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Summary

HIV-2 is thought to have entered the human population in the 1930s 
through cross-species transmission of SIV from sooty mangabeys in West 
Africa. Unlike HIV-1, HIV-2 has not led to a global pandemic, and recent 
data suggest that HIV-2 prevalence is declining in some West African 
states where it was formerly endemic. Although many early isolates of 
HIV-2 were derived from patients presenting with AIDS-defining illnesses, 
it was noted that a much larger proportion of HIV-2-infected subjects 
behaved as long-term non-progressors (LTNP) than their HIV-1-infected 
counterparts. Many HIV-2-infected adults are asymptomatic, maintaining 
an undetectable viral load for over a decade. However, despite lower viral 
loads, HIV-2 progresses to clinical AIDS without therapeutic intervention 
in most patients. In addition, successful treatment with anti-retroviral 
therapy (ART) is more challenging than for HIV-1. HIV-2 is significantly 
more sensitive to restriction by host restriction factor tripartite motif 
TRIM5α than HIV-1, and this difference in sensitivity is linked to differ-
ences in capsid structure. In this review we discuss the determinants of 
HIV-2 disease progression and focus on the important interactions between 
TRIM5α and HIV-2 capsid in long-term viral control.
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Introduction

HIV-2 was first isolated in 1986 from healthy commercial 
sex workers in Senegal and named HTLV-IV. Shortly 
afterwards a similar virus (named LAV-II) was isolated 
from two West African patients with AIDS and renamed 
HIV-2 [1]. Subsequent molecular characterization showed 
that HIV-2 was related to HIV-1, but was closer to sim-
ian immunodeficiency virus (SIV) derived from macaques 
displaying an AIDS-like syndrome [1]. It has since been 
established that HIV-2 entered the human population in 
approximately 1938 from a virus infecting sooty mangabeys 
(SIVmm) in West Africa [2].

An estimate of HIV-2 prevalence of 1–2 million infected 
people worldwide is widely cited [3]. However, as HIV-2 
is not regularly included in national testing strategies and 
requires specialist laboratory facilities for accurate diagnosis 
[4] the current prevalence is unknown. The recent falls 
in national HIV-2 prevalence in some West African coun-
tries [5] have led to predictions that the epidemic will 
reach extinction in approximately 2068 [3,6].

In contrast to untreated HIV-1 infection, longitudinal 
follow-up of a rural community cohort with HIV-2 infec-
tion demonstrated that 30–40% of infected people exhibit 
low or undetectable viral loads with AIDS-free survival 
for up to 10 years [7]. These HIV-2 long-term non-
progressors (LTNPs) had mortality rates equivalent to the 
uninfected population, although most people infected with 
HIV-2 have moderately higher mortality rates than the 
HIV-negative population [7,8]. After 8 years of follow-up, 
the mortality rate for HIV-1 infection is approximately 
double that of HIV-2 infection without treatment [7,9]. 
This distinction between HIV-1 and HIV-2 mortality was 
highlighted in a recent report from a cohort in Bissau 
with an unusually high proportion of subjects with known 
dates of infection, in which the median survival time for 
HIV-1 was 8·2 years and for HIV-2 it was 15·6 years 
[10]. In this study it was also noted that HIV-2-infected 
people developed clinical AIDS with a higher mean CD4+ 
T cell percentage than seen for HIV-1. The risk of HIV-2 
disease progression is dependent on viral load – people 
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with viral loads > 10 000 copies/ml are likely to progress 
to AIDS at the same rate as those with HIV-1 [7]. The 
differential effect of plasma viral load on mortality in 
HIV-2 infection is illustrated in Fig. 1. Furthermore, when 
matched for low CD4+ counts (<100 cells/ml), mortality 
in HIV-2 infection is equivalent to that of HIV-1 [8]. 
Spontaneous undetectable viraemia and an indolent disease 
course in HIV-1 is rare [11], whereas this is a common 
feature of HIV-2 infection.

