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Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in 
most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early 
genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting 
behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach 
is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using 
IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying com-
plex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research 
directions.
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Introduction: complex behaviors 
with miniature brains

Social insects like termites, ants, wasps, and bees build large 
colonies ranging from dozens to hundreds of thousands of 
individuals with overlapping generations and division of 
labor [1]. The multiplicity of tasks a colony is faced with 
is not coordinated by a centralized control system, but is 
rather exercised via self-organisation. Single individuals 
make decisions based on locally available information and 
interact with nestmates to produce a highly structured collec-
tive behavior [2, 3]. Even though their brains are rather small 
and comprise a neuronal network of relatively low complex-
ity, social insects show sophisticated capabilities in terms 
of communication, navigation, and cognitive tasks. Paper 
wasps (Polistes fuscatus), for example, identify and learn 

individual faces of nestmates [4], Cataglyphis desert ants 
show complex navigational behaviors [5], and leaf-cutting 
ants (Acromyrmex ambiguus) learn to avoid fungus–noxious 
plants [6]. Moreover, social bees are capable of cognitive 
behaviors almost comparable to vertebrates [7–12]. Bumble 
bees, for example, show observational learning and cultural 
transmission of complex behaviors [13, 14], and honey bees 
are capable of time and place learning, communication of 
navigational information via dancing behavior [15–17], 
counting [18–20], and complex non-elemental forms of 
learning [21–23]. The richness in complex behaviors and 
the extensive collective interactions provide valuable oppor-
tunities to study underlying neuronal circuits, their plastic-
ity, and processes involving memory formation (Table 1) 
and sets social insects apart from well-established genetic 
insect model organisms, such as Drosophila, or more simple 
invertebrate models like Caenorhabditis. 

In combination with behavioral assays, several tools, 
including live (calcium) imaging, as well as pharmaco-
logical, electrophysiological, genetic, and histological 
approaches, have been developed to search for a memory 
trace in social insects. Studies on the processes of memory 
formation showed that brain plasticity is reflected in changes 
in the firing rate of neurons, alterations in their molecular 
and epigenetic profile, and in reorganization of the synaptic 
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network [6, 36–42]. Particularly, the latter can be considered 
as the neuronal substrate of long-term memories (LTM) and 
behavioral plasticity [43]. However, the mechanisms provid-
ing the important link between transient changes of physi-
ological properties of individual neurons and long-lasting 
structural reorganization or re-wiring of brain circuits 
are largely unexplored. A noted element of this transition 
process is the activation of a genomic cascade, which is pre-
cisely tuned and includes the expression of genes involved 
in neuronal physiology [44–46]. This leads, for example, to 
changes in the storage and mobilization of synaptic neuro-
transmitter-releasing vesicles and cell adhesion molecules 
(CAMs), which are essential for neuronal circuit formation 
(for a comprehensive review on molecular mechanisms 
involved in synaptic plasticity see Ho et al. [47]).

A unique group of genes that is expressed in the first 
transcriptional wave after neuronal activation are the 
immediate early genes (IEG). IEGs largely encode for 
transcription factors that orchestrate cellular homeostasis 
and neuronal plasticity. In vertebrates, IEGs are known 
to respond to neuronal stimulation in a rapid and tran-
sient fashion without the need of de novo protein synthesis 
[48–50]. Due to their transient expression that can peak 
within tens of minutes after stimulation, IEGs can be used 
as molecular markers in the search for neuronal circuits 
that contribute to the transition from short-term neuronal 
activation to long-lasting structural changes at the synaptic 

and neuronal network level. In social insects, this approach 
has not yet been established for routine use, although it 
would allow the study of elaborate behaviors in freely 
moving animals in the social context and under natural 
conditions (Fig. 1) [51–54]. Monitoring behavior-related 
IEG expression, therefore, is a very promising tool to 
access brain functions related to social behavior, sensory 
exposure and learning. It bears the potential to provide a 
highly attractive extension to already established neuro-
biological methods, like electrophysiological recordings, 
calcium imaging, and immunohistological approaches to 
analyze protein expression profiles (Table 2). A particular 
benefit of IEG expression analyses is that entire brains 
can be screened for neuronal activity, whereas other meth-
ods require a certain degree of prior knowledge on neuron 
populations and neuronal circuits that might be involved in 
the response to the applied stimulation paradigm. There-
fore, the analysis of IEG activation may be particularly 
beneficial in identifying the brain regions or even neurons 
involved in complex behavioral processes like individual 
decision making, behavioral transitions, navigation, cogni-
tion, and advanced social communication.

With the present review, we aim to provide an overview 
of the current knowledge on the use of IEGs as neuronal 
activity markers in social insects, particularly in the honey 
bee, and to discuss potential perspectives for a broader 
implementation in social insects.

