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Abstract

Ethologically relevant navigational strategies often incorporate remembered reward locations. 

While neurons in the medial entorhinal cortex provide a map-like representation of the external 

spatial world, it remains unknown if this map integrates information regarding learned reward 

locations. We compared entorhinal coding during a free foraging versus spatial memory task. 

Entorhinal spatial maps re-structured to incorporate a learned reward location, which in turn 

improved positional decoding near this location. This finding indicates that different navigational 

strategies drive the emergence of discrete entorhinal maps of space and points to a role for 

entorhinal codes in a diverse range of navigational behaviors.

One Sentence Summary:

Training rats to perform a spatial memory task drives the emergence of a new entorhinal spatial 

map that incorporates a remembered reward location and improves positional decoding at that 

location.

The ability to recall and navigate to a remembered reward location is essential to survival. 

The hippocampus and medial entorhinal cortex (MEC) contain cells that provide 

representations of self-location and orientation within the local spatial environment (1–5). 

Initial experiments suggested a dissociation between representations in these regions: 

spatially-modulated codes sensitive to contextual features in the hippocampus and context-

independent codes for position, orientation and speed in MEC (2, 3, 5–10). In contrast, recent 

work has shown that MEC spatial codes are flexible and adaptive (6, 11–13). However, these 

MEC spatial coding features have primarily been observed during random foraging, whereas 

ethologically relevant strategies often employ more complex behaviors such as goal-directed 

navigation (14). While MEC plays a critical role in navigation (15), the degree to which 

remembered reward locations influence MEC neural codes remains unknown.
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We recorded neural activity in the MEC and surrounding cortical areas of seven rats as they 

explored two arenas (1.5 m x 1.5 m) (Fig. S1). In environment one (ENV1; black walls, 

lemon scent), rats foraged for randomly scattered crushed cereal (2–5, 12). In environment 

two (ENV2; white walls, vanilla scent), rats navigated to a remembered, unmarked 20 cm x 

20 cm zone in response to an auditory cue to receive a food reward (0.5–1 cereal units), and 

freely foraged for randomly scattered crushed cereal between trials (10) (Fig. 1A,B and S2). 

Reward trials (cue onset to reward zone entry) occurred ≥ 10 times per session (Fig. 1C). 

After training (mean # sessions to reach criterion = 15; range = 8–24), animals took rapid, 

direct paths to the reward zone upon cue onset (Fig. 1D).

We considered the coding features of 778 cells recorded in both environments (Fig. S3). We 

identified cells as encoding position (P), head direction (H) or running speed (S), then 

further classified P-encoding cells as grid, border, or non-grid, non-border spatial cells (12). 

Between environments, we observed equal proportions of grid and border cells, and cells 

encoding P, H, or S (Fig. S4A). Stability, information content, average and peak firing rates 

did not change between environments, apart from the firing rates of grid cells (Fig. S4C-E). 

Multiple features of local field potential theta oscillations (6 – 10 Hz) were also similar 

between environments (Fig. S5).

We next asked whether task-demands alter the structure of MEC firing patterns (6, 9). Grid 

cells’ (n = 102) firing patterns re-organized between environments, despite their shared 

geometric shape and size (Fig. 1E, Table S1). First, the orientation of the grid pattern rotated 

(median absolute orientation change: 12.53°, p=1.12×10−12, Fig. 1F). These rotations varied 

across animals (mean rotation range: −27° to +7°), and resulted in grid orientations that were 

less environmentally-aligned in ENV2 compared to ENV1 (p=0.001, Fig. 1I) (13). Second, 

there was a small decrease in grid spacing (p=0.015, Fig. 1G), but not in field size (p=0.85), 

in ENV2. Third, we observed less elliptical grid patterns in ENV2 (p=0.006, Fig. 1H). 