In this review we discuss the relative contributions to 
HIV-2 disease progression of viral, immunological and 
host factors. We focus on the potential importance of 
the interaction between HIV-2 capsid and human tripartite 
motif containing protein TRIM5α, and discuss how these 
viral and host factors may contribute to delayed disease 
progression in HIV-2 infection.

TRIM5α and HIV-2

TRIM5α is a host restriction factor, one of a group of 
intracellular anti-viral proteins which act as the effector 
arm of the interferon (IFN) response to disrupt the HIV 
life cycle at multiple points [13]. The structure of TRIM 
proteins is characterized by a conserved modular tripartite 
motif consisting of a Really Interesting New Gene (RING) 

domain followed by one or two zinc binding areas named 
B-box, a coiled coil (CC) region and in some cases a 
PRY-SPRY domain [14]. TRIM5  is transcribed into five 
isoforms and its anti-viral activity is mediated by isoform 
TRIM5α. The other isoforms result in truncated proteins 
lacking a PRY-SPRY domain and inhibit TRIM5α activity, 
therefore the proportion of TRIM5α among total TRIM5  
transcripts may influence HIV restriction [15]. Although 
TRIM proteins are structurally similar, their functions 
are diverse: here we will focus on the anti-retroviral 
mechanisms of TRIM5α.

Host restriction factors play a key role in the preven-
tion of cross-species movement of lentiviruses: for example, 
the orthologue TRIM5α derived from rhesus macaques 
potently restricts HIV-1, whereas the human equivalent 
does not [16]. TRIM5  is one of the fastest-evolving genes 
in the human genome [17]. TRIM5  has evolved under 
positive selection pressure, due probably to various patho-
gens exerting selection pressure at different periods of 
human evolution [18]. Positive selection on residues in 
the PRY-SPRY domain is prominent in TRIM5 , particu-
larly in an amino acid motif, which determines viral capsid 
specificity and hence viral restriction [18]. TRIM5α mono-
mers bind at the interface of three capsid hexamers. This 
binding site was shown for rhesus TRIM5α and HIV-1 

Fig. 1. Mortality after years of follow-up based on HIV-2 viral load. HIV-2 VL = HIV-2 viral load measured in copies/ml. These survival curves are 
adapted from Kaplan–Meier survival curves for HIV-2 when stratified for viral load [12]. Increasing viral load level has a strong association with 
decreasing survival probability [12].
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and is associated with high-affinity binding and determines 
species-specific restriction of TRIM5α orthologues [19].

TRIM5α’s ability to restrict HIV-1 in old world monkey 
(OWM) cells by targeting viral capsid was reported in 
2004 [20]. The sensitivity of HIV-2 to TRIM5α is deter-
mined by a region of the capsid which corresponds to 
the cyclophilin binding loop in HIV-1 [21]. Depletion of 
cyclophilin A enhances TRIM5α-mediated restriction and 
reduces infectivity of HIV-2 [22].The anti-retroviral mecha-
nism of TRIM5α acts at the pre-integration phase of the 
HIV life-cycle and is summarized in Fig. 2. TRIM5α in 
rhesus macaques is also capable of late viral restriction by 

incorporation into nascent HIV-2 virions, thereby decreas-
ing the production of functional new virus particles. This 
late restriction is a saturable process, as increased virion 
production may overwhelm it [23]. In feline cell lines 
permissive to HIV-2 infection, experimentally induced 
expression of human TRIM5α restricts viral replication and 
TRIM5α-specific short interfering RNA rescues infectivity 
in resistant cells [21]. Additional anti-retroviral mechanisms 
include that TRIM5 binding to the incoming capsid pre-
vents nuclear entry via nucleoporin channels [24] and also 
stimulates transforming growth factor (TGF) beta-activated 
kinase 1 (TAK-1) phosphorylation, which activates the 

