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Abstract

Sensory stimuli can be recognized more rapidly when they are expected. This phenomenon 

depends on expectation affecting the cortical processing of sensory information. However, the 

mechanisms responsible for the effects of expectation on sensory circuits remain elusive. Here, we 

report a novel computational mechanism underlying the expectation-dependent acceleration of 

coding observed in the gustatory cortex of alert rats. We use a recurrent spiking network model 

with a clustered architecture capturing essential features of cortical activity, such as its intrinsically 

generated metastable dynamics. Relying on network theory and computer simulations, we propose 

that expectation exerts its function by modulating the intrinsically generated dynamics preceding 

taste delivery. Our model’s predictions were confirmed in the experimental data, demonstrating 

how the modulation of ongoing activity can shape sensory coding. Altogether, these results 

provide a biologically plausible theory of expectation and ascribe a new functional role to 

intrinsically generated, metastable activity.
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Introduction

Expectation exerts a strong influence on sensory processing. It improves stimulus detection, 

enhances discrimination between multiple stimuli and biases perception towards an 

anticipated stimulus1–3. These effects, demonstrated experimentally for various sensory 

modalities and in different species2,4–6, can be attributed to changes in sensory processing 

occurring in primary sensory cortices. However, despite decades of investigations, little is 

known regarding how expectation shapes the cortical processing of sensory information.

While different forms of expectation likely rely on a variety of neural mechanisms, 

modulation of pre-stimulus activity is believed to be a common underlying feature7–9. Here, 

we investigate the link between pre-stimulus activity and the phenomenon of general 

expectation in a recent set of experiments performed in the gustatory cortex (GC) of alert 

rats6. In those experiments, rats were trained to expect the intraoral delivery of one of four 

possible tastants following an anticipatory cue. The use of a single cue allowed the animal to 

predict the availability of gustatory stimuli, without forming expectations on which specific 

taste was being delivered. Cues predicting the general availability of taste modulated the 

firing rates of GC neurons. Tastants delivered after the cue were encoded more rapidly than 

uncued tastants, and this improvement was phenomenologically attributed to the activity 

evoked by the preparatory cue. However, the precise computational mechanism linking 

faster coding of taste and cue responses remains unknown.

Here we propose a mechanism whereby an anticipatory cue modulates the timescale of 

temporal dynamics in a recurrent population model of spiking neurons. In our model, 

neurons are organized in strongly connected clusters and produce sequences of metastable 

states similar to those observed during both pre-stimulus and evoked activity periods10–15. A 

metastable state is a vector across simultaneously recorded neurons that can last for several 

hundred milliseconds before giving way to the next state in a sequence. The ubiquitous 

presence of state sequences in many cortical areas and behavioral contexts16–22 has raised 

the issue of their role in sensory and cognitive processing. Here, we elucidate the central role 

played by pre-stimulus metastable states in processing forthcoming stimuli, and show how 

cue-induced modulations drive anticipatory coding. Specifically, we show that an 

anticipatory cue affects sensory coding by decreasing the duration of metastable states and 

accelerating the pace of state sequences. This phenomenon, which results from a reduction 

in the effective energy barriers separating the metastable states, accelerates the onset of 

specific states coding for the presented stimulus, thus mediating the effects of general 

expectation. The predictions of our model were confirmed in a new analysis of the 

experimental data, also reported here.

Altogether, our results provide a model for general expectation, based on the modulation of 

pre-stimulus ongoing cortical dynamics by anticipatory cues, leading to acceleration of 

sensory coding.
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Results

Anticipatory cue accelerates stimulus coding in a clustered population of neurons

To uncover the computational mechanism linking cue-evoked activity with coding speed, we 

modeled the gustatory cortex (GC) as a population of recurrently connected excitatory and 

inhibitory spiking neurons. In this model, excitatory neurons are arranged in clusters10,23 

(Fig. 1a), reflecting the existence of assemblies of functionally correlated neurons in GC and 

other cortical areas24,25. Recurrent synaptic weights between neurons in the same cluster are 

potentiated compared to neurons in different clusters, to account for metastability in GC14,15 

and in keeping with evidence from electrophysiological and imaging experiments24–26. This 

spiking network also has bidirectional random and homogeneous (i.e., non-clustered) 

connections among inhibitory neurons and between inhibitory and excitatory neurons. Such 

connections stabilize network activity by preventing runaway excitation and play a role in 

inducing the observed metastability10,13,14.

The model was probed by sensory inputs modeled as depolarizing currents injected into 

randomly selected neurons. We used four sets of simulated stimuli, wired to produce 

gustatory responses reminiscent of those observed in the experiments in the presence of 

sucrose, sodium chloride, citric acid, and quinine (see Methods). The specific connectivity 

pattern used was inferred by the presence of both broadly and narrowly tuned responses in 

GC27,28, and the temporal dynamics of the inputs were varied to determine the robustness of 

the model (see below).

In addition to input gustatory stimuli, we included anticipatory inputs designed to produce 

cue-responses analogous to those seen experimentally in the case of general expectation. To 

simulate general expectation, we connected anticipatory inputs with random neuronal targets 

in the network. The peak value of the cue-induced current for each neuron was sampled 

from a normal distribution with zero mean and fixed variance, thus introducing a spatial 

variance in the afferent currents. This choice reflected the large heterogeneity of cue 

responses observed in the empirical data, where excited and inhibited neural responses 

occurred in similar proportions9 and overlapped partially with taste responses6,9. Fig 1b 

shows two representative cue-responsive neurons in the model: one inhibited by the cue and 

one excited by the cue. Cue responses in the model were in quantitative agreement with the 

observed responses for a large range of cue-induced spatial variance (Fig. S1; see Fig. S2 for 

representative unresponsive neurons).

Given these conditions, we simulated the experimental paradigm adopted in awake-behaving 

rats to demonstrate the effects of general expectation6,9. In the original experiment, rats were 

trained to self-administer into an intra-oral cannula one of four possible tastants following an 

anticipatory cue. At random trials and time during the inter-trial interval, tastants were 

unexpectedly delivered in the absence of a cue. To match this experiment, the simulated 

paradigm interleaves two conditions: in expected trials, a stimulus (out of 4) is delivered at 

t=0 after an anticipatory cue (the same for all stimuli) delivered at t=-0.5s (Fig. 1b); in 

unexpected trials the same stimuli are presented in the absence of the cue. Importantly, in the 

general expectation paradigm adopted here, the anticipatory cue is identical for all stimuli in 
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the expected condition. Therefore, it does not convey any information regarding the identity 

of the stimulus being delivered.

We tested whether cue presentation affected stimulus coding. A multi-class classifier (see 

Methods and Fig. S3) was used to assess the information about the stimuli encoded in the 

neural activity, where the four class labels correspond to the four tastants. Stimulus identity 

was encoded well in both conditions, reaching perfect accuracy for all four tastants after a 

few hundred milliseconds (Fig. 1c). However, comparing the time course of the decoding 

accuracy between conditions, we found that the increase in decoding accuracy was 

significantly faster in expected than in unexpected trials (Fig. 1c, pink and blue curves 

represent expected and unexpected conditions, respectively). Indeed, the onset time of a 

significant decoding occurred earlier in the expected vs. the unexpected condition (decoding 

latency was 0.13 ± 0.01 s [mean±s.e.m.] for expected compared to 0.21 ± 0.02 s for 

unexpected, across 20 independent networks; p=0.002, two-sided t-test, d.o.f.=39; inset in 

Fig. 1c). These measures refer to the decoding accuracy averaged across all tastants; similar 

results were obtained for each individual tastant separately (Fig. S3b). Thus, in the model 

network, the interaction of cue response and activity evoked by the stimuli results in faster 

encoding of the stimuli themselves, mediating the expectation effect.