Table 1   Selected social insect 
models and examples of 
complex behaviors that show 
potential to study underlying 
neuronal circuits

Social insect model organism Behavior of interest References

Termites
 Macrotermes natalensis Vibrational communication Hager and Kirchner [24]

Ants
 Cataglyphis spec. Navigation Wehner [5]
 Ooceraea biroi Chemical communication Trible et al. [25]
 Harpegnathos saltator Social stress and reproduction Yan et al. [26]
 Camponotus floridanus Caste-specific polyethism Zube and Rössler [27], 

Bonasio et al. [28]
Wasps
 Polistes fuscatus Individual face recognition Tibbetts [29]

Bees
 Bombus terrestris Color learning Lichtenstein et al. [30]

Social learning/cultural transmission Alem et al. [13]
 Bombus impatiens Route learning (traplining) Saleh and Chittka [31]

Decision making Riveros and Gronenberg [32]
 Apis mellifera Dance communication von Frisch [17]

Time–place memory Koltermann [16]
Age-related polyethism Withers et al. [33]
Associative learning and memory Giurfa [21]
Age-related (neuro-) plasticity Groh et al. [34]

 Apis florea Dance behavior Dyer [35]



639Immediate early genes in social insects: a tool to identify brain regions involved in complex…

1 3

Molecular mechanisms of neuronal plasticity

Social insect brains undergo plastic changes in the course 
of ontogenetic development and in response to sensory 
exposure, (pheromone) communication, as well as learn-
ing and memory processes. This is reflected in a modified 
neuropil structure, synaptic connectivity, firing properties 
of single neurons, and gene expression [46, 55–59]. In the 
context of memory formation, different phases can be dis-
tinguished that contribute to neuronal plasticity based on 
underlying molecular processes (Fig. 2). The first cellular 
responses to stimulation occur within seconds to minutes 
and include the activation of voltage-dependent Ca2+ chan-
nels or membrane receptors that respond to extracellular 

signals such as neurotransmitters and growth factors. This 
activation triggers a series of intracellular second mes-
senger pathways that include phosphatases and protein 
kinases, e.g., protein kinase A (PKA) and Ca2+/calmod-
ulin-dependent protein kinase II (CaMKII). Kinases then 
modify ion channels and constitutive transcription factors 
(transcription factors that do not necessarily require an 
activation but are rather permanently expressed) to orches-
trate delayed neuronal responses [60–64].

Delayed responses last between hours and days and may 
result in permanent changes in neuronal properties and rear-
rangements of synaptic networks. On the molecular level, 
activation of constitutive transcription factors, e.g., the 
cAMP response element binding protein (CREB), leads to 
the expression of IEGs. This process constitutes the “first 

IEG Expression

GenomicsMultilevel
Plasticity

Perception
Environmental
Stimuli

egr-1
c-jun
c-fos
etc.

Fig. 1   Social insects show extensive collective interactions and a 
striking plasticity in their behaviors. Stimuli from the environment 
and from interactions with other individuals are integrated and pro-
cessed within neurocircuits by each colony member. Sensory expo-
sure and learning activate a genomic response cascade in neurons that 
leads to changes in the structure and/or physiology of the neurocir-

cuits. The first transcriptional wave after neuronal activation includes 
the expression of immediate early genes (IEG), which orchestrate 
plasticity at the neuronal, behavioral, and perceptual level. Their 
central role in controlling mechanisms of plasticity and the transient 
nature of their translation-independent expression makes IEGs prom-
ising markers for activated neuronal circuits

Table 2   Comparison of advantages and limitations of different approaches for measuring neuronal activation and plasticity

Genomic tools: 
immediate early 
genes

Electrophysiology/live (calcium) 
imaging

Circuit analyses/neuroanatomy: neu-
ronal/synaptic connectivity

Investigating complex behaviors in 
freely moving animals

Yes Limited (partially using implanted 
electrodes/objectives)

Yes

Investigating Pavlovian conditioning in 
harnessed animals

Yes Yes Yes

Accessing the brain in vivo No Yes Very limited
Temporal resolution Snapshot Live image Snapshot
Screening the complete brain for neu-

ronal activity
Yes No Limited (requires quantitative screening 

for changes in synaptic circuits/neuro-
pil volumes)
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genomic response” to stimulation [44, 48, 49]. In analogy 
to the classical electrophysiological action potential (eAP), 
this “genomic action potential” (gAP; terminology intro-
duced by Clayton [48]) represents a neuronal integration 
process which involves regulation of nuclear gene expression 
instead of membrane-associated ion channels. In contrast to 
the immediate synaptic transmission initiated by the eAP, 
the gAP regulates slower acting functional and structural 
modulations of the synaptic network via a pulse of increased 
transcription of IEGs. Activation of IEGs represents the first 
wave of gene transcription in response to neuronal stimula-
tion and their expression is a prerequisite for transcription-
dependent long-term neuronal plasticity. The expression of 
IEGs also occurs in the presence of protein synthesis inhibi-
tors [65–67] and each IEG responds in a characteristic man-
ner in distinct brain regions to different types or qualities 
of stimulation [68]. In the absence of sensory stimulation, 
most IEGs are expressed at low levels, with only few excep-
tions [69].

