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Abstract There is an increasing global interest to sup-
port research areas that can assist in understanding dis-
ease and improving patient care. The National Cancer
Institute (NIH) has identified precision medicine-based
approaches as key research strategies to expedite ad-
vances in cancer research. The Cancer Moonshot pro-
gram (https://www.cancer.gov/research/key-
initiatives/moonshot-cancer-initiative) is the largest
cancer program of all time, and has been launched to
accelerate cancer research that aims to increase the
availability of therapies to more patients and,
ultimately, to eradicate cancer. Mass spectrometry-
based proteomics has been extensively used to study
the molecular mechanisms of cancer, to define
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molecular subtypes of tumors, to map cancer-
associated protein interaction networks and post-
translational modifications, and to aid in the develop-
ment of new therapeutics and new diagnostic and prog-
nostic tests. To establish the basis for our melanoma
studies, we have established the Southern Sweden Ma-
lignant Melanoma Biobank. Tissues collected over
many years have been accurately characterized with
respect to the tumor and patient information. The ex-
treme variability displayed in the protein profiles and the
detection of missense mutations has confirmed the com-
plexity and heterogeneity of the disease. It is envisaged
that the combined analysis of clinical, histological, and
proteomic data will provide patients with a more
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personalized medical treatment. With respect to disease
presentation, targeted treatment and medical mass spec-
trometry analysis and imaging, this overview report will
outline and summarize the current achievements and
status within malignant melanoma. We present data
generated by our cancer research center in Lund, Swe-
den, where we have built extensive capabilities in
biobanking, proteogenomics, and patient treatments
over an extensive time period.

Keywords Melanoma cancer - Tumor heterogeneity -
Proteomics - Mutation - Mass spectrometry imaging

Introduction

Healthcare is expensive and healthcare costs are steadily
on the rise in most countries. New drugs are expensive
as are many of the newly emerging diagnostic tests.
Precision medicine, however, may aid in reducing the
cost of patient care and can be readily available for all
patients regardless of social standing. Early investment
in precision medicine measures can be financially ben-
eficial in the long term, while at the same time increas-
ing the quality of life for patients, and also has the
potential of extending the life expectancy with better
life quality.

When an oncologist decides to prescribe chemother-
apy or not, the decision is often based on the stage of the
cancer. In contrast to patients with a more advanced
disease, early stage patients are usually not given che-
motherapy, as they tend to have a good prognosis. This
strategy is believed to save money and resources, and
limit unpleasant side effects to the patients in both the
short term and long term. It is often observed, however,
that the early stage cancers relapse and the patient even-
tually receives chemotherapy treatment, albeit often too
late. Genetic tests emerged to save even more on che-
motherapy in selected clinicopathological groups of
patients with equivocal outcome, where the prognosis
can be predicted by molecular tests (Paik et al. 2004;
Sparano et al. 2015).

Even when a drug is given to the “right” patient,
adverse drug reactions ranging from mild to lethal can
occur. Many adverse drug reactions are due to variations
in drug metabolizing proteins, i.e., variations that affect the
response of an individual to a drug. In the USA alone, the
cost of adverse drug reactions in 2013 was estimated at
more than 30 billion USD (Sultana et al. 2013). The
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situation is similar in Europe. Adverse drug reactions are
associated with substantial morbidity and mortality (Euro-
pean Commission. Proposal for a regulation amendment
concerning pharmacovigilance of medicinal products for
human use. Regulation (EC) No 726/2004. Impact assess-
ment. 2008. Available at http://ec.europa.
eu/health/files/pharmacos/pharmpack 12 2008
/pharmacovigilance-ia-voll _en.pdf. Accessed 3 Sept 2014
). Throughout the EU, approximately 5% of all hospital
admissions and 197,000 annual deaths have been
estimated as a consequence of adverse drug reactions.

Precision medicine is expected to be implemented in
many areas of routine healthcare. One of the most impor-
tant areas where it will become the foundation of future
cancer therapeutics is in cancer diagnostics and treatment.
Now used in many countries, one of the best-known
examples of precision medicine is the treatment of certain
lung, breast, and other cancers with gefitinib and erlotinib.
Both drugs are tyrosine kinase inhibitors (TKIs) of the
epidermal growth factor receptor (EGFR). These drugs are
only effective in cancers with mutated and overactive
EGEFR expression. These mutations confer increased sen-
sitivity to TKIs such as gefitinib and erlotinib. Diagnostic
tests to detect EGFR mutations are often performed prior
to treatment to aid in predicting which patients will most
likely respond to therapy with, e.g., gefitinib/erlotinib.
When a cancer patient no longer responds to these targeted
agents, another TKI can be administered, e.g., osimertinib.
Once a companion test for the mutation has been per-
formed and the mutation detected, the patient can be
further treated with the appropriate TKI.