Fig. 2. Mechanism of retroviral restriction by tripartite motif (TRIM)5α: (a) after viral entry TRIM5α monomers binds to the capsid and oligomerize 
with additional TRIM5α molecules. (b) These are then poly-ubiquitinated via TRIM’s E3 ligase activity. This prematurely uncoats the capsid, 
disrupting the reverse transcription/capsid complex (RTC). (c) The RTC is then recruited to the cellular proteasome for degradation. (d) We 
hypothesize that enhanced proteasomal processing selects for epitopes which are associated with protective gag-specific CD8+ T cell responses 
presented on human leucocyte antigen (HLA) class I molecules [32,33].
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nuclear factor kappa B (NF-κB) transcription pathway [25]. 
This capsid-specific recognition then stimulates further 
downstream transcription of inflammatory cytokines, which 
enhances the anti-viral response against HIV.

Despite high TRIM  diversity, TRIM5  genotype has 
minimal impact on HIV-1 disease progression [26]. 
Moreover, TRIM5α does not appear to drive evolutionary 
change in HIV-1 capsid sequences from clade B [27]. 
HIV-infected patients who are homozygous for the H43Y 
substitution develop AIDS more quickly than heterozygotes 
or H43 homozygotes [28] and this substitution modestly 
impairs the restrictive capacity of TRIM5α [28]. 
Furthermore, the appearance of putative TRIM5α viral 
escape variants has been found to precede rapid immu-
nological decline in HIV-1 infection [29]. Increased expres-
sion of TRIM5α in peripheral blood mononuclear cells 
is associated with a reduced risk of incident HIV-1 infec-
tion [30]. The impact of TRIM5  genotype and expression 
on HIV-2 disease outcomes has not been reported. A 
primate model of human HIV-2 infection using SIVsm-
infected Indian macaques showed that certain TRIM5  
variants were associated with increased memory CD4+ 
cells and longer AIDS-free survival. This longitudinal study 
also demonstrated the development of escape mutants to 
TRIM5α, which could accelerate immunological decline, 
resulting in simian AIDS in the test subjects [31].

Viral factors associated with HIV-2 progression

Contribution to disease progression by viral replicative 
capacity, diversity and fitness

The HIV genome consists of several genes in an open 
reading frame, represented in Fig. 3. Differences between 

the HIV-1 and HIV-2 genomes are shown in Fig. 3. 
Viral replicative capacity, genetic diversity and intrahost 
evolution rates have all been linked to differences in 
disease outcomes in HIV infection and are discussed 
in turn.

Measuring virion production in cell cultures with a 
radio-labelled reverse transcriptase assay, it has been 
shown in HIV-1-infected patients that a greater viral 
replicative capacity (RC) in the transmitted/founder (T/f) 
strain is associated with greater immune activation, 
higher viral load set-points and faster disease progres-
sion [37]. The RC of Gag-MJ4 chimeric viruses correlates 
closely with that of full-length T/f molecular clones. 
This suggests that the gag  sequences of the T/f strains 
influence replicative capacity. In an epidemiologically 
linked transmission cohort, cytotoxic T lymphocyte 
(CTL) pressure on gag  in transmitted viruses negatively 
influenced viral RC [38]. Residue substitutions in all 
gag  regions influenced RC, although only a few muta-
tions occurred in capsid, which is a highly conserved 
region [38]. Further studies did not support the sole 
importance of gag  and have suggested that multiple 
genes interact to determine RC [39].

An alternative approach to measuring replicative capac-
ity is to use competition assays with different viral strains. 
Using this method, Arien et al.  showed that most HIV-2 
isolates had lower RC than HIV-1 [40] and additional 
studies demonstrated that clinical HIV-2 isolates from 
aviraemic patients had a lower RC than those from virae-
mic patients [41]. This indicates that viral RC is probably 
also an important contributor to disease progression in 
HIV-2 infection.