To clarify the role of neural clusters in mediating expectation, we simulated the same 

experiments in a homogeneous network (i.e., without clusters) operating in the balanced 

asynchronous regime23,29 (Fig. 1d, intra- and inter-cluster weights were set equal; all other 

network parameters and inputs were the same as for the clustered network). Even though 

single neurons’ responses to the anticipatory cue were comparable to the ones observed in 

the clustered network (Fig. 1e and Fig. S1–S2), stimulus encoding was not affected by cue 

presentation (Fig. 1f). In particular, the onset of a significant decoding was similar in the two 

conditions (latency of significant decoding was 0.17 ± 0.01 s for expected and 0.16 ± 0.01 s 

for unexpected tastes averaged across 20 sessions; p=0.31, two-sided t-test, d.o.f.=39; inset 

in Fig. 1f).

A defining feature of our model is that it incorporates excited and inhibited cue responses in 

such a manner to affect only the spatial variance of the activity across neurons, while leaving 

the mean input to the network unaffected. As a result, the anticipatory cue leaves average 

firing rates unchanged in the clustered network (Fig. S4), and only modulates the network 

temporal dynamics. Our model thus provides a mechanism whereby increasing the spatial 

variance of top-down inputs has, paradoxically, a beneficial effect on sensory coding.

Robustness of anticipatory activity

To test the robustness of anticipatory activity in the clustered network, we systematically 

varied key parameters related to the sensory and anticipatory inputs, as well as network 

connectivity and architecture (Fig. 2 and S5). We first discuss variation in stimulus features. 

Increasing stimulus intensity led to a faster encoding of the stimulus in both conditions and 

maintained anticipatory activity (Fig. 2a; two-way ANOVA with factors “stimulus slope”, p 
< 10−18, F(4)=30.4, and “condition” – i.e., expected vs. unexpected –, p < 10−15, F(1)=79.8). 

Anticipatory activity induced by the cue depended on stimulus intensity only weakly 

(p(interaction)=0.05, F(4)=2.4), and was present even in the case of a step-like stimulus (Fig. 
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S5a). Moreover, anticipatory activity was obtained in the presence of larger numbers of 

stimuli and did not depend appreciably on the total number of stimuli (Fig. S5b; two-way 

ANOVA with factors “number of stimuli” (p=0.57, F(3)=0.67) and “condition” (p < 10−7, 

F(1)=35.3; p(interaction)=0.66, F(3)=0.54). Finally, anticipatory activity was present also 

when the stimulus selectivity targeted both excitatory and inhibitory neurons, rather than 

excitatory neurons only (Fig. 2b).

We then performed variations in network size and architecture. We estimated the decoding 

accuracy in ensembles of constant size (20 neurons) sampled from networks of increasing 

size (Fig. 2a), fixing both cluster size and the probability that each cluster was selective to a 

given stimulus (50%). Cue-induced anticipation was even more pronounced in larger 

networks (Fig. 2a, two-way ANOVA with factors “network size” (p < 10−20, F(3)=49.5), 

“condition” (p < 10−16, F(1)=90; p(interaction)=p < 10−10, F(3)=20). In our main model the 

neural clusters were segregated in disjoint groups. We investigated an alternative scenario 

where neurons may belong to multiple clusters, resulting in an architecture with overlapping 

clusters30. We found that anticipatory activity was present also in networks with overlapping 

clusters (Fig. S5d).

Next, we assessed robustness to variations in cue parameters – specifically: variations in the 

spatial variance σ2 of the cue-induced afferent currents; variations in the kinetics of cue 

stimulation; and variations in the type of neurons targeted by the cue. We found that coding 

anticipation was present for all values of σ above 10% (Fig. 2c, two-way ANOVA with 

factors “cue variance” (p=0.09, F(7)=1.8) and “condition” (p < 10−7, F(1)=31); 

p(interaction)=0.07, F(7)=1.9). Anticipatory activity was also robust to variations in the time 

course of the cue-evoked currents (Fig. 2c, two-way ANOVA with factors “time course” 

(p=0.03, F(4)=2.8) and “condition” (p < 10−15, F(1)=72.7; p(interaction)=0.12, F(4)=1.8). 

We also considered a model with constant cue-evoked currents (step-like model), to further 

investigate a potential role (if any) of the cue’s variable time course on anticipatory activity, 

and found anticipatory coding also in this case (Fig. S5c).

Finally, we tested whether or not anticipation was present if inhibitory neurons, in addition 

to excitatory neurons, were targeted by the cue (while maintaining stimulus selectivity for 

excitatory neurons only), and found robust anticipatory activity also in that case (Fig. 2d). 

Given the solid robustness of the anticipatory activity in the clustered network, one may be 

tempted to conclude that any cue model might induce coding acceleration in this type of 

network. However, in a model where the cue recruited the recurrent inhibition (by increasing 

the input currents to the inhibitory population), stimulus coding was decelerated (Fig. S6), 

suggesting a potential mechanism mediating the effect of distractors.

Overall, these results demonstrate that a clustered network of spiking neurons can 

successfully reproduce the acceleration of sensory coding induced by expectation and that 

removing clustering impairs this function.

Anticipatory cue speeds up the network’s dynamics

Having established that a clustered architecture enables the effects of expectation on coding, 

we investigated the underlying mechanism.
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Clustered networks spontaneously generate highly structured activity characterized by 

coordinated patterns of ensemble firing. This activity results from the network hopping 

between metastable states in which different combinations of clusters are simultaneously 

activated11,13,14. To understand how anticipatory inputs affected network dynamics, we 

analyzed the effects of cue presentation for a prolonged period of 5 seconds in the absence 

of stimuli. Activating anticipatory inputs led to changes in network dynamics, with clusters 

turning on and off more frequently in the presence of the cue (Fig. 3a). We quantified this 

effect by showing that a cue-induced increase in input spatial variance (σ2) led to a 

shortened cluster activation lifetime (top panel in Fig. 3b; Kruskal-Wallis one-way ANOVA: 

p<10−17, χ2(5) =91.2), and a shorter cluster inter-activation interval (i.e., quiescent intervals 

between consecutive activations of the same cluster, bottom panel in Fig. 3b, Kruskal-Wallis 

one-way ANOVA: p<10−18, χ2(5) =98.6).

Previous work has demonstrated that metastable states of co-activated clusters result from 

attractor dynamics11,13,14. Hence, the shortening of cluster activations and inter-activation 

intervals observed in the model could be due to modifications in the network’s attractor 

dynamics. To test this hypothesis, we performed a mean field theory analysis30–33 of a 

simplified network with only two clusters, therefore producing a reduced repertoire of 

configurations. Those include two configurations in which either cluster is active and the 

other inactive (‘A’ and ‘B’ in Fig. 3c), and a configuration where both clusters are 

moderately active (‘C’). The dynamics of this network can be analyzed using a reduced, 

self-consistent theory of a single excitatory cluster, said to be in focus31 (see Methods for 

details), based on the effective transfer function relating the input and output firing rates of 

the cluster (r and rout, Fig. 3c). The latter are equal in the A, B and C network configurations 

described above – also called ‘fixed points’ since these are the points where the transfer 

function intersects the identity line, rout = Φ(rin).