TKIs are excellent examples of precision medicine
and are fundamentally changing the way new diagnos-
tics and treatments are expected to evolve in future
healthcare. Expanding the value of diagnosis by bio-
marker development and optimized treatment is the key
to providing an overall increase in efficacy and safety to
cancer patients. Biomarkers have been classified into
three categories: (a) POM, (b) POP, and (¢) POC and
are defined as follows:

Biomarkers for “Proof of Mechanism”—POM:

A biomarker demonstrates an effect, which results in
a functional change related to the proposed mechanism-
of-action. The proof of mechanism effects can be mea-
sured with, e.g., an in vivo assay, where an effect is
measured following an appropriate stimulus.

Biomarkers for “Proof of Principle”—POP:

A biomarker demonstrates an effect that results in a
biological change that is closely related to the proposed
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mechanism-of-action and known to be associated with
disease activity in patients. The proof-of-principle bio-
marker read out is proven in a dedicated patient study. It
can be a measure of, e.g., an acute phase marker regu-
lation in patient studies after drug intervention.

Biomarkers for “Proof of Concept”—POC:

The biomarkers used in clinical studies, which relate
to the proof-of-concept will measure a study end point
that demonstrates an effect on a clinical end point.
Proof-of-concept biomarker evaluation must be per-
formed in patients with the disease in question. In cancer
studies, a tumor reduction would be a positive effect
where the biomarker quantitation provides an additional
positive effect. These biomarker categories are used
within drug discovery, drug development, and the clin-
ical field.

The National Cancer Institute (NCI) has identi-
fied precision medicine-based approaches as key
research strategies to expedite advances in cancer
research and precision medicine. This concept is
the cornerstone of the Cancer Moonshot program.
Championed by the 47th Vice President Joe Biden,
the program is a major effort to move cancer pa-
tients towards better treatment and care in the next
5 years. The Cancer Moonshot program was
launched to “accelerate cancer research aims that
make more therapies available to more patients,
while also improving our ability to prevent cancer
and detect it at an early stage” (https://bidencancer.
org/, https://www.cancer.gov/research/key-
initiatives/moonshot-cancer-initiative). Ultimately,
the mission is to eradicate cancer. To date, ten
countries, including Sweden, have joined the
Cancer Moonshot program to further strengthen the
combined research activities. At the Cancer Center
in Lund, Sweden, we have built a cutting edge
capability, including biobank archives, fully
automated with robotic processing as well as
proteogenomics, and patient treatment protocols
capturing clinical data and disease progressions
(Malm et al. 2018; Sugihara et al. 2018).

Cancer impact by optimal treatment

In 2014, there were an estimated 14.7 million people
living with cancer in the USA. Based on 2012-2014
data (Noone et al. 2018), approximately 38.5% of
men and women will be diagnosed with cancer at

some point in their lifetime. Based on 2010-2014
age-adjusted cases and deaths, the number of new
cases of cancer was 442.7 per 100,000 men and
women per year and the number of deaths were
166.1 per 100,000 men and women per year
(Noone et al. 2018). Although the S-year relative
survival by year of diagnosis between 1975 and
2013 increased from 48.9 to 69.2%, there is still
room for improvement in the field of cancer re-
search. Increase in number of cases and better out-
comes are partially due to better screening methods,
which detect more cases but also in earlier stages.

Worldwide, there is an increasing interest and
need to support research areas that can assist in
improving disease understanding and advancing pa-
tient care. This includes novel medicines such as
“precision medicine”, alternative treatment technol-
ogies, and early indication of disease diagnosis uti-
lizing both imaging techniques and biomarker diag-
nostics (Price et al. 2009). Ultimately, it is the pa-
tients who are suffering and experiencing the limi-
tations of treatment today.

Due to an ever-increasing number of cancer pa-
tient cases, there is a considerable shift in the future
demand and expectations of the healthcare systems.
Today, every third Swedish inhabitant will experi-
ence a cancerous disease during their lifetime. This
creates novel opportunities and challenges for the
medical research community to drive patient-
centric and technology-driven research strategies to
improve overall patient care. This becomes an ever-
increasing challenge for modern healthcare.