HIV-1 diversity shows a strong correlation with viral 
load, fitness and disease progression, but less is known 

Fig. 3. Differences in the HIV-1 and HIV-2 genomes. Gag  genes display approximately 60% protein sequence similarity between HIV-1 and 2, 
whereas env  has approximately 40% similarity [34]. HIV-1 possesses the accessory protein Vpu, which degrades both surface CD4 receptors and 
tetherin, thereby enhancing virion release. HIV-2 contains vpx : this protein counteracts restriction factor SAM domain and HD domain-containing 
protein 1 (SAMHD1), which is present in myeloid cell lines (adapted from [36]).
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about HIV-2 diversity and divergence influence disease 
outcomes [42]. Skar et al.  reported that HIV-2 had a 
greater evolutionary rate than HIV-1, specifically in the 
gp125 region that contains the V3 loop [43]. This region 
binds to CD4+ receptors and thereby exposes the V3 
loop to neutralizing antibodies. Mutations were more 
likely to be synonymous and therefore due to viral fac-
tors (purifying selection) as opposed to immunological 
(positive selection) pressure – escape mutants to neu-
tralizing antibodies were notably rare. In contrast, find-
ings from a Senegalese cohort showed limited divergence 
of env  [44]. One possible reason for the disparity in 
the results of these studies is that the two patient pro-
files were different. The Senegalese cohort were ART-
naive, with limited disease progression, and had a long 
follow-up time. Skar et al.  reported on env  divergence 
in patients with mostly progressive HIV-2 infection. 
Many of these patients displayed X4 tropism, with high 
viral loads and low CD4+ counts. In addition, slow 
disease progression has been associated with lower env  
diversity and vice versa [45]. A recent study stratified 
HIV-2-infected patients into fast and slow progressors 
and showed that HIV-2 env  evolutionary rates in fast 
progressors are approximately double that of slow pro-
gressors [46]. Furthermore, stronger positive selection 
pressure on conserved residues in the envelope was 
associated with slower disease progression. The following 
trends emerge: individuals with controlled HIV-2 infec-
tion have viruses with a low replicative rate, low viral 
loads and diversity. Those that develop progressive disease 
have higher viral loads and greater diversity, with promi-
nent negative selection pressure.

A study of env  and gag  sequences showed that viral 
loads in phylogenetically linked HIV-2 infection clusters 
were discordant [47]. Therefore, viral genetic factors, at 
least in gag  and env , probably do not account for the 
full spectrum of disease progression in HIV-2 infection. 
This finding strengthens the hypothesis that interaction 
between viral and immunological factors are collective 
determinants of disease outcomes in HIV-2.

The importance of gag 

The viral gag  gene encodes structural proteins capsid (CA/
p26), nucleocapsid (NC) and matrix (MA). After an HIV 
virion enters a cell the capsid houses the viral RNA and 
facilitates reverse transcription during transit to the nucleus. 
HIV-1 capsids prevent both innate immune sensing of 
viral cDNA by the cGAS-STING [cyclic guanosine 
monophosphate–adenosine monophosphate (GMP–AMP) 
synthase and stimulator of IFN genes] pathway as well 
as cDNA degradation and sensing by endogenous DNase 
enzymes such as TREX1 (three prime repair exonuclease 
1) [48,49]. In contrast to HIV-1, HIV-2 is able to replicate 

in dendritic cells and stimulates innate immune sensing 
via its capsid in a cyclophilin A-dependent manner [35]. 
Capsid structures are highly conserved among retroviruses, 
and mutations in their sequence may either reduce viral 
infectivity or increase the susceptibility of the virus to 
host immune responses [50,51]. It was recently reported 
that HIV-2 capsid binds more strongly than HIV-1 to 
the non-POU domain-containing octamer-binding protein 
(NONO) protein in the nucleus, promoting DNA sensing 
by cGAS and stimulating a potent IFN response [52]. The 
capsid residues involved in NONO binding are highly 
conserved in primate lentiviruses [52]. Capsid sequences 
also determine the pathway for nuclear import and influ-
ence the choice of integration sites for viral DNA [53]. 
The choice of integration site can then influence viral load, 
depending on how transcriptionally active the site is.