Configurations A and B would be stable in an infinitely large network, but they are only 

metastable in networks of finite size, due to intrinsically generated variability13. Transitions 

between metastable states can be modeled as a diffusion process and analyzed with 

Kramers’ theory34, according to which the transition rates depend on the height Δ of an 

effective energy barrier separating them13,34. In our theory, the effective energy barriers (Fig. 

2c, bottom row) are obtained as the area of the region between the identity line and the 

transfer function (shaded areas in top row of Fig. 3c; see Methods for details). The effective 

energy is constructed so that its local minima correspond to stable fixed points (here, A and 

B) while local maxima correspond to unstable fixed points (C). Larger barriers correspond to 

less frequent transitions between stable configurations, whereas lower barriers increase the 

transition rates and therefore accelerate the network’s metastable dynamics.

This picture provides the substrate for understanding the role of the anticipatory cue in the 

expectation effect. Basically, the presentation of the cue modulates the shape of the effective 

transfer function, which results in the reduction of the effective energy barriers. More 

specifically, the cue-induced increase in the spatial variance, σ2, of the afferent current 

flattens the transfer function along the identity line, reducing the area between the two 

curves (shaded regions in Fig. 3c). In turn, this reduces the effective energy barrier 

separating the two configurations (Fig. 3c, bottom row), resulting in faster dynamics. The 
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larger the cue-induced spatial variance σ2 in the afferent currents, the faster the dynamics 

(Fig. 3d; lighter shades represent larger σs).

In summary, this analysis shows that the anticipatory cue increases the spontaneous 

transition rates between the network’s metastable configurations by reducing the effective 

energy barrier necessary to hop among configurations. In the following we uncover an 

important consequence of this phenomenon for sensory processing.

Anticipatory cue induces faster onset of taste-coding states

The cue-induced modulation of attractor dynamics led us to formulate a hypothesis for the 

mechanism underlying the acceleration of coding: The activation of anticipatory inputs prior 

to sensory stimulation may allow the network to enter more easily stimulus-coding 

configurations while exiting more easily non-coding configurations. Fig. 4a shows simulated 

population rasters in response to the same stimulus presented in the absence of, or following, 

a cue. Spikes in red hue represent activity in taste-selective clusters and show a faster 

activation latency in response to the stimulus preceded by the cue compared to the uncued 

condition. A systematic analysis revealed that in the cued condition, the clusters activated by 

the subsequent stimulus had a significantly faster activation latency than in the uncued 

condition (Fig. 4b,0.22 ± 0.01 s (mean±s.e.m.) during cued compared to 0.32 ± 0.01 s for 

uncued stimuli; p<10−5, two-sided t-test, d.o.f.=39).

We elucidated this effect using mean field theory. In the simplified two-cluster network of 

Fig. 4c (the same network as in Fig. 3d), the configuration where the taste-selective cluster is 

active (“coding state”) or the nonselective cluster is active (“non-coding state”) have initially 

the same effective potential energy (local minima of the black line in Fig. 4c). The onset of 

the cue reduces the effective energy barrier separating these configurations (dashed vs. full 

line). After stimulus onset, the coding state sits in a deeper well (lighter lines) compared to 

non-coding state, due to the stimulation biasing the selective cluster. Stronger stimuli (lighter 

shades in Fig. 4c) progressively increase the difference between the wells’ depths breaking 

their initial symmetry, making a transition from the non-coding to the coding state more 

likely than a transition from the coding to the non-coding state34. The anticipatory cue 

reduces further the existing barrier and thereby increases the transition rate towards coding 

configurations. This results into faster coding, on average, of the encoded stimuli.

We tested this model prediction on the data from Samuelsen et al. (Fig. 5)6. To compare the 

data to the model simulations, we randomly sampled ensembles of model neurons so as to 

match the sizes of the empirical datasets. Since we only have access to a subset of neurons in 

the experiments, rather than the full network configuration, we segmented the ensemble 

activity in sequences of metastable states via a Hidden Markov Model (HMM) analysis (see 

Methods). Previous work has demonstrated that HMM states can be treated as proxies of 

metastable network configurations14. In particular, activation of taste-coding configurations 

for a particular stimulus results in HMM states containing information about that stimulus 

(i.e., taste-coding HMM states). If the hypothesis originating from the model is correct, 

transitions from non-coding to taste-coding HMM states should be faster in the presence of 

the cue. We indeed found faster transitions to HMM coding states in cued compared to 

uncued trials for both model and data (Fig. 5a and 5c, respectively; coding states indicated 

Mazzucato et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by horizontal bars), with shorter latency of coding states in both cases (Fig. 5b–d, mean 

latency of first coding state in the model was 0.32 ± 0.02 s for expected vs 0.38 ± 0.01 s for 

unexpected trials; two-sided t-test, d.o.f.=39, p=0.014; in the data, mean latency was 0.46 

± 0.02 s for expected vs 0.56 ± 0.03 s for unexpected trials; two-sided t-test, d.o.f.=37, 

p=0.026).

Altogether, these results demonstrate that anticipatory inputs speed up sensory coding by 

reducing the effective energy barriers from non-coding to coding metastable states.

Discussion

Expectations modulate perception and sensory processing. Typically, expected stimuli are 

recognized more accurately and rapidly than unexpected ones1–3. In the gustatory cortex, 

expectation of tastants has been related to changes in firing activity evoked by anticipatory 

cues6. What causes these firing rate changes? Here, we propose that the effects of 

expectation follow from the modulation of the intrinsically generated cortical dynamics, 

ubiquitously observed in cortical circuits14,16–18,22,35–37.

The proposed mechanism entails a recurrent spiking network where excitatory neurons are 

arranged in clusters14,15. In such a model, network activity unfolds through state sequences, 

whose dynamics speed up in the presence of anticipatory cue. This anticipates the onset of 

‘coding states’ (containing the most information about the delivered stimulus), and explains 

the faster decoding latency observed by Samuelsen et al6 (see Fig. 1c).

Notably, this anticipatory mechanism is unrelated to changes in network excitability, which 

would lead to unidirectional changes in firing rates. It relies instead on an increase in the 

spatial (i.e., across neurons) variance of the network’s activity caused by the anticipatory 

cue. This increase in the input’s variance is observed experimentally after training9, and is 

therefore the consequence of having learned the anticipatory meaning of the cue. The 

consequent acceleration of state sequences predicted by the model was also confirmed in the 

data from ensembles of simultaneously recorded neurons in awake-behaving rats.

These results provide a new functional interpretation of ongoing cortical activity and a 

precise explanatory link between the intrinsic dynamics of neural activity in a sensory 

circuit, and a specific cognitive process, that of general expectation.6,38

Clustered connectivity and metastable states

A key feature of our model is the clustered architecture of the excitatory population. 

Theoretical work had previously shown that a clustered architecture can produce stable 

activity patterns10. Noise (either externally11,39 or internally generated13,14) may destabilize 

those patterns and ignite a progression through metastable states. These states are 

reminiscent of those observed in cortex during both task engagement12,16,40,41 and inter-trial 

periods14,36, including those found in rodent gustatory cortex during taste processing and 

decision making14,39,42. Clustered spiking networks also account for various physiological 

observations such as stimulus-induced reduction of trial-to-trial variability11,13,14,43, neural 

dimensionality15, and firing rate multistability14.
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In this work, we showed that clustered spiking networks also have the ability to modulate 

coding latency and therefore explain the phenomenon of general expectation. The uncovered 

link between generic anticipatory cues, network metastability, and coding speed, is 

dependent on a clustered architecture, since removing the excitatory clusters (i.e., 

homogeneous connectivity) eliminates the anticipatory mechanism (Fig. 1d–f).