These new developments need to occur now. Due to
an increasing cost to society, and increasing suffering
and pain for the patients, cancerous diseases are major
target areas within the healthcare system.

Melanoma disease biology

With respect to variation in clinical symptoms, appear-
ance, and eventual biology in patients plus the morpho-
logical and molecular variation in an individual tumor,
malignant melanoma is a heterogeneous disease
(Fig. 1).

Nevertheless, tumor progression is still mostly relat-
ed to initial clinical-pathological properties, and the
stage of the melanoma. These tumors develop metasta-
ses at any location at any time, involving both the
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Fig. 1 Histological appearance of melanomas. a A non-
pigmented tumor composed of malignant melanocytes infiltrated
by lymphocytes b A pigmented tumor producing melanin mostly
composed of epithelioid shaped cells (10 x). ¢ Variable sizes of

lymphatic system and distant organs (Fig. 2). At the
morphological and molecular level, the inherent hetero-
geneity of a tumor can be the cause behind the behavior
of a given malignant disease (Sugihara et al. 2014;
Welinder et al. 2014). Depending on the sample hetero-
geneity, a diagnosis may or may not be revealed at the
histopathological or at the molecular levels. The techni-
cal properties of a diagnostic test, e.g., next generation
sequencing coverage can be responsible for diagnosing
a mutation spot in the minority of the cells examined.
When a metastasis is discovered in a patient with un-
known primary, however, melanoma must be included
in the differential diagnostic list until confirmation or
exclusion by routine pathological experiments including
protein level studies, e.g., immunohistochemistry. A
spindle cell lesion negative for HMB-45 and Melan-A
stains, but displaying S-100 positivity with a clinical
history of primary desmoplastic melanoma later
disclosed, is a classic pitfall in pathology. Or an intra-
ocular melanoma, e.g., is considered to develop liver
metastasis following progression, for which the biolog-
ical reason has yet to be discovered.
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tumor cells are noted in a tumor; multinucleated cells can also be
identified. d Spindle cell melanoma displaying fascicules of elon-
gated melanocytes

In addition to diagnostics and clinical-pathological
classification into superficial spreading, nodular, lentigo
maligna, and acrolentiginous melanomas (Mooi and
Krausz 2007), recent molecular diagnostics can delin-
eate subtypes of melanoma (possessing mutations in
BRAF, NF1, RAS, or triple wild type) (The Cancer
Genome Atlas Network 2015). Currently, sequencing
studies of stage 4 disease are performed in a stepwise
fashion. Firstly, the BRAF status is determined; then, the
RAS status, then NF1, and c-kit mutations are consid-
ered for acrolentiginous melanomas. As we envisaged,
these former mutations are mutually exclusive. If one
was positive, the rest were not routinely screened (Platz
etal. 2008). Exceptions arose in such a dynamic fashion
that the next generation of diagnostics will assess all
these genes (and many more) for a possible pathologic
change (Chiappetta et al. 2015; Thomas et al. 2015).
Heterogeneity at the cellular and consecutively at the
molecular level might be present in this setting and can
give answers when the mutational spectrum and tumor
biology are investigated (Welinder et al. 2013;
Yakovleva et al. 2015).
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Fig. 2 Progression of melanoma
depicting the most common sites
of metastasis development:
primary tumor of the foot;
lymphatic spread into the groin;
and hematogenous spread to lung,
liver, brain, bones, or skin.
Malignant melanoma can
essentially develop metastases
anywhere in the body. Note,
intraocular melanomas often give
rise to liver metastases

To establish the basis for our melanoma studies, we
created the Southern Sweden Malignant Melanoma
Biobank, which contains a large collection of tissues
and blood samples with accurately characterized tumors
and patient information (Welinder et al. 2013). We have
investigated and discovered previously undescribed
proteins and sequences in malignant melanoma lymph-
node metastases (Welinder et al. 2015). Next, we exam-
ined ten pilot cases from the perspective of tumor com-
position: stepwise sectioning was applied to the histo-
pathological and proteomic investigation by mass spec-
trometry (Welinder et al. 2017). Utilizing the versatility
of high-quality proteomic data supplemented with func-
tional annotation (Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID)) and pathway
analysis (Ingenuity Pathway Analysis (IPA)), we fo-
cused on relating high-resolution proteomic data to his-
topathological evaluation of the tumor samples and
patient survival information. Several proteins were iden-
tified that positively correlated to tumor tissue content
and upstream regulators. HEXB, PKM, and GPNMB
were proteins that were identified a significantly related
to clinical outcome. These could therefore play a role in
the process of progression from disease stage 3 to stage
4 and poorer outcome (Welinder et al. 2017).