Polymorphisms in HIV-2 capsid sequences have been 
implicated in multiple aspects of disease progression. 
Capsid sequences differ between patients with low and 
high HIV-2 viral loads, a key determinant of immune 
activation and disease progression. Specifically, patients 
with low viral loads often displayed prolines in capsid at 
positions 119, 159 and 178. Prolines in these positions 
had an additive effect on decreasing viraemia [54]. In 
addition, prolines in these positions are associated with 
enhanced proteasomal processing of a CD8+ T cell gag 
epitope 165-DRFYKSLRA-173. This epitope is associated 
with greater gag-specific T cell responses as determined 
by enzyme-linked immunospot (ELISPOT) and is a fre-
quent target for T cell responses in patients with low 
viral loads [55]. Therefore, it is possible that capsid 
sequences directly influence adaptive immune responses. 
HIV-2 capsid sequences with a proline at position 119 
are more sensitive to restriction by the anti-viral protein 
TRIM5α (rhesus macaque) than sequences with alternative 
amino acids at this position. This enhanced sensitivity to 
TRIM5α may be linked to conformational changes in the 
capsid protein [56,57]. HIV-1 NL4-3 chimeras which 
contain HIV-2 capsid sequences are more susceptible to 
restriction by human TRIM5α than the wild-type virus, 
although proline substitutions at position 119 do not cor-
relate with TRIM5α restriction [58]. Furthermore, HIV-2 
CA sequences derived from rapid progressors and LTNP 
do not differ in their sensitivity to TRIM5α – although 
they are all more sensitive than HIV-1 [22].

Despite the increased sensitivity of HIV-2 capsid to 
TRIM5α restriction, as well as the strong cytotoxic T cell 
response directed towards gag, there is no evidence of 
positive selection pressure on gag  divergence in a cross-
sectional analysis of viral sequences from the Caió com-
munity cohort [59]. Purifying selection pressure 
predominates in interhost evolution, and this reflects the 
constrained evolution of this gene.
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HLA/KIR and other host genetic associations with 
HIV-2 disease outcomes

The most robust immunogenetic associations with LTNP 
in HIV-1 are found in HLA  alleles and CCR5  polymor-
phisms [60]. Few studies have reported on the impact of 
human leucocyte antigen (HLA) genotypes on HIV-2 
infection outcomes. This reflects the paucity of well-
characterized cohorts in West Africa, compounded by the 
variability of HLA repertoires present in different ethnic 
groups [61].

Yindom et al.  noted that HLA class I associations were 
strongest for HLA B*1503, which correlated with high 
viral loads and low CD4+ counts. Surprisingly, HLA B*5703 
did not correlate with low viral load, despite its strong 
association with LTNP in HIV-1 infection [62]. In 
Senegalese female sex workers HLA-B35, together with 
the HLA-B35-Cw4 and HLA-A23-C7 haplotypes, were 
associated with increased risk of disease progression [63]. 
Three additional HLA types have been associated with 
lower odds of having a detectable viral load in HIV-2 
infection, HLA-B*58:01, HLA-DPB1*10:01 and HLA-
DRB1*11:01 [64].

Many associations between compound HLA/killer cell 
immunoglobulin-like receptors (KIR) genotypes and out-
comes in HIV-1 infection have been reported, but in the 
Caió cohort there were no significant associations between 
individual KIR alleles or HLA/KIR genotypes and either 
the risk of infection with HIV-2 or HIV-2 disease pro-
gression [62].

An additional study from the Caió cohort reported 
that a haplotype for polymorphisms rs11575097-
rs10849523 in the CD4  gene was associated with high 
viral loads in HIV-2 [65]. In the same study, no correla-
tions were found between polymorphisms in the CD209  
gene encoding the dendritic cell-specific intercellular adhe-
sion molecule (ICAM)-3-grabbing nonintegrin, and HIV-2 
susceptibility or progression.

There is clear potential for further genetic studies to shed 
light on the mechanisms of HIV-2 disease progression.