Protein products of IEGs are involved in a multitude of 
cellular processes with diverse functions that are important 
in the reorganization of neuronal networks [49]. In general, 

two classes of IEGs can be distinguished, based on the func-
tional role of the encoded products. The first class encodes 
for proteins with direct implications in cell structure and 
signal transduction. These IEGs are directly involved in 
processes such as receptor modulation, vesicle storage, or 
synaptic trafficking and are, therefore, called direct effec-
tors (e.g., arc and homer1a). The second class, comprising 
most of the commonly studied IEGs, encodes for inducible 
transcription factors (e.g., egr–1, c-jun, c-fos) which regulate 
the expression of downstream late-response genes involved 
in neuronal physiology [48, 66, 69] (Fig. 2). In both cases, 
transient cellular stimulation gets converted into long-term 
changes via the activation of a molecular response cascade.

The rapid and transient nature of their induction makes 
IEGs ideal markers for neuronal activation and their study 
offers two benefits: on the one hand, it helps understanding 
the molecular processes leading to modifications in synaptic 
functioning. On the other hand, as their expression indicates 
sites of neuronal activation, analyses of IEG activation pat-
terns may provide important insights into the functional con-
struction of the brain. In this way, the spatial distribution and 
temporal succession of activated neuronal circuits that are 

Fig. 2   Intracellular activation 
cascade of immediate early 
genes (IEGs; left column) and 
examples of involved molecules 
and molecule classes (right 
column). Extracellular signals 
activate via membrane receptors 
and channels a series of intra-
cellular biochemical pathways. 
Kinases then mediate the activa-
tion of constitutively expressed 
transcription factors that initiate 
the expression of IEGs. Protein 
products of IEGs can act either 
as inducible transcription fac-
tors to orchestrate the expres-
sion of downstream genes, or 
as direct effector proteins with 
implications in cell physiology 
and signaling
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involved in the formation and storage of memories can be 
localized and analyzed.

IEGs in studies of complex behaviors 
in vertebrates

Eukaryotic IEGs were first described in vertebrates, for 
which they are now routinely used in functional mapping 
studies to monitor neuronal activation [65, 66]. For most 
IEGs, peak mRNA levels are detectable around 30–60 min 
after stimulation onset and highest protein levels occur 
between 60 and 120 min after stimulation [70–73]. IEG 
induction in neurons was first demonstrated in response to 
seizures [74]. Since then, a vast number of studies reported 
functional links between the induction of IEG expression 
and social stimuli or complex behaviors, and perceptual 
stimulations associated with memory formation (reviewed 
in Refs. [48, 51, 65]). For example, IEG activation occurs 
in the hippocampus of rodents after visual, olfactory and 
spatial learning, and in the cortex when exploring novel 
environments [72, 75, 76]. In songbirds, IEG expression 
in the brain is induced when individuals are exposed to a 
novel conspecific song for the first time. After a song and its 
context became familiar by repetition, that particular song 
no longer induced the genomic response [70, 71, 77]. In 
addition, stimulus-enriched environments and drugs of abuse 
are known to activate IEG responses in specific brain parts 
[78, 79]. Dysregulated IEG expression was linked to the 
pathophysiology of human neurodegenerative disorders such 
as Alzheimer’s dementia and amyotrophic lateral sclerosis 
[80, 81], demonstrating their central role in orchestrating 
neuronal plasticity.

Besides investigating the function of IEGs within neu-
ronal systems, IEGs were also used to monitor activation 
of neuron populations in co-expression experiments. The 
simultaneous detection of activity-regulated IEGs and cell 
markers such as neurotransmitters and receptors helped to 
identify neuron populations involved in complex vertebrate 
behaviors, such as mating and aggression [82] or social 
stress [83].

The honey bee: insect model for monitoring 
IEG expression

To shed light on the molecular and neuronal processes 
involved in complex learning and memory formation in a 
social context, the honey bee became an important and fruit-
ful insect model system (reviewed in Refs. [42, 64, 84, 85]). 
Accelerated by the sequencing of the honey bee genome, 
molecular tools have been developed to study intracellular 

pathways in neurons and to determine the role of behavio-
rally relevant genes [86, 87].