Heterogeneity at the genetic level also has a major
impact in melanoma, and quantitative and qualitative

O primary melanoma
O lymph node metastasis
(O intracutaneous metastasis

(O distant metastasis

brain metastasi

intraocular primary melanoma

lung metastasis

liver met:

bone metastasi

groin metastasis (lymphatic)

intracutaneous metastasis

primary melanoma of the skin (foot)

studies have emerged. For instance, a minor population
of cancer cells in each tumor may undergo mutation and
give rise to a cohort of cancer cells that possess a
mutational pattern different to the other cells. If that
mutation can be addressed or has therapeutic conse-
quences, it is crucial to identify and locate such muta-
tions, which have sensitivity issues to solve. With the
advent of newer and more sensitive detection methods, a
low incidence of a mutation (e.g., a partially BRAF
V600E-mutated malignant melanoma) can be diag-
nosed. Recently, quantitation of such mutations has also
gained interest and it is expected to be of high impor-
tance in future treatment approaches.

Gene expression profiling of malignant melanoma
and development of a platform to determine
and validate prognostic genes

Multiple gene expression-based prognostic biomarkers
have been repeatedly identified in a variety of cancer
types. Without confirmation from independent valida-
tion studies, however, the clinical utility of such bio-
markers has been limited. We have previously
established robust databases that enable the validation
of cancer survival biomarker candidates (Gyorffy et al.
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2013; Gyorffy et al. 2010; Gyorffy and Schafer 2009;
Szasz et al. 2016).

Herein, we integrated samples with general follow-
up information, and also extended the tool towards
malignant melanoma through the available RNA-Seq
data of the Cancer Genome Atlas Research Network
(TCGA) (The Cancer Genome Atlas Network 2015).
With rapid adjustment for, e.g., gender, tumor site, and
pTNM; this tool enabled validation of the prognostic
information of genes from 455 patients with malignant
melanoma (Fig. 3).

Protein expression profiling melanoma
heterogeneity by proteomics

Mass spectrometry-based proteomics has been exten-
sively used to study the molecular mechanisms of can-
cer, to define molecular subtypes of tumors, and to map
cancer-associated protein interaction networks and post-
translational modifications (PTMs). Ultimately aiding
the development of new therapeutics and new diagnos-
tic and prognostic tests through the identification of
cancer biomarkers (Timms et al. 2016). To date,
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Fig. 3 Integrated surface of the user interface of the developed
platform for validation of gene expression-based biomarkers.
Affymetrix chip and RNA-Seq data have been processed and
annotated with clinicopathological information to provide a
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profiling of cancer tissues have largely employed the
so-called bottom-up proteomics, where the protein sam-
ple is digested (typically with trypsin) into constituent
peptides prior to LC-MS/MS analysis. Improvements in
speed, sensitivity, mass accuracy, and resolution of cur-
rent MS instrumentation together with extensive frac-
tionation of peptides have enabled deep coverage of
cancer proteomes (Altelaar and Heck 2012; Cox and
Mann 2011; Mertins et al. 2016; Smith and Kelleher
2013).

Mutations that stem from genetic alterations occur as
amino acid variants in proteins translated from mRNA.
In addition, many proteins are correspondingly subject-
ed to a wide diversity of chemical modifications, i.e.,
PTMs such as phosphorylation and glycosylation. Many
of these PTMs are linked to the function of the protein.

Integrating protein expression data with PTM data
opens the possibility to verify whether the regulation
occurs at the protein modification and/or at the protein
abundance level. In most cases, phosphorylation is the
most commonly studied PTM. Enzymes and structural
proteins are involved in the process of cell signaling that
is a key function linked to cancer proliferation and
tumor growth.
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readily accessible and versatile tool for validation. For malignant
melanoma, the TCGA data was analyzed and publicly released for
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Recently, we performed a gel-free proteomic study
on regional lymph-node metastatic melanomas
(Welinder et al. 2017). The samples were sectioned into
10-mm slices and subjected to histopathological exam-
ination. Each was characterized in terms of tumor,
lymph-node area, necrosis, and connective tissue per-
centages among other parameters. MM tumors where
then homogenized and analyzed by mass spectrometry
(Fig. 4a). Among the tumors, 5000 proteins with a huge

a
(A) (B)
Frozen Tissue Tissue Protein.
Sections homogenization ~ denaturation

-
!