Finally, we observed a translation in the grid pattern (Fig. S6D-G) (16, 17). Co-recorded grid 

cells changed coherently and maintained their phase offsets (Fig. S6A). The observed grid 

orientation, scaling, and ellipticity changes also held for unpaired grid cell recordings 

clustered into modules (Fig. 1J,K) (18). Overall, 49/102 grid cells showed a statistically 

significant change on at least one measure (Fig. S6B), with changes largely conserved within 

animals (Fig. S6C-H). Critically, we observed grid pattern translation but not orientation, 

spacing or ellipticity changes when ENV1 and ENV2 had the same behavioral demand 

(random foraging, n = 3 rats), although there was no difference in the change in grid spacing 

between groups (Fig. 1F-H, right, Table S1) (11, 13, 16, 17).

Consistent with task demands re-structuring MEC representations, head direction, border, 

and non-grid spatial cells reorganized between environments. Head direction (HD) cells 

coherently rotated their preferred direction within sessions and animals (both p < 0.002, Fig 

2A, Fig. S7A-C), with 70/132 cells exhibiting significant changes in tuning. Rotations were 

consistent with the rotation in grid orientation (all HD-grid cell pairs: r=0.45, p=0.02; 

averaged within sessions: r=0.70, p=0.02; Fig. 2B-C). A majority (24/36) of border cells 

remapped between environments, primarily through rotations (Fig. 2D, E) (6). Lastly, 

196/271 non-grid spatial cells significantly remapped between ENV1 and ENV2, with task-

trained animals showing more remapping than free-foraging controls (task-trained mean 
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correlation coefficient ± SD: 0.32 ± 0.22; control: 0.41 ± 0.27; 49/100 control cells re-

mapped, proportions test p = 3×10−5) (Fig. 2G, Fig. S7E). We observed no changes in speed 

cells (Fig. S7F,G).

We next examined whether spatial restructuring incorporated the remembered reward 

location. As running speed and spatial sampling differed between environments (Fig. S2), 

we first down-sampled the data to match in speed and position occupancy between 

environments (3, 5, 12). The relative activity of grid and non-grid spatial cells increased near 

the reward zone in ENV2 compared to ENV1 (signed-rank test, normalized activity vs 

distance slopes, grid: p = 0.0025; non-grid: p = 5×10−4) (Fig. 3A,B, Fig S8A-D). The 

robustness of this effect was reinforced by the observation of the same effect at the level of 

individual animals (Fig. S8A) and was not driven by increased occupancy near the reward 

zone (Fig S8E-H). Directional and non-directional grid cells showed comparable reward-

related firing increases (Fig. S8I,J).

We next investigated how grid cells re-structure their firing toward the reward zone (Fig. 

S9A). Our observation of coordinated translations between simultaneously recorded grid 

cells (see Fig. S6A) eliminated the possibility that cells translate independently. Emergence 

of new grid fields, distortion of the grid pattern, and systematic re-shaping of grid fields 

were also eliminated, as we did not observe changes in grid score (Fig. S4B), the number of 

fields, or the distance between the reward zone and closest field (Fig. S9B, Table S2). 

Moreover, we did not observe changes in field size or eccentricity as a function of fields’ 

proximity to the reward zone (Fig. S9C). Finally, we examined whether grid field rate-

remapping (19) shows reward specificity, such that fields near the reward zone exhibit higher 

firing rates. We did not observe significant changes in the overall field peak firing rates or 

coefficient of variation among field peak firing rates (Fig. S9D). However, the peak firing 

rate of grid fields closer to the reward zone was higher in ENV2 (p=0.01, Fig. 3D) and the 

distance from the reward zone to the grid field with the highest firing rate was smaller in 

ENV2 (p=0.01, Fig. 3E; see also Fig. S9E,F).

We then investigated how non-grid spatial cells (n = 271) remapped to support reward-

localized changes in firing rates. Non-grid spatial cells did not extend their firing fields in a 

reward-specific manner as average field size, total field area, and number of fields did not 

change (Figure S10A). Instead, many cells (n = 159 cells) heterogeneously remapped to 

preferentially encode the reward location (Fig. 3F,G Table S3). First, some cells (Group I) 

exhibited coherent spatial tuning in both environments, with a firing field located closer to 

the reward zone in ENV2 (p=2×10−5). A second group of cells (Group II) exhibited coherent 

spatial tuning in ENV1, with the field farther from the reward than expected by chance 

(p=0.02). Third, a population of cells (Group III) had coherent spatial tuning only in ENV2, 

and this activity was closer to the reward zone than expected by chance (p=0.002). Finally, 