So far, IEG expression patterns in honey bees were rarely 
analyzed at the protein level (to our knowledge, only one 
study analyzed IEG protein levels in the context of ontoge-
netic development; [88]), whereas most studies analyzed 
mRNA levels using RT-qPCR and in situ hybridization, 
respectively (Table 3). Activation of IEGs or genes regulated 
by them were compared between different pupal and adult 
stages [89, 90], and between individuals performing differ-
ent tasks like nursing the brood, dancing to communicate a 
novel food source to nestmates, and foraging for nectar or 
pollen [91, 92]. Behavioral approaches aiming to stimulate 
IEG expression in honey bees included more general stimu-
lation like seizures induced by awakening from anesthesia 
[92–95], exposure to light [96] or plant and pheromonal 
odors [96–98], and sucrose feeding (food reward stimula-
tion; [99]). In addition, more specific behaviors were cor-
related with IEG expression, for example, feeding of sucrose 
or pollen of different qualities [100], as well as different 
aspects of orientation flights [92, 95, 101] and foraging 
activity [102, 103].

IEG candidates in honey bees: putative 
functions and pathways

Studies in honey bees focused on five candidate IEGs. Four 
of these genes (egr-1, c-fos, Hr38, and c-jun) have well stud-
ied orthologs in vertebrates and encode for regulators of 
gene transcription. Among metazoans, these transcription 
factors show a high degree of conservation in the structure 
of their functional domains and, presumably, in involved 
upstream and downstream regulatory networks [89, 94, 
104–107]. However, in addition to the above-mentioned 
transcription factors, one candidate IEG in honey bees 
encodes for a non-coding RNA called kakusei that might be 
specific to honey bees [93]. We discuss the candidate genes 
in more detail below.

egr (zif‑268, zenk, stripe, ngfi‑a, krox‑24; Fig. 3a)

One of the best studied IEGs both in vertebrates and in the 
invertebrate Aplysia is egr-1 [108, 109]. This gene encodes 
a transcription factor belonging to the early growth response 
(Egr) protein family. The family comprises four members 
(Egr-1 to Egr-4) that are expressed in various isoforms [68]. 
A common structural feature of all members is a highly 
conserved DNA-binding domain comprising three tandem 
Cys2His2 zinc finger motifs, that target a GC-rich sequence 
of nine consecutive nucleotides (5′-GCG C/GGG GCG-3′), 
termed Egr-binding sequence (EBS; [68, 110–112]). EBS 
can be found in the promotors of several genes involved in 
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the ecdysteroid-signaling pathway [91] and nerve cell func-
tioning, including genes encoding synapsin I and II [113, 
114], and acetylcholinesterase [115]. In addition to motifs 
responsive for CREB and Elk–1 transcription factors [116], 

Egr genes also contain the EBS motif, resulting in a nega-
tive feedback loop [117]. All Egr protein members target the 
same DNA consensus sequence, yet their activity is regu-
lated by interactions of a variable peptide sequence outside 

Table 3   Main candidate IEGs investigated in honey bees

↑ upregulation, AL antennal lobes, AMMC antennal mechanosensory and motor center, DL dorsal lobe, GNGl lateral gnathal ganglia (formerly 
termed as lateral suboesophageal ganglion), IPA isopentyl acetate, KC Kenyon cells, LP lateral protocerebrum, MB mushroom bodies, OL optic 
lobes, sKC small KC

Gene Stimulant Effector sites Method References

Amegr (Egr-1, zenk, 
zif/268, Krox-24, 
Stripe)

Environmental novelty MB ↑ mRNA: in situ hybridiza-
tion, RT-qPCR

Lutz and Robinson [101]

Seizure induction AL ↑, OL ↑, MB ↑ mRNA: in situ hybridiza-
tion, RT-qPCR

Ugajin et al. [94]

Ontogenetic development: 
early to mid pupal stage

OL ↑ mRNA: in situ hybridiza-
tion, RT-qPCR (isoform-
specific)

Ugajin et al. [89]

IPA or light No effect mRNA: RT-qPCR Sommerlandt et al. [96]
Foraging Entire brain ↑ mRNA: RT-qPCR Singh et al. [102]
Time-dependent foraging AL ↑, OL ↑, KC ↑ mRNA: in situ hybridiza-

tion, RT-qPCR
Shah et al. [103]

Nurse-forager-transition Entire head CAGEscan (Cap Analysis 
of Gene Expression: pro-
motor region characteriza-
tion of activated genes)

Khamis et al. [91]

Amjra (c-jun) IPA AL ↑ mRNA: RT-qPCR Alaux and Robinson [97]
IPA AL (inconsistent effects) mRNA: RT-qPCR Alaux et al. [98]
Sucrose feeding AMMC ↑, MB ↑, LP ↑, 