CD4+ T cell responses and HIV-2 disease outcomes

One of the hallmarks of HIV-1 infection is the progressive 
loss of CD4+ T helper cells. Strikingly, the subset of HIV-
1-specific CD4+ cells is particularly susceptible to HIV-1 
infection [66]. However, despite the fact that the HIV-2-
specific CD4+ cell response is relatively well-preserved in 
most patients, HIV-2-specific CD4+ T cells are as vulnerable 
to HIV-2 infection as their HIV-1 specific counterparts 
are to HIV-1 infection [66,67]. The relative proportion of 
infected virus-specific CD4+ T cells between HIV-2 con-
trollers and progressors has not been investigated.

CD4+ cells from aviraemic HIV-2-infected patients show 
preserved proliferative and cytokine-releasing functions, 

IFN-γ and interleukin (IL)-2 being the dominant cytokines 
released [67,68]. Aviraemic patients’ CD4+ cells have a 
broader cytokine profile; they release IFN-γ, IL-2, tumour 
necrosis factor (TNF)-α, macrophage inflammatory protein 
(MIP)-1β and CD107 [69], whereas in HIV-2 viraemic 
progressors the functional profiles of HIV-specific CD4+ 
T cells are similar to those seen in HIV-1 infection. This 
could suggest that HIV-2 disease progression is associated 
with greater infection of HIV-2-specific CD4+ populations, 
leading to reduced T helper cell activity. A greater CD4+ 
response against homologous gag proteins correlates posi-
tively with immune activation and negatively with HIV-2 
proviral load, suggesting that the host responses promoting 
immune activation limits HIV-2 viral replication [70]. 
Expanded T regulatory populations coupled with increas-
ing programmed cell death 1–programmed cell death ligand 
1 (PD1–PDL1) expression on T cells have been observed 
in patients with advanced HIV-2 disease and low CD4+ 
counts, but these findings did not correlate with viraemia. 
This observation may indicate that aberrant immune toler-
ance mechanisms in the face of long-standing immune 
activation can drive HIV-2 disease progression [71–73].

Cytotoxic T cell responses and disease outcomes

Many studies have implicated the HIV-1-specific CD8+ 

CTL response as the major factor controlling viral rep-
lication from acute infection through the asymptomatic 
stage of infection [74]. In HIV-1 the CTL response tends 
to be broad, targeting a wide variety of epitopes, but is 
largely undermined by escape mutants that evade CTL 
recognition [75]. Despite the importance of the CTL 
response in HIV-1 control, progressors cannot be distin-
guished from non-progressors based on the magnitude 
or breadth of their HIV-1-specific CTL response. There 
are characteristics of CTL found in non-progressors, includ-
ing restriction by ‘protective’ HLA molecules such as 
HLA-B27 or B57, polyfunctionality, proliferative capacity, 
levels of cytolytic molecules and, potently, the ability to 
suppress HIV replication in vitro  [76]. In addition, greater 
targeting of HIV-1 gag is associated with lower viral  
loads [77].

The CTL response in HIV-2 is characterized as being 
narrow, consistently targeting a smaller number of epitopes 
than HIV-1 [78]. CTL from HIV-2-infected subjects pro-
duce a wider range of cytokines, as well as greater quanti-
ties of individual cytokines per cell, compared to those 
from HIV-1-infected individuals [69]. This is linked with 
the high functional avidity reported for some HIV-2-
specific CTL responses [78]. Using ELISPOT to measure 
CTL responses to gag peptides, aviraemic patients showed 
higher-magnitude T cell responses than viraemic patients 
[79]. Gag-specific CTL responses were shown to correlate 
strongly and inversely with viral load in HIV-2-infected 
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subjects, with most viraemic patients lacking gag-specific 
responses (which would be rare in HIV-1 infection) [80]. 
CD8+ cells from aviraemic patients can potently suppress 
viral replication in CD4+ cells; these CD8+ cells have an 
early differentiation phenotype and are potent effectors 
[81]. Therefore, there are both quantitative and qualitative 
differences between CTL responses in HIV-2-infected 
subjects with and without detectable viraemia, suggesting 
that the generation of a potent and effective CTL response 
is central to limiting HIV-2 replication. Robust gag-specific 
CD8+ T cell responses are common in subjects with unde-
tectable viral load, raising the question of how these CTL 
populations are maintained in the absence of detectable 
viraemia. HIV-2 replication is detectable in gut mucosa 
in patients who are otherwise aviraemic, and this may 
offer an explanation if CTL are stimulated through per-
sistent HIV-2 replication in gut-associated lymphoid  
tissue [82].

