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Abstract

Adeno-associated virus (AAV) consists of a simple genome, infects mammalian cells, displays 

nonpathogenicity in humans, and spans an array of serotypes and variants bearing distinct tissue 

tropisms. These attributes lend AAV tremendous promise as a gene delivery vector, further 

substantiated by its extensive testing in human clinical trials. Rational design approaches to capsid 

engineering leverage current scientific knowledge of AAV to further modulate, enhance and 

optimize the performance of the vectors. Capsid modification strategies include amino acid point 

mutations, peptide domain insertions, and chemical biology approaches. Through such efforts, 

insights regarding AAV capsid sequence-structure-function relationships can be learned. 

Developments over the last 5 years in rational design-based capsid engineering approaches will be 

presented and discussed.

Graphical Abstract

Keywords

Adeno-associated virus; AAV; gene therapy; gene delivery; rational design; synthetic virology; 
viral vector; review

The Basics of AAV

Adeno-associated virus (AAV) is a member of the Parvoviridae family that primarily infects 

mammalian cells and is purportedly nonpathogenic in humans. First reported in 1965 as a 
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contaminant of adenovirus, it has since been characterized as naturally replication-deficient, 

requiring helper viruses such as adenovirus for propagation [1].

AAV’s linear single-stranded DNA genome (~4.7kb) encodes two genes, rep and cap, 

flanked by inverted terminal repeats (ITRs) necessary for packaging the viral genome inside 

the capsid. The ITRs act as primers for second-strand synthesis and are the only elements in 

the genome required in cis for viral production [2]. For recombinant AAV (rAAV) vector 

production, the remainder of the viral genome can be removed, provided in trans on separate 

plasmids, and replaced with a desired transgene.

The rep gene encodes four overlapping non-structural proteins for replication, integration, 

and packaging. Rep78 and Rep68 bind to the ITRs and demonstrate helicase and 

endonuclease activity necessary for AAV genome replication [3]. Rep52 and Rep40 

demonstrate 3’ to 5’ helicase activity and package viral genomes into capsids during virus 

production [4]. The cap gene encodes three structural proteins, VP1, VP2, and VP3, that 

self-assemble into a 60-mer icosahedral capsid at a ratio of approximately 1:1:10. These 

three proteins are transcribed from the same open reading frame and share a C-terminal 

domain but have different N-termini due to alternative start codons and alternative splicing 

[5]. cap also encodes for a non-structural protein, assembly-activating protein (AAP), in an 

alternate open reading frame from the VPs initially shown to be required for AAV2 capsid 

assembly [6]. Capsid assembly dependence on AAP is serotype-specific, as AAV4, −5, and 

−11 do not require AAP to assemble [7]. Wild-type AAV2 can undergo Rep-mediated site-

specific integration into human chromosome 19 without helper virus, and rAAV vectors 

lacking rep integrate non-specifically at low frequencies [8]. rAAV achieves high levels of 

long-term gene expression without chromosomal integration and persists episomally in the 

nucleus in the form of head-to-tail concatemers [9]. rAAV episomes may be able to replicate 

in proliferating cells, albeit at low frequency [10].

VP1 is the largest (87 kDa), followed by VP2 (72 kDa) and VP3 (62 kDa). They share a 

common C-terminal domain, while VP1 and VP2 also contain longer N-terminal domains 

that are packaged inside the capsid but externalize in the endosome during intracellular 

trafficking [11]. The VP1 N-terminal domain contains a phospholipase A2 domain for 

endosomal escape and nuclear localization sequences for nuclear trafficking. VP2 is 

nonessential for capsid formation and viral infection [12]. Techniques including X-ray 

crystallography and cryo-electron microscopy have been employed to visualize the capsid 

structures of many serotypes, revealing key domains that can be exploited in rational design 

strategies to modify functionality [13,14]. All AAV capsids share a core β-barrel motif. The 

β-strands connected by variable surface loops produce capsid surface topological variations 

– much of which can be found around the capsid’s three-fold spikes (a region frequently 

implicated in receptor binding and antibody recognition) [15,16].

Not merely an inert protein shell, the capsid dictates virus-cell receptor interactions and 

intracellular trafficking. Recent research suggests that VPs may contribute to second-strand 

synthesis and genomic transcription [17]. Twelve AAV serotypes and numerous variants 

from human and nonhuman primates have been identified with different serological profiles, 

cell surface receptor usage, and tissue tropisms [18]. Serotypes can be loosely categorized 
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based on their primary cell surface receptor usage: AAV2, −3, and −6 bind heparan sulfate 

proteoglycan (HSPG), AAV1, −4, −5 and −6 bind sialic acid, and AAV9 binds galactose 

[16]. Co-receptors for internalization also vary and include laminin receptor, epidermal 

growth factor receptor, hepatocyte growth factor receptor, platelet-derived growth factor 

receptor, and several integrins (reviewed in [19]). A novel receptor AAVR recently identified 

appears to be required for infection for some variants [20]. Most serotypes depend on AAVR 

for successful cell internalization, but bind to and interact with it differently [21]. Exceptions 

include AAV4 and the chimeric variant AAVrh32.33, which use an AAVR-independent 

pathway [22].

