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Dear Editors,

The incidence of thrombosis is dramatically enhanced in sepsis patients and under 

conditions of hypoxia (reduced oxygenation), but the mechanisms that regulate sepsis-

induced thrombosis are incompletely understood. Meanwhile, current treatments for sepsis-

associated thrombosis may lead to increased bleeding or re-thrombosis. A better 

understanding of the mechanisms that control sepsis-induced thrombosis could lead to the 

development of novel treatments that aim to reduce thrombosis in sepsis patients.

Deep vein thrombosis has an annual incidence of approximately 1 in 500 in the general 

population [1], while the incidence of venous thromboembolism increases in sepsis patients 

to ~40% [2]. Mortality is also increased by more than 10% in sepsis patients with venous 

thromboembolism compared with thrombosis-free sepsis patients [2]. Notably, sepsis 

patients suffer from increased propensity for thrombosis in the pulmonary vasculature as 

well as the deep veins [3–6]. Sepsis not only leads to an increased risk of thrombosis in 

humans [1, 2], but also enhances thrombus formation in rodents [7–9]. Along with platelet-

neutrophil aggregation and the formation of cross- linked fibrin, thrombosis involves 

endothelial activation, which is triggered by sepsis challenge [10]. Mechanisms that regulate 
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sepsis-associated thrombus formation have been elucidated previously, including 

inflammatory cytokine- and toll-like receptor-induced thrombosis [7, 9, 11–13], but the 

effect of cell-specific and hypoxia-responsive signalling pathways on sepsis-induced 

thrombosis remains unclear.

Hypoxia signalling and sepsis-induced thrombosis

Thrombi are more likely to form under hypoxia compared with normoxia in experimental 

animal studies and humans [14–16]. Under hypoxic or inflammatory conditions, hypoxia-

inducible factors 1α and 2α (HIF1α and HIF2α) accumulate and translocate to the cell 

nucleus, where they bind with HIFβ to form HIF1 and HIF2 respectively [17]. The active 

HIF1 or HIF2 complex then binds to the hypoxia-responsive element of its target genes, 

causing transcriptional upregulation [17]. Although HIF1α expression is reduced in the 

leukocytes of sepsis patients compared with healthy volunteers, this may be a consequence 

of chronic stimulation [18], and HIF1α expression is acutely induced by sepsis challenge in 

human monocytes [18] and murine macrophages [19]. Subsequently, HIF1 signalling is 

highly involved in the vascular response to sepsis challenge [20–22]. Cell- and species- 

specific expression patterns of the HIFα isoforms following acute versus chronic sepsis 

challenge could be investigated in future studies. Given that the vascular response to 

inflammatory and hypoxic stimuli is regulated by HIF1 and HIF2, future studies should also 

aim to investigate whether sepsis leads to increases in the production of factors that control 

thrombosis via increased activation of cell-specific HIFs. For example, it would be 

interesting to determine whether sepsis challenge leads to increases in endothelial and 

myeloid cell-specific HIF1α and HIF2α, which in turn increase the levels of HIF1 and HIF2 

targets that control sepsis-induced thrombus formation (Fig 1). Endothelial and myeloid 

HIF1 and HIF2 targets include factors that are highly expressed during sepsis and regulate 

coagulation/thrombosis, such as pro-thrombotic tissue factor (TF) [23–25] and plasminogen 

activator inhibitor (PAI) 1 [26–28], and anti-thrombotic TF pathway inhibitor (TFPI) [29, 

30] and matrix metalloproteinases (MMPs) 2 and 9 [17, 31, 32]. Despite evidence that 

systemic and local hypoxia stimulates sepsis-free thrombosis [16, 23, 33, 34], and that HIF1 

activation could promote sepsis-free thrombosis [35] for instance via upregulation of TF and 

PAI1 [23, 36, 37], direct evidence for a role of cell-specific HIFs in sepsis-induced 

thrombosis is lacking.

To elucidate the roles of endothelial or myeloid HIF1α or HIF2α in sepsis-induced 

thrombus formation, venous [38, 39] or pulmonary [40] thrombosis could be assessed in 

sepsis-challenged cell-specific HIF1α or HIF2α knockout mice and compared with wild 

type littermates. If a HIF- mediated pathway was identified as a potential therapeutic 

candidate for reducing sepsis- associated thrombosis, then the effect of targeting this 

pathway could be investigated in prevention or treatment studies of wild type mice. Such 

studies could ultimately identify a cell-specific HIF- mediated pathway that regulates sepsis-

induced thrombus formation and would therefore represent a putative therapeutic target. If 

so and given that HIF agonists and antagonists are already in clinical trials, such drugs could 

eventually be tested for their efficacy against sepsis-associated thrombosis in humans.
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Inflammation-targeting strategies in sepsis-induced thrombosis

Future studies could also aim to assess whether sepsis-associated thrombus formation can be 

reduced using recently-developed inflammation-targeting strategies [41]. These strategies 

include drug-loaded nanoparticles that are double-coated with antibodies and proteins to 

enable inflammation targeting and phagocytosis evasion [41]. Given that inflammatory 

endothelial and myeloid cells overexpress intercellular adhesion molecule (ICAM) 1 [42, 

43], and that sepsis- induced thrombosis is dependent upon ICAM1 [7], therapies could be 

delivered not only in their free form, but also encapsulated in modified nanoparticles coated 

with anti-ICAM1 antibody and CD47 peptides [41]. Anti-ICAM1 antibody improves 

nanoparticle delivery to inflammatory ICAM1- expressing endothelial cells and 

macrophages, and CD47 reduces phagocytic clearance of the drug-loaded nanoparticle from 

the circulation [41]. Given that molecule-, cell-, and tissue-targeting strategies are currently 

being developed to enhance drug effectiveness against inflammatory diseases (e.g. bacterial 

infection [44], breast cancer [45], and autoimmune disease [46]), it would be intriguing to 

assess whether such nanotechnological advances could be used effectively in thrombosed 

tissue (Fig 2) [47].

The potential anti-thrombotic impact of signalling pathways that are identified and targeted 

in experimental studies of sepsis-induced thrombosis should ultimately be assessed in 

human cells or tissues. Nevertheless, studies employing experimental models of thrombus 

formation could facilitate translational studies of other diseases linked with increased 

thrombosis, including chronic thromboembolic pulmonary hypertension [48] and lung 

cancer [40]. Importantly, parallel preclinical and clinical investigations of sepsis-induced 

thrombus formation could lead to the development of new therapies against thrombosis in 

patients with sepsis.
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Figure 1: Investigations of HIF signalling pathways in sepsis-induced thrombosis
Proposed model of sepsis-induced thrombus formation. Abbreviations: EC, endothelial cell; 

Mac, macrophage; MMP, matrix metalloproteinase; PAI, plasminogen activator inhibitor; 

PMN, polymorphonuclear cell; TF, tissue factor; TFPI, tissue factor pathway inhibitor.
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Figure 2: Potential treatment of sepsis-induced thrombosis with modified nanoparticles
Experimental studies could assess whether sepsis-induced thrombosis could be treated with 

drug (yellow)-loaded nanoparticles (black) modified by the additions of (i) anti-ICAM1 

antibody (green) to target ICAM1-expressing inflammatory/thrombosed tissue and (ii) CD47 

(red) to reduce phagocytotic clearance from the circulation. Abbreviations: ICAM, 

intercellular adhesion molecule; MNP, modified nanoparticle.
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