GNGl ↑, OL ↑
mRNA: in situ hybridiza-

tion,
RT-qPCR

McNeill and Robinson [99]

(a) Food type
(b) Food value

(a) LP, AL, OL, MB
(b) AMMC, AL, OL, MB, 

GNGl

mRNA: in situ hybridiza-
tion

McNeill et al. [100]

IPA or light AL ↑, OL ↑, MB ↑ mRNA: RT-qPCR Sommerlandt et al. [96]
c-Fos (kayak) Ontogenetic development: 

embryonic, nymphal and 
adult stage

AL, MB Protein: immunohistochem-
istry, immunocytochemis-
try, immunoblotting

Fonta et al. [88]

Drone development Mucus gland ↑ mRNA: RT-qPCR; cDNA 
Representational Differ-
ence Analysis (RDA)

Colonello-Frattini et al. [143]

Bacterial infection Fat body↑, oenocytes ↑ mRNA: RT-qPCR; whole 
genome microarray

Richard et al. [142]

Exposure to xenobiotics Not specified mRNA: RT-qPCR Cizelj et al. [90]
hr38 (Nr4a) Caste and division of labor MB ↑ mRNA: in situ hybridiza-

tion, RT-qPCR
Yamazaki et al. [145]

Foraging Entire brain ↑ mRNA: RT-qPCR Singh et al. [102]
kakusei Seizure induction, dancer 

vs. forager vs. nurse, 
reorientation

sKC ↑, OL ↑, AL ↑ mRNA: in situ hybridiza-
tion, RT-qPCR

Kiya et al. [92]

Seizure induction OL, MB, DL ↑ mRNA: in situ hybridiza-
tion, RT-PCR

Kiya et al. [93]

(a) Seizure induction and 
thermal stimulation

(b) IPA induction

(a) KC ↑
(b) No effect

mRNA: in situ hybridiza-
tion, RT-qPCR

Ugajin et al. [146]

Seizure induction, foraging, 
reorientation, light

OL ↑
AL (no effect)

mRNA: double-in situ 
hybridization, RT-qPCR

Kiya and Kubo [147]
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the DNA-binding domain with other proteins or co-factors 
[118].

Egr genes were first discovered in a screening assay 
searching for factors determining the differentiation of 
embryonic rat neuroblasts into neuron-like cells [119]. 
Besides its activation by the neuropeptide NGF in neuro-
blasts, egr expression is also induced by a variety of phar-
macological and physiological stimulants, including gluta-
mate and NMDA, dopamine and cocaine, caffeine, ethanol, 
visual and tactile stimulation, restrainment, and learning 
(reviewed in [68]). The putative role of Egr in learning and 
memory formation is of increasing interest in vertebrate 

neuroscience. Cerebral expression of Egr family members 
is induced by various learning tasks including visual asso-
ciative learning (macaques [120]), spatial learning (rats [75], 
mice [121]), vocal communication and auditory memory 
formation (zebra finches [70]), as well as the formation of 
olfactory long-term memories (mice [122]). In all cases, the 
formation of new associations is required for the activation 
of egr genes, as sensory stimulation and motor responses 
alone are not sufficient to increase expression levels. Mem-
bers of the Egr family are critically involved in long-term 
potentiation (LTP) processes, for which the activation of egr 
genes is required for the maintenance of late phases of LTP 
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Fig. 3   Potential cellular pathways and major players for the induc-
tion of the immediate early genes egr (a) and c-jun (b), and down-
stream targets, with focus on pathways previously linked to learning 
and memory in honey bees [42, 64, 85, 158]. a Activation of tyrosine 
receptor kinases (Trk) by neurotrophins induces via Ras (G protein) 
and Raf (kinase) the MAPK/ERK pathway, resulting in an activation 
of the transcription factors (TF) Elk-1 and/or CREB-1. By binding to 
their consensus target sequences (ETS and CRE sites), the TFs induce 
the transcription of egr. The Egr  protein product in turn functions 
as a TF and activates the transcription of various late-response tar-
get genes. A list of candidate downstream genes in honey bees can be 
found in Khamis et  al. [91]. Egr additionally auto-regulates its own 

expression by interacting with the promotor of the egr gene. Alterna-
tive regulation pathways include the cAMP-PKA signaling pathway 
and NMDA receptor-mediated activation of PKC or CaM kinases. 
b Activation of c-jun is also mediated by the MAP/ERK pathway. 
Another MAPK signaling pathway includes the c-jun NH2-terminal 
kinase (JNK), which activates c-jun expression by binding of the 
MEF2 site in the promotor. c-Jun protein is regulated through phos-
phorylation by JNK and forms homo- or heterodimers (e.g., with 
c-Fos) resulting in the activator protein 1 (AP-1) complex, which 
regulates gene transcription via AP-1 binding sites on the DNA. c-Jun 
also auto-regulates its own transcription. Pathways compiled after 
[64, 112, 113, 135, 180–182]
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and the formation of LTM (reviewed in Refs. [112, 122, 
123]). The degree to which Egr is up-regulated after learning 
correlates with the persistence of LTP [124].