Functional role of heterogeneity in cue responses

As stated in the previous section, the presence of clusters is a necessary ingredient to obtain 

a faster latency of coding. Here we discuss the second necessary ingredient, i.e., the 

presence of heterogeneous neural responses to the anticipatory cue (Fig. 1b).

Responses to anticipatory cues have been extensively studied in cortical and subcortical 

areas in alert rodents6,9,44,45. Cues evoke heterogeneous patterns of activity, either exciting 

or inhibiting single neurons. The proportion of cue responses and their heterogeneity 

develops with training,9,45 suggesting a fundamental function of these patterns. In the 

generic expectation paradigm considered here, the anticipatory cue does not convey any 

information about the identity of the forthcoming tastant, rather it just signals the availability 

of a stimulus. Experimental evidence suggests that the cue may induce a state of arousal, 

which was previously described as “priming” the sensory cortex.6,46 Here, we propose an 

underlying mechanism in which the cue is responsible for acceleration of coding by 

increasing the spatial variance of pre-stimulus activity. In turn, this modulates the shape of 

the neuronal current-to-rate transfer function and thus lowers the effective energy barriers 

between metastable configurations.

We note that the presence of both excited and inhibited cue responses poses a challenge to 

simple models of neuromodulation. The presence of cue-evoked suppression of firing9 

suggests that cues do not improve coding by simply increasing the excitability of cortical 

areas. Additional mechanisms and complex patterns of connectivity may be required to 

explain the suppression effects induced by the cue. However, here we provide a 

parsimonious explanation of how heterogeneous responses can improve coding without 

postulating any specific pattern of connectivity other than i) random projections from 

thalamic and anticipatory cue afferents and ii) the clustered organization of the intra-cortical 

circuitry. Notice that the latter contains wide distributions of synaptic weights and can be 

understood as the consequence of Hebb-like re-organization of the circuitry during 

training47,48.

Specificity of the anticipatory mechanism

Our model of anticipation relies on gain reduction in clustered excitatory neurons due to a 

larger spatial variance of the afferent currents. We have shown that this model is robust to 

variations in parameters and architecture (Fig. 2 and Fig. S5); what about the specificity of 

its mechanism? A priori, the expectation effect might be achieved through different means, 

such as: increasing the strength of feedforward couplings; decreasing the strength of 

recurrent couplings; or modulating background synaptic inputs49. However, when scoring 

those models on the criteria of coding anticipation and heterogeneous cue responses, we 

found that they failed to simultaneously match both criteria, although for some range of 
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parameters they could reproduce either one (see Fig. S7–S9 and Table S1 for a detailed 

analysis).

While our exploration of the alternative models’ parameter space did not produce an 

example that could match the data, we cannot in principle exclude that one of the alternative 

models could match the data in a yet unexplored parameter region. This may be particularly 

the case for the model of Fig. S7c, which can produce anticipation of coding but does not 

match the patterns of cue responses observed in the experiments. We are aware that, due to 

the typically large number of cellular and network parameters, it is hard to rule out these or 

other alternative models entirely. We could, however, demonstrate that the main mechanism 

proposed here (Fig. 1a) captures the plurality of experimental observations pertaining to 

anticipatory activity in a robust and biologically plausible way.

Cortical timescales, state transitions, and cognitive function

In populations of spiking neurons, a clustered architecture can generate reverberating 

activity and sequences of metastable states. Transitions from state to state can be typically 

caused by external inputs13,14. For instance, in frontal cortices, sequences of states are 

related to specific epochs within a task, with transitions evoked by behavioral events16,17,20. 

In sensory cortex, progressions through state sequences can be triggered by sensory stimuli 

and reflect the dynamics of sensory processing21,40. Importantly, state sequences have been 

observed also in the absence of any external stimulation, promoted by intrinsic fluctuations 

in neural activity14,37. However, the potential functional role, if any, of this type of ongoing 

activity has remained unexplored.

Recent work has started to uncover the link between ensemble dynamics and sensory and 

cognitive processes. State transitions in various cortical areas have been linked to decision 

making39,50, choice representation20, rule-switching behavior22, and the level of task 

difficulty21. However, no theoretical or mechanistic explanations have been given for these 

phenomena.

Here we provide a mechanistic link between state sequences and expectation in terms of 

specific modulations of intrinsic dynamics, i.e., the anticipatory cue triggers a change of the 

transition probabilities. The modulation of intrinsic activity can dial the duration of states, 

producing either shorter or longer timescales. A shorter timescale leads to faster state 

sequences and coding anticipation after stimulus presentation (Figs. 1 and 5). Other external 

perturbations may induce different effects: for example, recruiting the network’s inhibitory 

population slows down the timescale, leading to a slower coding (Fig. S6).

The interplay between intrinsic dynamics and anticipatory influences presented here is a 

novel mechanism for generating diverse timescales, and may have rich computational 

consequences. We demonstrated its function in increasing coding speed, but its role in 

mediating cognition is likely to be broader and calls for further explorations.
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Methods

Behavioral training and electrophysiology.

The experimental data come from a previously published dataset Ref.6. Experimental 

procedures were approved by the Institutional Animal Care and Use Committee of Stony 

Brook University and complied with university, state, and federal regulations on the care and 

use of laboratory animals. Movable bundles of 16 microwires were implanted bilaterally in 

the gustatory cortex and intraoral cannulae (IOC) were inserted bilaterally. After 

postsurgical recovery, rats were trained to self-administer fluids through IOCs by pressing a 

lever under head-restraint within 3s presentation of an auditory cue (“expected trials”; a 75 

dB pure tone at a frequency of 5 kHz). The inter-trial interval was progressively increased to 

40 ± 3s. Early presses were discouraged by the addition of a 2s delay to the inter-trial 

interval. During training and electrophysiology sessions, additional tastants were 

automatically delivered through the IOC at random times near the middle of the inter-trial 

interval and in the absence of the anticipatory cue (“unexpected trials”). The following 

tastants were delivered: 100 mM NaCl, 100 mM sucrose, 100 mM citric acid, and 1 mM 

quinine HCl. Water (50 μl) was delivered to rinse the mouth clean through a second IOC, 5s 

after the delivery of each tastant. Multiple single-unit action potentials were amplified, 

bandpass filtered, and digitally recorded. Single units were isolated using a template 

algorithm, clustering techniques, and examination of inter-spike interval plots (Offline 

Sorter, Plexon). Starting from a pool of 299 single neurons in 37 sessions, neurons with peak 

firing rate lower than 1 spks/s (defined as silent) were excluded from further analysis, as 

well as neurons with a large peak around the 6–10 Hz in the spike power spectrum, which 

were classified as somatosensory27,28. Only ensembles with 5 or more simultaneously 

recorded neurons were included in the rest of the analyses. Ongoing and evoked activity 

were defined as occurring in the 5s-long interval before or after taste delivery, respectively.

Cue responsiveness.

A neuron was deemed responsive to the cue if a sudden change in its firing rate was 

observed during the post-cue interval, detected via a “change-point” (CP) procedure 

described in Ref.28. Briefly, we built the cumulative distribution function of the spike count 

(CumSC) across all trials in each session, in the interval starting 0.5s before, and ending 1 s 

after, cue delivery. We then ran the CP detection algorithm on the CumSC record with a 

given tolerance level p=0.05. If any CP was detected before cue presentation, the algorithm 

was repeated with lower tolerance (lower p-value) until no CP was present before the cue. If 

a legitimate CP was found anywhere within 1s after cue presentation, the neuron was 

deemed responsive. If no CP was found, the neuron was deemed not responsive. For neurons 

with excited (inhibited) cue responses, ΔPSTH was defined as the difference between 

positive (negative) peak responses post-cue and the mean baseline activity in the 0.5s 

preceding cue presentation.