It is unclear why some HIV-2-infected patients do not 
generate effective gag-specific CTL responses, although 
we hypothesize that this may be related to a relatively 
weak interaction between TRIM5α and HIV-2 capsid (see 
below).

Immune activation

Many of the characteristic features of HIV-1 disease pro-
gression are thought to be a consequence of prolonged 
immune activation. Immune activation also appears to 
be driving HIV-2 disease progression: the soluble activa-
tion marker beta-2 microglobulin predicts HIV-2 disease 
progression as accurately as plasma viral load in untreated 
subjects [83]. T cell activation markers closely correlate 
with plasma viral load in viraemic patients – however, 
there is a subgroup of patients with undetectable viraemia 
who exhibit elevated T cell activation [78]. There has 
been speculation that the lower levels of immune activa-
tion in the many aviraemic HIV-2-infected patients con-
stitute the key factor explaining their slower rates of disease 
progression [84]. Levels of biomarkers associated with 
enhanced immune activation are equivalent in HIV-1 and 
HIV-2 infection, and when viral load is taken into account 
HIV-2 appears to elicit greater immune activation per 
unit of viral load than does HIV-1 [85]. Moreover, immune 
activation in patients with HIV-1 and HIV-2 infection is 
equivalent when matched for CD4+ count [86].

A key driver of immune activation in HIV-1-infected 
subjects is the increased translocation into the blood of 
microbial products from the gut, including lipopolysac-
charide (LPS), which promotes macrophage activation 
[87]. LPS levels were elevated in an African cohort with 
HIV-2 infection and correlated with disease progression 
[88]. However, this was not observed in a European cohort, 
even though there was evidence of significant T cell and 

monocyte activation [89]. In marked contrast to HIV-1 
infection, mucosal integrity and gut-associated lymphocyte 
numbers are preserved in aviraemic HIV-2 infection (with 
or without ART), despite the presence of replicating virus 
in the gut mucosa [82]. These findings suggest that there 
is a significant difference in HIV-associated gut mucosal 
pathology between HIV-1 and HIV-2 infection, although 
how this might link with HIV-2 progression is not entirely 
clear.

Other host factors associated with HIV-2 progression

Disease progression in HIV reflects a complex interplay 
between social factors and biological factors which influ-
ence how rapidly a person will develop AIDS after HIV 
infection. Age at infection and sex are important deter-
minants in this dynamic process.

Being male is an important determining factor in 
disease outcomes for both HIV-1 and HIV-2 [90]. These 
findings may be explained, in part, by the social behav-
iour of men resulting in poor adherence to ART and 
health-seeking behaviour later in infection [91]. In addi-
tion, baseline mortality rates due to non-infectious causes 
are higher in males, and this contributes to the observed 
higher mortality rates in HIV-infected men [92].

Social factors do not fully account for the discrepancy 
in disease progression rates between males and females. 
Plasmacytoid dendritic cells from females produce higher 
transcription levels of several IFN-stimulated genes in 
response to IFN-α than those from males [93]. This 
enhanced response may be beneficial in acute infection, 
limiting viral set point and initial CD4+ count decline 
[94]. Females, on average, have lower viral load set points 
coupled with an enhanced type I IFN response and greater 
CD8+ T cell activation; this may favour rapid CD4+ recov-
ery and improved outcomes after ART initiation [95,96]. 
Statistical modelling of transmitted viral sequences indi-
cates that transmission bottlenecks in heterosexuals exist, 
and that they favour the transmission of viruses with 
greater fitness from females to males [97]. It has been 
postulated that because women have a large population 
of cells in the vaginal mucosa which are susceptible to 
HIV infection, they therefore have a lower barrier to 
infection than men. This bottleneck selects viruses infect-
ing men with greater predicted replicative capacity based 
on the presence of specific amino acid residues. The viruses 
which infect men may therefore predispose them to accel-
erated disease progression.