In honey bees, only a single orthologous egr gene (named 
Amegr in Apis mellifera) is known, located on chromosome 
15 and expressed in three distinct isoforms of unknown func-
tion [89, 96]. Induction of Amegr mRNA expression was 
observed in the developing brain [89], after awakening from 
CO2 anesthesia [94, 95], in mushroom bodies after orienta-
tion flights in young foragers [95, 101], and in response to 
conspecific intruders [125]. In addition, foraging bees had, 
on average, higher Amegr levels compared to nursing bees 
[91], and foragers showed an increase in Amegr levels when 
starting to continuously visit a feeding site [102]. In contrast, 
exposure to isolated stimuli like a pulse of light or alarm 
pheromone was not sufficient to induce Amegr expression in 
harnessed bees [96]. By analyzing the promoter regions of 
differentially expressed genes between nurses and foragers, 
Khamis et al. [91] identified 424 genes that are potentially 
regulated by the Amegr protein. This underlines the wide 
range of functional connections of this transcription factor. 
So far, no direct role of Amegr expression in learning and 
memory processes was shown, even though its implication 
in orientation [101], foraging [91, 102, 103], and drone 
mating flights [126] strongly suggest such a function. Singh 
et al. [102] showed that a foraging-dependent upregulation 
of Amegr is associated with an activation of downstream 
genes involved in learning and memory. Another open ques-
tion is whether the three expressed isoforms of Amegr have 
different functions or show brain-neuropil-specific expres-
sion patterns.

c‑jun (jra) and c‑fos (kayak): formation 
of the dimeric AP‑1 transcription factor complex 
(Fig. 3b)

The activator protein-1 (AP-1) transcription factor is com-
posed of homo- or heterodimers formed between Jun and 
Fos protein family members. Both, c-Jun and c-Fos, belong 
to bZIP-type DNA-binding transcription factors, which are 
characterized by a basic DNA-binding domain and the “Leu-
cine zipper” dimerization domain [127, 128]. AP-1 regulates 
genes by binding to the DNA consensus sequence 5′-TGA 
G/C TCA-3′, which is present in the promotor region of tar-
get genes and called TPA responsive element (TRE) or AP-1 
site (reviewed in [129, 130]). AP-1 regulates genes involved 
in neuronal signal transmission.

C-Jun is a highly conserved member of the Jun family, 
which is encoded by an intronless gene that is expressed in 
a single isoform, both in vertebrates and honey bees [96, 
131]. The mRNA consists of one of the longest 5′ untrans-
lated regions known, possibly indicative of a strong post-
transcriptional regulation, which is in accordance with the 

pronounced differences between c-jun mRNA and protein 
levels found in stimulated cells [132, 133]. The expression 
of the c-jun gene is regulated by constitutively expressed 
transcription factors such as CREB and ATF, in response 
to various stimuli including growth factors, cytokines, and 
UV radiation [134]. In addition, c-jun is positively autoregu-
lated by AP-1, resulting in signal amplification and signal 
prolongation [133, 135]. Jun proteins include a Jun domain, 
which can be modified by posttranslational phosphoryla-
tion, e.g., by c-Jun N-terminal kinases (JNK; [136, 137]). 
In honey bees, the c-jun gene (known as Apis mellifera 
Jun-related antigen, Amjra) was shown to be expressed in 
cell somata throughout the honey bee brain [99]. Expres-
sion of Amjra was induced in the antennal lobes (AL) after 
stimulation with isopentyl acetate, a component of the bees’ 
alarm pheromone [96–98], with plant odors [97], and after 
light exposure [96]. In the lateral protocerebrum, mushroom 
bodies (MB), and optical lobes (OL), Amjra expression was 
increased after sucrose feeding [99, 100]. Interestingly, the 
response of Amjra after stimulation seems to be globally in 
the entire brain and independent of the stimulus modality 
[96, 99].

c-fos, in turn, is expressed in two different isoforms in 
Drosophila and, presumably, in honey bees [132, 138]. Fos 
transcription is mediated by CREB, and in contrast to c-
jun, c-fos is downregulated by its own protein product and 
the AP-1 complex [134, 139–141]. Studies in human cells 
revealed that while both genes get rapidly and transiently 
induced, high c-jun mRNA levels last considerably longer 
than c-fos levels [129]. In honey bees, c-Fos protein lev-
els were increased during development and in antennal-
lobe somata of adult bees [88]. Regulation of c-fos mRNA 
expression was analyzed for honey bees mostly in the con-
text of immunoreaction and pesticide exposure [90, 142], as 
well as in mucus gland of differentially aged drones [143]. 
To our knowledge, no analysis of brain mRNA expression 
of c–fos has been done so far.