Ensemble states detection.

A Hidden Markov Model (HMM) analysis was used to detect ensemble states in both the 

empirical data and model simulations. Here, we give a brief description of the method used 

and we refer the reader to Refs.14,16,21,40 for more detailed information.
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The HMM assumes that an ensemble of N simultaneously recorded neurons is in one of M 
hidden states at each given time bin. States are firing rate vectors ri(m), where i = 1 is the 

neuron index and m = 1,…,M identifies the state. In each state, neurons were assumed to 

discharge as stationary Poisson processes (Poisson-HMM) conditional on the state’s firing 

rates. Trials were segmented in 2 ms bins, and the value of either 1 (spike) or 0 (no spike) 

was assigned to each bin for each given neuron (Bernoulli approximation for short time 

bins); if more than one neuron fired in a given bin (a rare event), a single spike was 

randomly assigned to one of the firing neurons. A single HMM was used to fit all trials in 

each recording session, resulting in the emission probabilities ri(m) and in a set of transition 

probabilities between the states. Emission and transition probabilities were calculated with 

the Baum-Welch algorithm51 with a fixed number of hidden states M, yielding a maximum 

likelihood estimate of the parameters given the observed spike trains. Since the model log-

likelihood LL increases with M, we repeated the HMM fits for increasing values of M until 

we hit a minimum of the Bayesian Information Criterion (BIC, see below and Ref.51). For 

each M, the LL used in the BIC was the sum over 10 independent HMM fits with random 

initial guesses for emission and transition probabilities. This step was needed since the 

Baum-Welch algorithm only guarantees reaching a local rather than global maximum of the 

likelihood. The model with the lowest BIC (having M* states) was selected as the winning 

model, where BIC = −2LL + [M(M – 1) + MN] ln T, T being the number of observations in 

each session (= number of trials × number of bins per trials). Finally, the winning HMM 

model was used to “decode” the states from the data according to their posterior probability 

given the data. During decoding, only those states with probability exceeding 80% in at least 

25 consecutive 2ms-bins were retained (henceforth denoted simply as “states”)15,40. This 

procedure eliminates states that appear only very transiently and with low probability, also 

reducing the chance of overfitting. A median of 6 states per ensemble was found, varying 

from 3 to 9 across ensembles.

Coding states.

In each condition (i.e., expected vs. unexpected), the frequencies of occurrence of a given 

state across taste stimuli were compared with a test of proportions (chi-square, p<0.001 with 

Bonferroni correction to account for multiple states). When a significant difference was 

found across stimuli, a post-hoc Marascuilo test was performed52. A state whose frequency 

of occurrence was significantly higher in the presence of one taste stimulus compared to all 

other tastes was deemed a ‘coding state’ for that stimulus (Fig. 5).

Spiking network model.

We modeled the local neural circuit as a recurrent network of N leaky-integrate-and-fire 

(LIF) neurons, with a fraction nE = 80% of excitatory (E) and nI = 20% of inhibitory (I) 

neurons.10 Connectivity was random with probability pEE = 0.2 for E to E connections and 

pEI = pIE = pII = 0.5 otherwise. Synaptic weights Jij from pre-synaptic neuron j ∈ E, I to 

post-synaptic neuron i ∈ E, I scaled as Ji j = ji j/ N, with Jij drawn from normal distributions 

with mean Jαβ (for α, β = E, I) and 1% SD. Networks of different architectures were 

considered: i) networks with segregated clusters (referred to as “clustered network,” 

parameters as in Tables 1 and 2); ii) networks with overlapping clusters (see Suppl. Figure 
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S5d and Table S2 for details), iii) homogeneous networks (parameters as in Table 1). In the 

clustered network, E neurons were arranged in Q clusters with Nc = 100 neurons per clusters 

on average (1% SD), the remaining fraction nbg of E neurons belonging to an unstructured 

“background” population. In the clustered network, neurons belonging to the same cluster 

had intra-cluster synaptic weights potentiated by a factor J+; synaptic weights between 

neurons belonging to different clusters were depressed by a factor J− = γf(J+ − 1) < 1 with γ 
= 0.5; f = (1 − nbg)/Q is the average number of neurons in each cluster.10 When changing the 

network size N, all synaptic weights Jij were scaled by N, the intra-cluster potentiation 

values were J+=5, 10, 20, 30, 40 for N = 1, 2, 4, 6, 8 × 103 neurons, respectively, and cluster 

size remained unchanged (see also Table 1); all other parameters were kept fixed. In the 

homogeneous network, there were no clusters (J+ = J− = 1).

Model neuron dynamics.

Below threshold the LIF neuron membrane potential evolved in time as

d
dt V = − V

τm
+ Irec + Iext ,

where τm is the membrane time constant and the input currents I are a sum of a recurrent 

contribution Irec coming from the other network neurons and an external current Iext = I0 + 

Istim + Icue (units of Volt/s). Here, I0 is a constant term representing input from other brain 

areas; Istim and Icue represent the incoming stimuli and cue, respectively (see Stimulation 

protocols below). When V hits threshold Vthr, a spike is emitted and V is then clamped to 

the rest value Vreset for a refractory period τref. Thresholds were chosen so that the 

homogeneous network neurons fired at rates rE = 5 spks/s and rI = 7 spks/s. The recurrent 

contribution to the postsynaptic current to the i-th neuron was a low-pass filter of the 

incoming spike trains

τsyn
d
dt Irec = − Irec + ∑ j = 1

N Ji j∑k δ t − tk
j ,

where τsyn is the synaptic time constant; Jij is the recurrent synaptic weights from 

presynaptic neuron j to postsynaptic neuron i, and tk
j is the k-th spike time from the j-th 

presynaptic neuron. The constant external current was I0 = Nextpi0Ji0vext, with Next = nEN, 

pi0 = 0.2, Ji0 = ji0/ N with jE0 for excitatory and jI0 for inhibitory neurons (see Table 1), and 

rext = 7 spks/s. For a detailed mean field theory analysis of the clustered network and a 

comparison between simulations and mean field theory during ongoing and stimulus-evoked 

periods we refer the reader to Refs14,15.

Stimulation protocols.

Stimuli were modeled as time-varying stimulus afferent currents targeting 50% of neurons in 

stimulus-selective clusters Istim(t) = I0 rstim(t), where rstim(t) was expressed as a fraction of 

the baseline external current I0. Each cluster had a 50% probability of being selective to a 

given stimulus, thus different stimuli targeted overlapping sets of clusters. The anticipatory 
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cue, targeting a random 50% subset of E neurons, was modeled as a double exponential with 

rise and decay times of 0.2 s and 1 s, respectively, unless otherwise specified; its peak value 

for each selective neuron was sampled from a normal distribution with zero mean and 

standard deviation σ (expressed as fraction of the baseline current I0; σ=20% unless 

otherwise specified). The cue did not change the mean afferent current but only its spatial 

(quenched) variance across neurons.

In both the unexpected and the expected conditions, stimulus onset at t = 0 was followed by 

a linear increase rstim(t) in the stimulus afferent current to stimulus-selective neurons 

reaching a value rmax at t = 1 s (rmax = 20%, unless otherwise specified). In the expected 

condition, stimuli were preceded by the anticipatory cue rcue(t) with onset at t = −0.5s before 

stimulus presentation.

Network simulations.