Y

variation in relative quantities were identified (unpub-
lished results).

Moreover, single amino acid variations (SAAVs) were
observed in a significant number of proteins. An example
of one of our findings in the MM sample cohort is depicted
in the MS/MS of the peptide EQL(R1386Q)QEQALL-
EEIER (Fig. 4b). This peptide corresponds to the human
plectin protein. In 50% of the MM tumors analyzed,
however, the expected arginine residue at position 1386
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Fig. 4 a The gel-free proteomic approach followed in our exper-
iments consisted of six stages: the tissue (15-20 sections) was
homogenized in a lysis buffer containing chemotropic agents such
as urea or detergents (a); extensive denaturation of the protein
extract via reduction of disulfide bridges and alkylation of free
cysteine residues (b); proteins were enzymatically degraded to
peptides with trypsin (¢); after purification, the peptide mixture
was injected onto a reversed-phase HPLC capillary column con-
nected to a mass spectrometer and the peptides were analyzed by
LC-MS/MS (d). Here, a mass spectrum (MS) is acquired for every
peptide eluting from the LC system. The most intense peptide
(precursor) ions are isolated and fragmented by collision with a
neutral gas (such as Ar, He, or N,). This causes the peptides to
dissociate into product fragment ions. At this point, a second mass
spectrum (MS/MS) is recorded for the fragment ions. These two

selection processes of the precursor and product fragment ions
produce, highly selective mass analysis of the peptides is pro-
duced; the MS and MS/MS spectra are stored for matching against
a protein sequence database using software such as SEQUEST,
Mascot, and X!Tandem (e). The outcome of the database search is
the identification of the peptides and ultimately the proteins com-
prising the purified protein population. In relative quantitative
experiments, protein abundances are inferred from the identified
peptides using dedicated software tools. b MS/MS of the peptide
EQLQI1386QEQALLEEIER corresponding to the human plectin
protein, clearly confirming the occurrence of the R1386Q muta-
tion R (arginine) — Q (glutamine) at position 1386 of the amino
acid sequence. The designation for the fragment ion signals is
according to the Roepstorff~-Fohlmann—Biemann nomenclature
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Fig. 4 (continued)

was replaced with a glutamine residue. Mutations in
plectin have been associated with diseases such as
epidermolysis bullosa simplex with muscular dystrophy
and limb-girdle muscular dystrophy (LGMD). Plectin has
also been proposed as a biomarker for pancreatic cancer
and esophageal squamous cell carcinoma (Bausch et al.
2011; Gundesli et al. 2010; Pawar et al. 2011).

The extreme variability displayed in the protein pro-
files plus the detection of missense mutations such as in
the example described above confirmed the complexity
and heterogeneity of the disease at the molecular level.
This will deserve further comprehensive and correlation
studies. By utilizing novel disease biomarkers for diag-
nostics and/or prognostic prediction of metastatic mela-
noma, the combined analysis of clinical, histological,
and proteomic data should provide more personalized
medicine for the patient.

MS imaging analysis of metabolites in malignant
melanoma tissue

In mass spectrometry imaging (MSI), data are system-
atically acquired in an array format that enables the
mapping of selected ion signals by plotting ion intensity
as a function of tissue position (Reyzer et al. 2003). The
detection of the different endogenous or exogenous
molecules is based on measuring characteristic mass-
to-charge ratios (m/z); therefore, providing high selec-
tivity. Depending on the instrumentation used, the tech-
nique also offers high spatial resolution (to the cellular
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level). Different ionization modes are available, but
matrix-assisted laser desorption/ionization (MALDI) is
perhaps the most widespread for imaging applications.
In MALDI, a so-called matrix compound is applied to
the samples. The matrix absorbs the energy from the
laser, which is transferred to the analyte via a process
referred to as “soft” ionization. MALDI-MSI is widely
used to characterize drug distribution in various tissue
types (Buck et al. 2015; Fehniger et al. 2011; Marko-
Varga et al. 2011; Sun and Walch 2013; Torok et al.
2017; Torok et al. 2015). The method is also used to
investigate various endogenous molecules, such as
lipids, carbohydrates, peptides, and proteins (reviewed
in (Cillero-Pastor and Heeren 2014; Gode and Volmer
2013; Harvey 2006)). MSI has gained significant inter-
est over the past few decades from the pharmaceutical
community (Nilsson et al. 2010; Swales et al. 2014). As
a result of continued technical development, MSI will
undoubtedly become increasingly important in patholo-
gy and in the clinic.