AAV as a Gene Therapy Vector

rAAV was first produced in the early 1980’s; rAAV containing an antibiotic resistance gene 

in place of cap successfully transduced mammalian cells, establishing AAV’s potential as a 

gene delivery vector [23,24]. The first FDA approval for gene therapy treatment of a 

hereditary disease was granted in December 2017 for an AAV2-based product for RPE65-

mediated inherited retinal dystrophy.

rAAV possesses several key features that make it highly promising for gene therapy. Its 

genome and capsid structure are relatively simple, and the ITRs are the only cis-acting 

elements essential for packaging transgenes into the capsid [2]. Additionally, AAV is 

nonpathogenic and demonstrates relatively low levels of immunogenicity and genotoxicity 

[25,26]. Serotypes exhibit a diverse range of tropisms and immune response profiles 

desirable for different applications. AAV8 is preferential for targeting the liver, whereas 

cardiac and skeletal muscle gene transfer appears mediated best by AAV1, −6, and −9 [19]. 

AAV9 and AAVrh.10 have demonstrated the ability to cross the blood-brain barrier (BBB) 

when injected intravenously [27]. Remarkably, despite AAV predominantly persisting 

episomally, transgene expression can be detected as long as 10 years post-AAV injection 

[28].

Rational Design Strategies for AAV Capsid Engineering

Despite AAV’s successes as a gene delivery vector, achieving greater control and 

predictability of function remains a non-trivial task. Fortunately, illuminating studies on 

AAV structure and biology continue to uncover new insights. Rational design strategies draw 

from this ever-expanding body of AAV knowledge as a framework for harnessing virus 

behavior. Three prominent rational capsid engineering strategies employed over the last 5 

years are presented below.

Genetic mutation of AAV parts

Several studies have investigated the role of specific capsid amino acid residues in AAV’s 

functionality. Specifically, the efficiency and specificity of AAV gene delivery can be 

improved using point mutations on the viral capsid. For example, it has been postulated that 

undesirable post-translational modification leads to capsid degradation [29]. To address this 

problem, various serine, threonine and lysine residues in the AAV2 capsid were mutated to 

alanine or arginine [30]. The majority of these substitutions lead to enhanced transduction 

Lee et al. Page 3

Curr Opin Biomed Eng. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efficiency in HeLa cells, as well as greater gene expression in the livers of mice. The triple 

mutant, Y444F/Y500F/Y730F, is a promising AAV2 vector in the field [31], although 

similar mutations in other AAV serotype capsids do not enhance gene delivery efficiency. In 

a different study that addresses gene delivery specificity, an array of naturally occurring 

AAV variants from non-human primate tissues was isolated and capsid alignment of new 

isolates to currently available variants identified several residues of interest [32]. Based on 

this information, a new variant, AAV9.HR, was generated from the parental AAV9 by 

changing only two residues, H527Y and R533S. This vector transduces cells in the central 

nervous system (CNS), although not as robustly as AAV9. However, AAV9.HR has 

increased specificity since its transgene expression in peripheral tissues is reduced. In a 

murine model of Canavan disease, AAV9.HR-mediated delivery of the human ASPA gene 

successfully improves motor function. Thus, results demonstrate key point mutations on the 

AAV capsid can alter gene delivery efficiency and specificity.

Point mutations to the AAV capsid can also be used to mitigate recognition by host 

antibodies. Using cryo-electron microscopy reconstruction, site-directed mutagenesis of 

candidate residues, and cellular assays, Bennett et al. identified residue K531 as the 

contributor to AAV6 recognition by ADK6, a monoclonal antibody [33]. Mutation of K531, 

therefore, has the potential to impart immune evasion properties to AAV6. In a separate 

study, an AAV6 mutant, AAV6.2FF, was generated by introducing three point mutations 

(F129L, Y445F, and Y731F) to the capsid [34]. This mutant exhibits enhanced transduction 

efficiency in vitro relative to AAV6. Moreover, it is also more resistant to neutralization by 

intravenous antibodies. Although AAV6.2FF accumulates more rapidly in the lungs and 

muscles of mice, long-term expression levels do not reveal significant differences with 

AAV6. Point mutations to the AAV capsid, therefore, can be a useful strategy for preventing 

vector neutralization by preexisting antibodies in the host.