All data analyses, model simulations and mean field theory calculations were performed 

using custom software written in MATLAB (MathWorks), and C. Simulations comprised 20 

realizations of each network (each one representing a different experimental session), with 

20 trials per stimulus in each of the 2 conditions (unexpected and expected); or 40 trials per 

session in the condition with “cue-on” and no stimuli (Fig. 3); otherwise explicitly stated. 

Each network was initialized with random synaptic weights and simulated with random 

initial conditions. Stimulus and cue selectivities were assigned to randomly chosen sets of 

neurons in each network. Sample sizes were similar to those reported in previous 

publications13,14,15. Across-neuron distributions of peak responses and across-network 

distributions of coding latencies were assumed to be normal but this was not formally tested. 

Dynamical equations for the LIF neurons were integrated with the Euler method with 0.1 ms 

step.

Mean field theory.

Mean field theory was used in a simplified network with 2 excitatory clusters (parameters as 

in Table 2) using the population density approach53–55: the input to each neuron was 

completely characterized by the infinitesimal mean μα and variance σα
2 of the post-synaptic 

current for Q+2 neural populations: the first Q populations representing the Q excitatory 

clusters; the (Q+1)-th population representing the ``background” unstructured excitatory 

population; and the (Q+2)-th population representing the inhibitory population (see Table 1 

for parameter values):

μα = τm, E N
nE f

Q pEE J+ jEErα + ∑β = 1
Q − 1 pEEJ− jEE

rβ + nE 1 − f pEE J− jEE rE
bg − nI pEI jEIrI

+ nEpE0 jE0rext ,
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σα
2 = τm, E

nE f

Q pEE J+ jEE

2
1 + δ2 rα + ∑β = 1

Q − 1 pEE J− jEE

2
1 + δ2 rβ + nE 1 − f pEE

J− jEE
2 1 + δ2 rE

bg + nI pEI jEI
2 1 + δ2 rI ,

where rα, rβ, with α, β = 1,…,Q, are the E-clusters firing rates; rE
bg  is the background E-

population firing rate; rI is the I-population firing rate; nE = 4/5, nI = 1/5 are the fractions of 

E and I neurons, respectively, and δ = 1% is the SD of the synaptic weights distribution. The 

two sources contributing to the variance σα
2 are thus the temporal variability in the input 

spike trains from the presynaptic neurons, and the quenched variability in the synaptic 

weights and connectivity. The afferent current to a background E population neuron reads:

μE
bg = τm, E N

nE f

Q ∑β = 1
Q pEEJ− jEErβ + nE 1 − f pEE jEErE

bg − nI pEI jEIrI + nEpE0 jE0rext ,

σE
bg 2 = τm, E

nE f

Q ∑β = 1
Q pEE J− jEE

2 1 + δ2 rβ + nE 1 − f pEE jEE
2 1 + δ2 rE

bg

+ nI pEI jEI
2 1 + δ2 rI ,

and, similarly, for an I neuron:

μI = τm, I N
nE f

Q ∑β = 1
Q pIE jIErβ + nE 1 − f pIE jIErE

bg − nI pII jIIrI + nEpI0 jI0rext ,

σI
2 = τm, I

nE f

Q ∑β = 1
Q pIE jIE

2 1 + δ2 rβ + nE 1 − f pIE jIE
2 1 + δ2 rE

bg + nI pII jII
2 1 + δ2 rI .

The network fixed points satisfied the Q + 2 self-consistent mean field equations10

rα = Fα μα r , σα
2 r , (1)

where r = r1, …, rQ, rE
bg, rI  is the population firing rate vector (boldface represents 

vectors).Fα is the current-to-rate function for population α, which varied depending on the 

population and the condition. In the absence of the anticipatory cue, the LIF current-to-rate 

function Fα
0 was used
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Fα
0 μα, σα

2 = τre f + τm, α π∫He f f , α

Θe f f , α
eu2

1 + erf u
−1

,

where Θe f f , α =
Vthr, α − μα

σα
2 + akα , He f f , α =

Vreset, α − μα

σα
2 + akα. Here, kα = τsyn, α/τm, α, 

a = ζ 1/2
2 1.03.56,57 In the presence of the anticipatory cue, a modified current-to-rate 

function Fα
cue was used to capture the cue-induced Gaussian noise in the cue afferent 

currents to the cue-selective populations (α = 1,…,Q):

Fα
cue μα, σα

2 = ∫ DzFα
0 μα + zσ μext, σα

2 ,

where Dz = dzexp − z2
2 / 2π is the Gaussian measure with zero mean and unit variance, μext 

= I0 is the baseline afferent current and σ is the anticipatory cue’s SD as fraction of μext (Fig. 

3d). For the plots in Fig. 3c we replaced the transfer function FE
0 μE, σE

2  of the LIF neuron 

with the simpler function f E
0 = 0.5 1 + tanh μE . Note that the latter depends only on the 

mean input current, as the mean input is the only variable required to implement the effect of 

the anticipatory cue on the transfer function via f E
cue μE = ∫ Dz f E

0 μE + zσ μext . Fixed points 

r* of equation (1) were found with Newton’s method; the fixed points were stable 

(attractors) when the stability matrix

Sαβ = 1
τsyn, α

∂Fα μα r , σα
2 r

∂rβ
−

∂Fα μα r , σα
2 r

∂σα
2

∂σα
2

∂rβ
− δαβ , (2)

evaluated at r* was negative definite. Stability was defined with respect to an approximate 

linearized dynamics of the mean mα and SD sα of the input currents58

τsyn, α
dmα
dt = − mα + μα r ,

τsyn, α
2

dsα
2

dt = − sα
2 + σα

2 r , (3)

rα t = F
α

mα r , sα
2 r ,
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Where μα and σα
2 are the stationary values given above14,15.

Effective mean field theory for the reduced network.

The mean field equations (1) for the P=Q+2 populations may be reduced to a set of effective 

equations governing the dynamics of a smaller subset of q<P of populations, henceforth 

referred to as populations in focus.31 The reduction is achieved by integrating out the 

remaining P-q out-of-focus populations. This procedure was used to estimate the energy 

barrier separating the two network attractors in Fig. 3d and Fig. 4c. Given a fixed set of 

values r = r1, …, rq  for the in-focus populations, one solves the mean field equations for P-

q out-of-focus populations

rβ r1, …, rq = Fβ μβ r1, …, rq, rq + 1, …, rP , σβ
2 r1, …, rq, rq + 1, …, rP ,

for β = q + 1,…,P to obtain the stable fixed point r′ r ≐ rq + 1 r , …, rP r  of the out-of-

focus populations as functions of the in-focus firing rates r. Stability of the solution r′ r  is 

computed with respect to the stability matrix (2) of the reduced system of P-q out-of-focus 

populations. Substituting the values r′ r  into the fixed-point equations for the q populations 

in focus yields a new set of equations relating input rates r to “output” rates rout:

rα
out r = Fα μα r, r′ r , σα

2 r, r′ r ,

for α = 1,…,q. The input r and output rout firing rates of the in-focus populations will be 

different, except at a fixed point of the full system where they coincide. The correspondence 

between input and output rates of in-focus populations defines the effective current-to-rate 

transfer functions

rα
out(r) = Fα

e f f [μα(r), σα
2(r)], (4)

for α = 1,…,q in-focus populations at the point r. The fixed points rα
out r* = rα* of the in-

focus equations (4) are fixed points of the entire system. It may occur, in general, that the 

out-of-focus populations attain multiple attractors for a given value of r, in which case the 

set of effective transfer functions Fα
e f f  is labeled by the chosen attractor; in our analysis of 

the two-clustered network, only one attractor was present for a given value of r.