Group IV did not exhibit any coherent spatial fields but exhibited increased activity near the 

reward zone in ENV2. The proportion of cells exhibiting reward-preference did not depend 

on the group type (all p>0.05, Fig. 3G, bottom). Further, reward-preference and other coding 

features did not cluster (Figure S10B,C).
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We next asked whether these changes reflected neural activity during the spatial task trials or 

were persistent throughout the ENV2 recordings. We analyzed two rate maps for each ENV2 

session: one for task trajectories (tone onset to zone entry) and one for speed- and position-

matched no-task trajectories (Fig. 4A,B). Grid cells’ average firing rate did not differ 

between task and no-task, though non-grid spatial cells had higher firing rates during task 

times (Fig. S11). Critically, task and no-task maps both exhibited significant increases in 

normalized activity near the reward zone (Fig. 4C,D, Table S4), indicating that the reward 

influence was present throughout the session.

Finally, we asked how the task-associated changes in MEC representations could impact 

navigation. MEC representations can support vector navigation by providing unique 

combinations of spatial firing patterns, which downstream neurons may use to estimate the 

distance between an animal’s position and a goal location (20). We estimated the animal’s 

position using the activity from simultaneously recorded neurons in ENV1 and ENV2 (Fig. 

4E,F). Using a Bayesian decoder, we observed that the decoding accuracy increased near the 

reward zone in ENV2 compared to ENV1 (ENV2 slope > ENV1 slope for 27/43 sessions, 

median slope difference = 1×10−3, signed-rank p = 0.042) (Fig. 4G-I, S12). Moreover, the 

improved position decoding was highly localized to the reward zone, with a decrease in 

decoding error in ENV2 observed up to 30 cm from the reward zone center (Fig. 4J, Fig 

S12A-C). Reward-related decoding did not consistently co-vary with fluctuations in task 

performance (Fig. S12E,F).

Our understanding of how remembered reward locations mediate MEC navigational codes 

has lagged due to a lack of task diversity. Here, we report that the firing rate and spatial 

pattern of MEC representations restructure in response to changes in navigational strategy. 

This restructuring did not reflect trajectory specific coding, as previously observed in MEC 
(21), suggesting task-relevant features of the two environments evoked separate long-term 

map representations (17). However, the precise parameters of MEC map restructuring may 

depend on experience and task familiarity, as recent work indicates (22). Combined, our data 

points to MEC as a region capable of dynamically altering its coding features to integrate 

relevant contextual features to support a range of navigational strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Performance of a task induces grid rotation and rescaling.
(A). Schematic of environments. (B) Trajectories (gray) from a paired session. Trial 

trajectories are highlighted. Mean trial circuity and trial time noted below ENV2. Reward 

zone in red. (C) Histogram of inter-trial intervals. (D) Circuity and trial time improved with 

training in individual animals (gray lines). Data aligned to each animal’s first post-trained 

session (red line). (E) (Left) Grid cell rate maps in both environments; peak firing rate and 

grid score noted on top. (Middle) Corresponding autocorrelations; spacing and orientation 

noted on top. Red lines indicate grid axes; white text indicates ellipticity. (Right) 

Corresponding ENV1-ENV2 cross-correlations. Distance from the cross-correlation’s center 

to the nearest peak noted on top. (F) (Left) Grid cell orientations, red lines indicate rotations 

equivalent to modulo 60. (Right) Histogram of grid orientation differences for experimental 

and control animals. (G) (Left) Grid cell spacing, red line indicates identical spacing. 