To analyze the inherent heterogeneity in several cancer
tissues, we combined MALDI-MSI with histological
characterization. MALDI-MSI was performed on fresh-
frozen tissue sections of MM lymph-node metastases,
and low-molecular weight endogenous compounds were
screened in the mass range between m/z 100—1000. After
H&E staining, the same tissue section was histologically
characterized. The pathologists identified several tissue
compartments and cell types in the analyzed tissue sam-
ples, i.e., cancer cells, lymphocytes, macrophages, and
connective tissue. Shown in Fig. 5a is an H&E stained
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section of a melanoma proliferative lesion and attached
subcutaneous tissue. Dermal involvement of atypical me-
lanocytes with cytologic atypia was observed. The tumor
could be divided into numerous areas by the morpholog-
ical features of the melanocytes. Area 1 contained large
melanocytes with abundant cytoplasm and polygonal
nuclei. Area 2 contained small cells with minimal cyto-
plasm and small nuclei composed of dense chromatin
(Fig. 5b; the lymphocytic region). Area 3—infiltrated
area of brown pigment-laden macrophages was also ob-
served in the tumor and the attached subcutaneous tissue
(area 4). This can also be seen in the macrophage com-
partment of Fig. Sc.

Once the histopathological evaluation was per-
formed, the areas of the different tissue compartments
were manually outlined to create a mask plane for each
cell type. These mask planes were then used to query
specific ion signatures that are correlated or anti-
correlated with a given histological structure or cell type
as was previously described (Fehniger et al. 2014). We
observed several ion peaks with spatial distributions that
correlated well with the tissue distribution of the differ-
ent cell types. Some representative MALDI-MS images
are illustrated in Fig. 5b. The precise identification of
these characteristic masses was not attempted. Rather,
rudimentary identification of the peaks was performed
based on the accurate mass determined by a high-
resolution Orbitrap MS instrument combined with a
protein database search.

Using specific landmarks, the histological and MS
images were carefully superimposed as shown in
Fig. 5c. We visually assigned the borders of known
histological compartments in the H&E stained samples.
Then, representative spectra and peak lists (considering
only the top 200 m/z values from each spectrum) of
selected areas of interest were generated. The
MALDIViz application was used to perform a compre-
hensive statistical analysis of the various peak lists
(Jagadeesan and Ekstrom 2017). Multiple peaks were
exclusively observed in specific tissue areas, but a large
proportion of the signals showed a more general distri-
bution within the tissue, represented as a Venn diagram
(Fig. 6). After performing unsupervised clustering, most
of the spectra originating from the same tissue compart-
ment cluster together (Fig. 7).

In agreement with earlier reports (Ly et al. 2016;
Meding et al. 2012), this feasibility study, which relates
to the direct measurement of endogenous low-molecular
weight compounds, also underlines the suitability of the

MSI technique to investigate tumor heterogeneity.
MALDI-MSI is appropriate for tumor phenotyping
and biomarker discovery and may provide information
concerning diagnosis and prognosis (reviewed in
Kriegsmann et al. 2015; Norris and Caprioli 2013;
Schone et al. 2013). This is of considerable value and
importance as precision medicine treatments are current-
ly rapidly developing as a first-line therapy for many
cancer types. MALDI-MSI assays that can identify mul-
tiple signals from endogenous and/or therapeutic com-
pounds in melanoma tumor tissues will provide invalu-
able information on the distribution and pharmacokinet-
ic properties of pharmaceutical compounds. Subse-
quently, this information will be readily linked to a
specific disease presentation in development and within
the clinic (Sugihara et al. 2014).