Energy potential.

In a network with Q=2 clusters, one can integrate out all populations (out-of-focus) except 

one (in-focus) to obtain the effective transfer functions for the in-focus population 

representing a single cluster, with firing rate r  (equation (4) for q=1). Network dynamics can 

be visualized on a one-dimensional curve, where it is well approximated by the first-order 

dynamics (see ref.31 for details):
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τsyn, α
d r
dt = − r + rout r .

These dynamics can be expressed in terms of an effective energy function E r  as

τsyn, α
d r
dt = − ∂E r

∂r ,

so that the dynamics can be understood as a motion in an effective potential energy 

landscape, as if driven by an effective force − ∂E r
∂r = − (r − rout r ). The minima of the 

energy with respect to r  are the stable fixed points of the effective 1-dimensional dynamics, 

while its maxima represent the effective energy barriers between two minima, as illustrated 

in Fig. 3c. The one-cluster network has 3 fixed points, two stable attractors (‘A’ and ‘B’ in 

Fig. 3c) and a saddle point (‘C’). We estimated the height Δ of the potential energy barrier 

on the trajectory from A to B through C as minus the integral of the force from the first 

attractor A to C:

Δ = ∫A

C
(r − rout r )dr ,

which represents the area between the identity line (y = r  and the effective transfer function 

y = rout r ) (see Fig. 3c). In the finite network, where the dynamics comprise stochastic 

transitions among the states, switching between A and B would occur with a frequency that 

depends on the effective energy barrier Δ, as explained in the main text.

Population decoding.

The amount of stimulus-related information carried by spike trains was assessed through a 

decoding analysis59 (see Fig. S3 for illustration). A multiclass classifier was constructed 

from Q neurons sampled from the population (one neuron from each of the Q clusters for 

clustered networks, or Q random excitatory neurons for homogeneous networks). Spike 

counts from all trials of nstim taste stimuli in each condition (expected vs. unexpected) were 

split into training and test sets for cross-validation. A “template” was created for the 

population PSTH for each stimulus, condition and time bin (200 ms, sliding over in 50 ms 

steps) in the training set. The PSTH contained the trial-averaged spike counts of each neuron 

in each bin (the same number of trials across stimuli and conditions were used). Population 

spike counts for each test trial were classified according to the smallest Euclidean distance 

from the templates across 10 training sets (‘bagging’ or bootstrap aggregating procedure60). 

Specifically, from each training set L, we created bootstrapped training sets Lb, for b = 

1,..,B=10, by sampling with replacement from L. In each bin, each test trial was then 

classified B times using the B classifiers, obtaining B different “votes”, and the most 

frequent vote was chosen as the bagged classification of the test trial. Cross-validated 

decoding accuracy in a given bin was defined as the fraction of correctly classified test trials 

in that bin.
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Significance of decoding accuracy was established via a permutation test: 1000 shuffled 

datasets were created by randomly permuting stimulus labels among trials, and a ‘shuffled 

distribution’ of 1000 decoding accuracies was obtained. In each bin, decoding accuracy of 

the original dataset was deemed significant if it exceeded the upper bound, α0.05, of the 95% 

confidence interval of the shuffled accuracy distribution in that bin (this included a 

Bonferroni correction for multiple bins, so that α0.05 = 1 – 0.05/Nb, with Nb the number of 

bins). Decoding latency (insets in Figs. 1c and 1f) was estimated as the earliest bin with 

significant decoding accuracy.

Cluster dynamics.

To analyze the dynamics of neural clusters (lifetime, inter-activation interval, and latency; 

see Figs. 3 and 4), cluster spike count vectors ri (for i = 1,…,Q) in 5 ms bins were obtained 

by averaging spike counts of neurons belonging to a given cluster. A cluster was deemed 

active if its firing rate exceeded 10 spks/s. This threshold was chosen so as to lie between the 

inactive and active clusters’ firing rates, which were obtained from a mean field solution of 

the network14.

Reporting Summary.

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Anticipatory activity requires a clustered network architecture.
Effects of anticipatory cue on stimulus coding in the clustered (a-c) and homogeneous (d-f) 
network. a: Schematics of the clustered network architecture and stimulation paradigm. A 

recurrent network of inhibitory (red circles) and excitatory neurons (triangles) arranged in 

clusters (ellipsoids) with stronger intra-cluster recurrent connectivity. The network receives 

bottom-up sensory stimuli targeting random, overlapping subsets of clusters (selectivity to 4 

stimuli is color-coded), and one top-down anticipatory cue inducing a spatial variance in the 

cue afferent currents to excitatory neurons. b: Representative single neuron responses to cue 

and one stimulus in expected trials in the clustered network of a). Black tick marks represent 

spike times (rasters), with PSTH (mean±s.e.m.) overlaid in pink. Activity marked by 

horizontal bars was significantly different from baseline (pre-cue activity) and could either 

be excited (top panel) or inhibited (bottom) by the cue. c: Time course of cross-validated 

stimulus-decoding accuracy in the clustered network. Decoding accuracy increases faster 

during expected (pink) than unexpected (blue) trials in clustered networks (curves and color-

shaded areas represent mean±s.e.m. across four tastes in n=20 simulated networks; color-

dotted lines around gray shaded areas represent 95% C.I. from shuffled datasets). A separate 

classifier was used for each time bin, and decoding accuracy was assessed via a cross-

validation procedure, yielding a confusion matrix whose diagonal represents the accuracy of 

classification for each of four tastes in that time bin (see text and Fig. S3 for details). Inset: 
aggregate analysis across n=20 simulated networks of the onset times of significant 
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decoding (mean±s.e.m.) in expected (pink) vs. unexpected trials (blue) shows significantly 

faster onsets in the expected condition (two-sided t-test, p=0.0017). d: Schematics of the 

homogenous network architecture. Sensory stimuli modeled as in a). e: Representative single 

neuron responses to cue and one stimulus in expected trials in the homogeneous network of 

d), same conventions as in b). f: Cross-validated decoding accuracy in the homogeneous 

network (same analysis as in c). The latency of significant decoding in expected vs. 

unexpected trials is not significantly different. Inset: aggregate analysis of onset times of 

significant decoding (same as inset of c; two-sided t-test, p=0.31). Panels b, c, e, f: pink and 

black horizontal bars, p < 0.05, two-sided t-test with multiple-bin Bonferroni correction. 