Hr38 (Nr4a)

The hormone receptor 38 (Hr38) in insects bears structural 
homology to the vertebrate nuclear receptor related 1 protein 
(NURR1, also known as NR4A). It is regulated by Egr and 
has been suggested to fulfil important neuronal functions 
by mediating ecdysteroid signaling [91, 102]. Expression of 
hr38 was used to monitor neuronal activation in Drosophila 
and moths (Bombyx mori) [53, 144]. In honey bees, foragers 
possess elevated hr38 expression as compared to nurses and 
queens [145]. Only recently was Hr38 expression shown to 
be induced following seizure and orientation flights [95], 
during foraging behavior [102] and in the context of aggres-
sion [125]. The hr38 gene is likely expressed in more than 
one isoform.
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Other potential IEG candidates in honey bees

The non-coding nuclear RNA kakusei was found to be 
induced in the densely packed inner compact Kenyon cells 
of the mushroom bodies by a variety of stimuli including 
seizure following anesthesia, during the behavioral transi-
tion from nurses to forager bees, and after reorientation in 
foragers [92, 93]. Even though its function is unclear, one 
inducible and several constitutively expressed transcript var-
iants were identified [93]. Additional IEG candidates were 
discovered by seizure induction experiments and included 
genes encoding protein kinases and nucleotidyltransferases 
[95]. However, kakusei does not appear to have any ortholo-
gous genes in other taxa, and for the other two gene groups 
orthologous genes are still awaiting annotation. Therefore, 
these genes might be currently less suitable for (compara-
tive) functional IEG studies in social insects.

Outlook and future directions

Several studies in recent years emphasized the potential of 
IEGs as genomic markers for neuronal activation in social 
insect brains [92, 100–103]. This approach helped, for exam-
ple, to identify brain regions in honey bees that are involved 
in the evaluation of food type and value [100] or that are 
active during orientation flights [92, 101] and foraging [102, 
103]. Honey bees showed an increased IEG expression even 
in anticipation of foraging behavior, particularly in the small 
Kenyon cells of the mushroom bodies [103]. Kiya and Kubo 
[147] went one step further and demonstrated a behavior-
dependent IEG activation of biochemically identified neuron 
populations in the optic lobes by simultaneously measur-
ing expression of kakusei and the neurotransmitter gamma-
Aminobutyric acid (GABA) in a double-in situ hybridization 
assay. This approach is particularly promising as in insects 
most neuronal cell bodies are located in the cell body rind 
surrounding the neuropil mass and often cannot be associ-
ated with a specific brain region (except for the mushroom 
bodies). Double labeling could, therefore, help to identify 
neuron types and neuronal circuits based on biochemical 
markers.

Promising brain neuropils to study the neuron-specific 
expression and differential activation of IEGs in more detail 
are the insect mushroom bodies (MB) and the central com-
plex (CX). MBs are brain centers for multimodal sensory 
integration and learning and memory, and functional cor-
relations between the connectivity of MB synaptic micro-
circuits and various behaviors were found in bees [36, 148], 
wasps [149, 150], and ants [6, 151]. Depending on the 
type of stimulation, properties of the synaptic network in 
MBs can change: for example, sensory exposure leads to 
presynaptic pruning and postsynaptic sprouting [56, 152], 

and associative learning and long-term memory formation 
is correlated with presynaptic sprouting [6, 36]. The CX is 
involved in sensory integration and high-order motor con-
trol and was shown to express neuronal plasticity induced 
by complex visual learning and memory formation [151, 
153–155]. The specific programs underlying plasticity in 
both neuropils are likely orchestrated by different sets of 
IEGs or, alternatively, the same IEGs expressed in different 
sets of neurons [103, 156]. Therefore, IEG-based approaches 
are applicable at two different levels: first, identification of 
relevant IEGs, followed by double-in situ hybridization 
could help to identify the type of neuron populations that are 
involved in the different physiological programs and types 
of neuroplasticity. Second, inhibition of the expression of 
particular IEGs should, for example, impact the level of syn-
aptic connectivity and result in a reduced memory capacity 
[157]. To test the latter, IEG knockdown assays, like in vivo 
RNA interference (RNAi), combined with behavioral learn-
ing experiments or neuroanatomical analyses are promising. 
Such an approach, for example, uncovered the importance 
and the distribution of the activated “memory protein” CaM-
KII, which has a dual function both as activator and target of 
IEGs in long-term memory formation [158–160].