(Right) Histograms of grid spacing ratio. (H) (Left) Grid cell ellipticities, red line indicates 

identical ellipticity. (Right) Histograms of ellipticity ratio. (I) Scatter plots of the innermost 

six fields in each grid cell’s autocorrelation. Orange lines represent north-south aligned axes; 

blue lines represent east-west aligned axes. (J) Unpaired grid cell recordings from four 

animals, clustered into modules according to spacing and orientation. (K) Mean orientations 
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(Left) and spacings (Right) in each environment for each of the six modules in (J). Error 

bars indicate SEM.
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Fig. 2. Performance of a task induces remapping in head direction, border and non-grid spatial 
cells.
(A) Top row: Four co-recorded HD cells in each environment. Rightmost panel indicates 

each cell’s rotation between environments. Bottom row: rotation angles observed across 

sessions. Gray lines indicate boundaries between animals. (B) Co-recorded grid and HD 

cells. (Top) HD tuning curves. (Bottom) Grid cell autocorrelations with grid axes. Co-

rotation of grid and HD signals shown by rotating the ENV1 grid axes by the rotation 

observed in co-recorded HD cell (blue dashed lines). (C) (Grey) HD cell orientation change 

(between environments) versus grid cell orientation change for all possible pairs of co-

recorded HD and grid cells. (Blue) Same data, with all HD or grid cells recorded within the 

same session averaged together. (D) Border cell rate maps in ENV1 and ENV2. (E) 
Histograms of border cell rate map ENV1 versus ENV2 correlation coefficients (left) and 

rotation values (right). (F) Non-grid spatial cell rate maps in ENV1 and ENV2. (G) (Left) 

Histogram of non-grid spatial cell rate map ENV1 versus ENV2 correlation coefficients 

(black = cells with significant re-mapping, grey = non-significant re-mapping). (Right) 

Histogram of the difference in spatial stability between ENV1 and ENV2.
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Fig. 3. Grid and non-grid spatial cells have localized firing rate changes near the reward.
(A) (Left) Mean normalized grid cell firing rate as a function of distance from the reward 

zone. Ribbon indicates SEM. (Right) Difference in grid cell firing rate (ENV2-ENV1). (B) 
(Left) Mean normalized non-grid spatial cell firing rate as a function of distance from the 

reward zone. (Right) Difference in firing rate (ENV2-ENV1). (C) (Left) Rate maps for three 

grid cells recorded in both environments. (Right) Corresponding field peak firing rates, 

plotted as a function of the field’s distance from the reward zone. Best-fit lines shown; 

difference between the best-fit lines (slope ENV2 - slope ENV1) indicated in upper left. (D) 
(Top) Best fit slope values for each cell in ENV1 and ENV2. (Bottom) Histogram of slope 

differences for grid cells. (E) (Top) Distance from the reward zone to the highest FR field in 

each environment for each cell. (Bottom) Histogram of distance differences. (F) Non-grid 

spatial cells that show reward preference in ENV2 correspond to four categories of 

remapping; two examples/group are shown. (G) (Top) Fraction of reward-preferring cells in 
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each remapping category (of 159 total reward-preferring cells). (Bottom) Fraction of cells in 

each remapping category that show reward-preference.
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Fig. 4. Long-term changes in the spatial map support spatial decoding near the reward.
(A) Rate maps of the full ENV2 session (left), task (middle), and no-task trajectories (right) 

speed-matched for each position bin. (B) (Left) The cell in (A)’s average normalized firing 

rate as a function of distance from the reward zone for task (orange) and no-task trajectories 

(green). (Right) Mean running speed during task and no-task trajectories as a function of 

distance from the center of the reward zone, before and after speed-matching. (C-D) (Left 

panels) Average normalized firing rate for grid (C) and non-grid position (D) cells as a 

function of distance from the reward zone. (Right panels) The slopes of both task and no-

task trajectories were significantly negatively distributed for grid (C) and non-grid position 

(D) cells. (E) Example decoding error maps for ENV1 (left), ENV2 (middle), and the 

normalized difference (ENV2-ENV1, right) from a single session (ENV1 n = 6 P-encoding 

cells, ENV2 n = 5 cells). (F) Normalized error (Left) and ENV2-ENV1 error difference 

(Right) as a function of distance from the reward zone for the example in (E). (G) 
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Normalized error versus distance from reward zone for each environment, averaged over all 

decoding sessions (n = 43). (H) Average difference in error (ENV2-ENV1) for all sessions. 

(I) Distribution of slopes of ENV2-ENV1 tuning curves across sessions. (J) Across all 

sessions, decoding error within 30 cm of reward zone is lower in ENV2 than ENV1 (median 

difference in error = −4.3 cm, signed-rank p = 0.028).
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