Panel c: ** = p < 0.01, two-sided t-test. Panel f: n.s.: non-significant.
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Fig. 2: Robustness of anticipatory activity to variations in stimulus (top row) and cue (bottom 
row) models.
a: Latency of significant decoding increased with stimulus intensity (left panel: top, stimulus 

peak expressed as percent of baseline, darker shades represent stronger stimuli; bottom, 

decoding latency, mean±s.e.m. across n=20 simulated networks for each value on the x-axis, 

see main text for panels a-c statistical tests) in both conditions, and it is faster in expected 

(pink) than unexpected trials (blue). Anticipatory activity was present for a large range of 

network sizes (right panel: J+ =5, 10, 20, 30, 40 for N=1, 2, 4, 6, 8 x103 neurons, 

respectively). Network synaptic weights scaled as reported in Table 1 and 2 of Methods. b: 

Anticipatory activity was present when stimuli targeted both excitatory (E) and inhibitory (I) 

neurons (notations as in Fig. 1c; 50% of both E and I neurons were targeted by the cue; 

inset: mean±s.e.m. across n=20 simulated networks, two-sided t-test, p=0.0011). c: 

Increasing the cue-induced spatial variance in the afferent currents σ2 (top left: histogram of 

afferents’ peak values across neurons; x-axis, expressed as percent of baseline; y-axis, 

calibration bar: 100 neurons) leads to more pronounced anticipatory activity (bottom left, 

latency in unexpected (blue) and expected (pink) trials). Anticipatory activity was present 

for a large range of cue time courses (top right, double exponential cue profile with rise and 

decay times [τ1, τ2] = g × [0.1, 0.5]s, for g in the range from 1 to 3; bottom right, decoding 
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latency during unexpected, blue, and unexpected, pink, trials). d: Anticipatory activity was 

also present when the cue targeted 50% of both E and I neurons (σ = 20% in baseline units; 

inset: mean±s.e.m. across n=20 simulated networks, two-sided t-test, p=0.0034). Panels a-d: 

*=p<0.05, **=p<0.01, ***=p<0.001, post-hoc multiple-comparison two-sided t-test with 

Bonferroni correction. Horizontal black bar, p<0.05, two-sided t-test with multiple-bin 

Bonferroni correction; Insets: **=p<0.01, ***=p<0.001, two-sided t-test. Panel c-d: 

notations as in Fig. 1c of the main text.
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Fig. 3: Anticipatory cue speeds up network dynamics.
a: Raster plots of the clustered network activity in the absence (left) and in the presence of 

the anticipatory cue (right), with no stimulus presentation in either case. The dynamics of 

cluster activation and deactivation accelerated proportionally to the increase in afferent 

currents’ variance σ2 induced by the cue. Top panels: distribution of cue peak values across 

excitatory neurons: left, no cue; right, distribution with S.D. σ = 10% in units of baseline 

current. Bottom panels: raster plots of representative trials in each condition (black: 

excitatory neurons, arranged according to cluster membership; red: inhibitory neurons). b: 

The average cluster activation lifetime (top) and inter-activation interval (bottom) 

significantly decrease when increasing σ (mean±s.e.m. across n=20 simulated networks). c: 

Schematics of the effect of the anticipatory cue on network dynamics. Top row: the increase 
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in the spatial variance of cue afferent currents (insets: left: no cue; stronger cues towards the 

right) flattens the “effective f-I curve” (sigmoidal curve) around the diagonal representing 

the identity line (straight line). The case for a simplified two-cluster network is depicted (see 

text). States A and B correspond to stable configurations with only one cluster active; state C 

corresponds to an unstable configuration with 2 clusters active. Bottom row: shape of the 

effective potential energy corresponding to the f-I curves shown in the top row. The effective 

potential energy is defined as the area between the identity line and the effective f-I curve 

(shaded areas in top row; see formula). The f-I curve flattening due to the anticipatory cue 

shrinks the height Δ of the effective energy barrier, making cluster transitions more likely 

and hence more frequent. d: Effect of the anticipatory cue (in units of the baseline current) 

on the height of the effective energy barrier Δ, calculated via mean field theory in a reduced 

two-cluster network of LIF neurons (see Methods).
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Fig. 4: Anticipatory cue induces faster onset of stimulus-coding states.
a: Raster plots of representative trials in the expected (left) and unexpected (right) 

conditions in response to the same stimulus at t=0. Stimulus-selective clusters (red tick 

marks, spikes) activate earlier than non-selective clusters (black tick marks, spikes) in 

response to the stimulus when the cue precedes the stimulus. b: Comparison of activation 

latency of selective clusters after stimulus presentation during expected (pink) and 

unexpected (blue) trials (mean±s.e.m. across 20 simulated networks, two-sided t-test, 

p=5.1x10-7). Latency in expected trials is significantly reduced. c: The effective energy 

landscape and the modulation induced by stimulus and anticipatory cue on two-clustered 

networks, computed via mean field theory (see Methods). Left panel: after stimulus 

presentation the stimulus-coding state (left well in left panel) is more likely to occur than the 

non-coding state (right well). Right panel: barrier heights as a function of stimulus strength 

in expected (`cue ON’) and unexpected trials (`cue OFF’). Stronger stimuli (lighter shades of 

cyan) decrease the barrier height Δ separating the non-coding and the coding state. In 

expected trials (dashed lines), the barrier Δ is smaller than in unexpected ones (full lines), 

leading to a faster transition probability from non-coding to coding states compared to 
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unexpected trials (for stimulus ≥ 4% the barrier vanishes leaving just the coding state). Panel 

b: *** = p < 0.001, two-sided t-test.
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Fig. 5: Anticipation of coding states: model vs. data.
a: Representative trials from one ensemble of 9 simultaneously recorded neurons from 

clustered network simulations during expected (left) and unexpected (right) conditions. Top 
panels: spike rasters with latent states extracted via a HMM analysis (colored curves 

represent time course of state probabilities; colored areas indicate intervals where the 

probability of a state exceeds 80%; thick horizontal bars atop the rasters mark the presence 

of a stimulus-coding state). Bottom panels: Firing rate vectors for each latent state shown in 

the corresponding top panel. b: Latency of stimulus-coding states in expected (pink) vs. 

unexpected (blue) trials (mean±s.e.m. across n=20 simulated networks, two-sided t-test, 

p=0.014). Faster coding latency during expected trials is observed compared to unexpected 

trials. c-d: Same as a)-b) for the empirical datasets (mean±s.e.m. across n=17 recorded 

sessions, two-sided t-test, p=0.026). * = p < 0.05, ***= p < 0.001, two-sided t-test.
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Table 1:

Parameters for the clustered and homogeneous networks with N LIF neurons. In the clustered network, the 

intra-cluster potentiation parameter values were J+ = 5, 10, 20, 30, 40 for networks with N = 1, 2, 4, 6, 8 × 103 

neurons, respectively. In the homogeneous network, J+=1.

Symbol Description Value

jEE Mean E→E synaptic weight × N 1.1 mV

jEI Mean I→E synaptic weight × N 5.0 mV

jIE Mean E→I synaptic weight × N 1.4 mV

jII Mean I→I synaptic weight × N 6.7 mV

jE0 Mean afferent synaptic weights to E neurons × N 5.8 mV

jI0 Mean afferent synaptic weights to I neurons × N 5.2 mV

J+ Potentiated intra-cluster E→E weights factor see caption

rext
E Average afferent rate to E neurons (baseline) 7 spks/s

rext
I Average afferent rate to I neurons (baseline) 7 spks/s

V thr
E E neuron threshold potential 3.9 mV

V thr
I I neuron threshold potential 4.0 mV

Vreset E and I neurons reset potential 0 mV

τm E and I membrane time constant 20 ms

τref Absolute refractory period 5 ms

τsyn E and I synaptic time constant 4 ms

nbg Background neurons fraction 10%

Nc Average cluster size 100 neurons
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Table 2:

Parameters for the simplified 2-cluster network with N=800 LIF neurons (the remaining parameters were as in 

Table 1).

Symbol Description Value

jEE Mean E→E synaptic weight × N 0.8 mV

jEI Mean I→E synaptic weight × N 10.6 mV

jIE Mean E→I synaptic weight × N 2.5 mV

jII Mean I→I synaptic weight × N 9.7 mV

jE0 Mean afferent synaptic weights to E neurons × N 14.5 mV

jI0 Mean afferent synaptic weights to I neurons × N 12.9 mV

J+ Potentiated intra-cluster E→E weights factor 9

V thr
E E neuron threshold potential 4.6 mV

V thr
I I neuron threshold potential 8.7 mV

nbg Background neurons fraction 65%
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