Number for Nb with varying Nt.

Figure 9.  Graphs of the local Sherwood Number for Nb with varying Nt.
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Conclusions
The main points of presented analysis are given below.

•	 Increase in β and M enhances the flow.
•	 Temperature is enhanced through increase in β, M and Nb whereas it decreases due to increase in Nt and Pr.
•	 The increase in the values of β, M and Nt leads to an increase in the volumetric concentration profile, whereas 

quite opposite is true for Nb.
•	 The local Nusselt number increases with an increase in Pr. However, local Nusselt number decreases with the 

increase in M, β, Le and Nt.
•	 The local Sherwood number is increasing function of Nb and Le, whereas it decreases for an increase in Nt.
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