Skip to main content
. 2019 Apr 30;23:101837. doi: 10.1016/j.nicl.2019.101837

Table 3.

Summary of MRI machine learning algorithms reviewed in (Rathore et al., 2017). p stands for converter MCI, s for stable MCI, CV indicates that cross-validation was used for evaluation.

Study Training sample size Evaluation method Follow-up time (years) AUC
Misra et al. (2009) (Misra et al., 2009) 27p/76 s CV Variable (Mean = 2 years) 77%
Liu et al. (2013) (Liu et al., 2013) 97p/93 s CV 3 72%
Eskildsen et al. (2013) (Eskildsen et al., 2013) 128p/227 s CV Variable (Mean = 1.5 years) 68%
Min et al. (2014) (Min et al., 2014) 98AD/128NC CV (117p/117 s) Not reported 67%
Liu et al. (2015) (Liu et al., 2015) 117p/117 s CV Not reported 81%
Tang et al. (2015) (Tang et al., 2015) 175AD/210NC CV (135p/87 s)) 3 74%
Chincarini et al. (2011) (Chincarini et al., 2011) 144AD/189NC Independent set (136p/166 s) 2 74%
Wee et al. (2013) (Wee et al., 2013) 45p/56 s Repeated hold-out (44p/55 s) 3 84%
Sorensen et al. (2016) (Sorensen et al., 2016) 101AD/169NC Independent set (93p/140 s) 2 74%
Hippocampus + Entorhinal Cortex 230AD/230NC Independent set (133p/198 s) 2 73%
Hippocampus + Entorhinal Cortex 230AD/230NC Independent set (156p/152 s) 3 76%
Hippocampus + Entorhinal Cortex 230AD/230NC Independent set (177p/84 s) 5 84%