Monitoring disease and clinical decision making

Although clinical chemistry as a discipline has markedly
improved, it is clear that screening cancer is still a
challenging task for any healthcare organization. By
using reference standards that enables normalization

Fig. 5 a H&E image of an isolated patient tumor section. Each
tissue compartment is represented by a different color. Melanoma
cells (area 1, purple), lymphocytes (area 2, magenta), macrophages
(area 3, brown), connective tissue (area 4, green), and fat (area 5,
yellow). b MALDI-MS images from patient tumor tissue isolated
after surgery. Endogenous low-molecular weight compounds were
analyzed. Images show the tissue distribution of selected masses
that were correlated with various tissue compartments, such as
melanoma cells, lymphocytes, macrophages, connective tissue,
and fat. ¢ A specific mask plane was used to query correlating
masses for each investigated region. H&E stained tissue (a),
MALDI-MSI data (m/z range 100—-1000) from the same tissue
slide (b) and the overlaid MSI and histological images (c)
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MSI image (m/z range 100-1000)
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Fig. 5 (continued)

and equivalent disease diagnostics, central laboratories
in any hospital utilize assay platforms that are globally
comparable.

An aging population has increased the demand
for diagnostic tests to identify disease and evaluate

melanoma cells

macrophages
connective tissue

=

;
:

b
-

ymphocytes

fat

Fig. 6 Venn diagram showing the distribution of the detected
endogenous signals among the five identified tissue regions (cell
types). The top 200 m/z values were extracted and used for the
comparison of each representative mass spectrum

the quality of treatment. Laboratory-based test re-
sults are of key importance in most clinical deci-
sions. Hospital laboratories receive samples for
analysis from hospitalized patients, from family
physicians, from clinical research sites, and other
health clinics. The laboratory collaborates with
clinicians to provide information concerning, and
access to, the latest testing and treatment guide-
lines. Analytical methods are standardized and the
laboratories participate in external quality assur-
ance programs to ensure that the test results from
different laboratories are comparable.

New knowledge gained from research in the
fields of genomics and proteomics have provided
new biomarkers. These are not merely diagnostic,
but also prognostic and theragnostic. The link be-
tween genomics and proteomics to imaging infor-
mation from microscopy-based diagnostics and ra-
diology departments is expected to accelerate the
implementation of laboratory medicine-based infor-
mation in clinical practice. Future computer algo-
rithms may extract clinically useful information
from a multitude of less specific biomarkers rather
than depending on the use of a single specific
biomarker of which only few are currently
available.

@ Springer



12 Cell Biol Toxicol (2019) 35:1-14

lymph.1 20
lymph.6 l
lymph.5 15
lymph.7
lymph.2
lymph.3
cancer ¢.3
cancer c.1 5
cancer c.2 l
cancer c.4 0
cancer ¢.5

] I | | cancer c.7

l
~E l
fat.1
fat.2
\ fat5
fat.3
. | fat.4
‘ } | | conn tissue.5
] conn tissue.4
| conn tissue.6
| I conn tissue. 1
“ | conn tissue.2
conn tissue.3
| macroph.1
macroph.2
Il macroph.3

macroph.4

Ucancer ¢.1
Qcancerc.3

© conp tissue.4
O conn lissie 6
© conr tissue.5

140 -150 PC1

Fig. 7 Unsupervised clustering (a) and PCA analysis (b) of the mass lists obtained from 4 to 6 representative regions of the five identified
cell types
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Future directives by national health agencies

Globally, these outlined shortcomings are well known to
governments and healthcare agencies. In Europe, the
European Commission has dedicated large-scale research
programs to address the development of disease mecha-
nism research within dedicated research areas (Andrejevs
et al. 2009). The National Institutes of Health in the USA
and other sponsoring bodies in the world have also
followed suit. In a joint effort between Europe and the
USA, common strategies on how systems biology can be
beneficial in cancer research have developed.

The pharmacogenomics area has been given indus-
trial guidelines to use upon submission of data to the US
Food and Drug Administration (http://www.fda.
gov/downloads/RegulatoryInformation/Guidances/
ucml126957.pdf). This document is an important
milestone and a collaborative effort between the US
Department of Health and Human Services, the FDA,
the Center for Drug Evaluation and Research (CDER),
the Center for Biologics Evaluation and Research
(CBER), and the Center for Devices and Radiological
Health (CDRH). A similar guideline is expected in the
not too distant future that will regulate the data quality
and format required for use in drug and clinical
biomarker and diagnostic developments (Kudoh et al.
2008; Press et al. 1994; Slamon et al. 1989).
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