IEG studies are also promising for the identification of 
neurocircuits involved in processing sensory information. 
The use of a magnetic compass, for example, is known 
from various animals like birds, mammals, crustaceans, and 
also social insects such as ants and honey bees [161–164]. 
Despite the broad distribution of magnetoreception in the 
animal kingdom, the sensory pathways and perceptual 
mechanisms are mostly unexplored. In insects, a sensory 
mechanism and putative brain areas responsible for process-
ing magnetic information are completely unknown, making 
the use of electrophysiological recording or live-imaging 
techniques inefficient. Screening for a magnetic-field driven 
induction of IEGs, for example, during learning or orien-
tation excursions in naïve animals, might be a promising 
approach to identify involved neurocircuits. A similar 
approach could help to uncover neurobiological mechanisms 
that underlie the honey bee’s dance communication [165]. 
Between dancing bee species and species that lack the ritu-
alized dances (e.g., bumble bees), no apparent differences 
were found in sensory projections [166]. Adaptations in the 
neuronal circuitry that facilitate the specific dance behavior 
thus seem to be rather small and a comparative IEG expres-
sion analysis might help to identify such differences.

As IEG expression is likely in many cases highly spe-
cific regarding the stimulation paradigm and the behav-
ioral responses [144], a systematic analysis of the role of 
different stimulation programs and contexts is required to 
specify the functional role of candidate genes. In song-
birds, for example, expression of an egr homolog is sig-
nificantly increased in the brain when birds hear a song of 
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their own species, as compared to heterospecific songs, 
and decreases when the song has been made familiar 
by repetition [70, 71]. Therefore, known IEGs in social 
insects need to be tested in a larger variety of developmen-
tal stages, stimulus repetition rates or behavioral contexts 
as IEG expression can be highly selective for one or all of 
these parameters. Honey bees and bumble bees, for exam-
ple, respond to the same scent marks deposited by conspe-
cifics at food sources either by avoiding or approaching 
them, depending on previous foraging success on marked 
flowers [167]. In leaf-cutting ants of the genus Acromyr-
mex, the degree of allogrooming behavior as a part of the 
social immune response is regulated depending on pre-
vious infections of the colony [168]. Such adaptive and 
context-specific behaviors are potentially mediated by a 
differential regulation of IEGs in inhibitory or excitatory 
neuronal circuits. Therefore, a careful dissection of the 
relationship between stimulation properties and the char-
acteristics of IEG activation is essential. In addition, one 
has to keep in mind that neuronal activation might occur 
without the induction of IEGs or that the expression of 
IEGs might occur independently from neuronal stimula-
tion [169]. For example, an isolated exposure of honey 
bees to olfactory or visual stimuli does not induce egr 
expression, even though neuronal activation in this para-
digm is indicated by the expression of the IEG jra [96].

To study the potential of IEG-based approaches, Pavlo-
vian conditioning under harnessed conditions as it is now 
established in various bee [30, 170–173] and ant species 
[174, 175] is a promising complement to experiments with 
free-moving animals. In such an approach, stimulus fea-
tures can be gradually dissected when individuals are kept 
under controlled conditions [176, 177] and the brain can 
be accessed in vivo [38, 178]. Approaches monitoring IEG 
expression thus provide a unique possibility to analyze the 
neuronal control of naturally motivated behaviors both in 
natural (social) environments and under more isolated and 
controlled laboratory conditions.

Finally, while putative IEGs are now available for honey 
bees, other social insect species need to be screened for 
homologous genes, to broaden the field of IEG applications 
and the understanding of gene functions. For example, IEG-
based comparative studies among different social insect spe-
cies could help to unveil the neuronal correlates that facili-
tate the emergence of sociality. In contrast to vertebrates 
(social brain hypothesis), the level of sociality in insects 
is not reflected in simple correlations with brain (neuropil) 
volumes [179]. Therefore, an alternative approach to reveal 
general neuronal constraints underlying social systems might 
be the IEG-based detection of neuronal circuits involved in 
social tasks, the processing of social signals, such as recruit-
ment pheromones or cuticular hydrocarbons, and the regu-
lation of behavioral plasticity. In this context, egr-1 might 

be particularly useful, as it was shown to respond to social 
stimuli in different vertebrate species [49, 51].

The hitherto success and obvious benefits of IEG analyses 
in vertebrates and pioneering studies in honey bees should 
encourage more researchers in behavioral neuroscience to 
pursue this new approach. We, therefore, aim to advance the 
usage of this promising tool to other social insect species, 
as comparative studies are needed to uncover the mecha-
nisms underlying their sophisticated behaviors in the social 
context.
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