HIV-1-infected males in Cameroon had an elevated 
risk of virological failure after ART initiation which was 
not linked to pre-existing viral resistance or poor adher-
ence. Furthermore, females in this study showed greater 
CD4+ count recovery after 24 months of ART [98]. Most 
African HIV-2 cohorts contain more women than men, 
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and here male sex has also been associated with higher 
mortality [99].

In HIV-1, advanced age at infection is a powerful co-
factor for accelerated disease progression –  this is prob-
ably due to immunological senescence [100]. Males are 
often older than females when they initiate ART, which 
may therefore explain their diminished immunological 
reconstitution [101]. HIV-2 prevalence in Guinea-Bissau 
was highest among females in the 45–60-year age group 
[102] and in the pre-ART era older HIV-2-infected adults 
had mortality rates equivalent to the HIV-negative popu-
lation, suggesting that age was not a risk factor for pro-
gression in HIV-2 infection [103]. In contrast, data from 
the ANRS cohort showed that age greater than 40 years 
was a significant risk factor for HIV-2 disease progression 
after ART initiation [104].

Conclusion: possible causal factors which promote 
HIV-2 disease progression

We believe that greater priority should be given to HIV-2 
research because of the unique insights this human model 
can provide about the pathophysiology of HIV-1, par-
ticularly a better understanding of host and viral factors 
associated with long-term viral control. The interaction 
between the viral capsid, host restriction factors and the 
cellular immune response may be central to maintaining 
durable control of viral replication in HIV-2 infection. 
Multiple lines of evidence indicate that TRIM5α may, 
soon after initiating viral uncoating, target the viral capsid 
for proteasomal degradation [32]. During this process, 
HIV-2 capsids enriched in proline residues may favour 
the efficient processing of CTL epitopes that are associ-
ated with a long-lasting, protective gag-specific CTL 
response. The strength of the capsid/TRIM5α interaction 
is also related to the extent to which the type I IFN 
responses are triggered [105]; combinations of capsid and 
TRIM5α that bind with high affinity could lead to a potent 
CTL response targeting gag epitopes. In aviraemic patients 
this CTL response may potentially be maintained by ongo-
ing, low-level mucosal replication in the gut. HIV-2-specific 
CTL may be able to control viral replication and maintain 
a low level of immune activation for many years, without 
the emergence of viral escape mutants [59]. A caveat to 
the search for a functional cure is that therapies which 
maintain a low viral load may not always result in a 
reversal of immunodeficiency if immune activation remains 
high [106].

Given HIV’s unparalleled ability to adapt to its host, 
future therapies which aim to induce a state of prolonged 
clinical latency in the absence of regular therapeutic inter-
vention (either ART or infusions of monoclonal antibodies) 
will need to target multiple aspects of viral replication. 
TRIM5α restriction acts at the pre-integration phase of 

the life-cycle, displays cross-talk with the adaptive immune 
response and may negatively affect viral RC. There is 
evidence to support this proposition, as HIV-1 CTL escape 
variants display increased sensitivity to restriction by 
TRIM5α [107]. The RC of these escape variants may be 
further reduced, given the functional constraints on capsid 
structure [108].

TRIM5  has been successfully edited using the CRISPR-
Cas 9 system to effect single nucleotide polymorphisms 
which augment HIV-1 restriction [109] and recent advances 
in CRISPR technology may allow for multiple specific 
edits to the human genome with greater accuracy and 
lower risk of off-site effects [110]. It is possible to envis-
age ex-vivo  editing of TRIM5  to generate a patient-specific 
pool of HIV-resistant CD4+ T cells in the future. 
Understanding how HIV-2 replication is durably controlled 
by TRIM5α may provide valuable insights into working 
towards this future scenario.
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