In addition to point mutations, larger peptide domains from one AAV serotype can be 

transferred to another serotype to impart new functions. For example, the ‘receptor binding 

footprint’ of the AAV9 capsid was incorporated into AAV2, which imparted the latter with 

galactose (Gal) binding properties of AAV9 [35]. The two resulting chimeras, AAV2G9 and 

AAV2i8G9, effectively bind to both HSPG and Gal receptors for cell entry. Moreover, the 

latter vector also exhibits liver de-targeting akin to its parental strain AAV2i8. This work 

revealed that grafting the Gal receptor recognition domain onto the AAV2 capsid does not 

require substantial sequence alteration and invites further investigation into extending this 

design approach using receptor binding domains from other AAV serotypes.

More recently, directed evolution was used in combination with rational design to develop 

AAV variants that could traverse the BBB with greater efficiency and specificity. DNA 

shuffling was used to generate capsid chimeras between AAV1 and AAVrh.10, which were 

then selected in vivo for their ability to cross the BBB. Structural analysis of one successful 

candidate identified three AAVrh.10 domains that may contribute to this property. Further 

studies reduced the functional domains down to eight key amino acid residues, and this 

minimal AAVrh.10 ‘BBB traversing footprint’ was grafted onto AAV1. The resulting vector 

AAV1RX not only transduces cells in the CNS readily, but also demonstrates improved 

specificity as evidenced by diminished transduction in the liver and vasculature [36].
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In order to facilitate the rational design of new AAV capsid chimeras with functional 

domains of one serotype transplanted into another, the SCHEMA algorithm can be used to 

calculate the extent of structural disruption during chimeragenesis [37]. Using results from 

the algorithm as a guide, a small panel of AAV chimeras between AAV2 and AAV4 were 

generated. Experimental validation revealed that SCHEMA could be a useful tool for AAV 

capsid design, specifically in assessing capsid intactness and transduction efficiency. In sum, 

larger peptide domains from one AAV variant can be incorporated into another variant to 

rationally design new AAV mutants.

Insertion of nonviral parts into AAV capsid

A second rational design approach is to introduce functional domains nonviral in nature into 

the AAV capsid to elicit desired functions. For example, hexahistidine (His)-tagged designed 

ankyrin repeat proteins (DARPin) specific for Her2, CD4, and EpCAM have been inserted 

into the VP2 subunit of AAV2 [38]. Enrichment of DARPin-expressing viral particles by 

immobilized metal ion affinity chromatography eliminates off-target vector delivery, 

suggesting that subpopulations of capsids deficient in DARPin moieties lead to off-target 

transgene expression. The modified vectors demonstrated efficacy in in vitro and in vivo 
experiments: DARPin (anti-Her2)-AAV carrying a transgene that disrupts DNA replication 

allows for a temporary halt in breast tumor growth; DARPin (anti-CD4)-AAV selectively 

transduces target cells both in vitro and in vivo; and DARPin (anti-EpCAM)-AAV can 

discriminate between tumor cells and blood cells in whole blood samples, transducing only 

the former.

Nonviral parts can also be inserted into the AAV capsid to render them stimulus-responsive 

[39,40]. For example, small ‘peptide locks’ consisting of tetra-aspartic acid residues flanked 

by various protease cleavage sequences have been inserted in close proximity to the HSPG 

binding domain of AAV2 [41]. The peptide locks prevent the vector from transducing cells 

until they are cleaved off the capsid by extracellular proteases, such as matrix 

metalloproteinases (MMPs). Peptide locks with other amino acid compositions have also 

been tested, and results suggest the locks function primarily via steric obstruction of capsid-

receptor binding interactions [42]. The protease-activatable vectors can perform Boolean 

AND gate logic, requiring detection of two different MMPs to transduce cells. The 

transduction efficiency of the AAV protease-activatable vectors can be improved by 

combining different ratios of wild-type and protease-activatable subunits [43]. Transduction 

efficiency increases with incorporation of more wild-type subunits; however, higher levels of 

non-specific transduction are also observed.

While endogenous stimuli can prompt viruses to respond accordingly within their 

microenvironment, external regulation may facilitate more temporal and spatial control of 

transgene delivery and expression. For instance, AAV transduction may be controlled by an 

externally applied chemical stimulus [44]. An AAV2 vector was developed with its natural 

cell receptor binding ability ablated and replaced with human FK-binding protein (FKBP). 

When supplied with a fusion protein containing an FKBP-rapamycin binding (FRB) domain 

attached to a DARPin moiety (targeting the human epidermal growth factor receptor - 

EGFR) as well as the small molecule rapamycin analog, the small molecule induces binding 
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of FKBP to FRB, resulting in the mutant AAV vector able to transduce cells overexpressing 

EGFR.

In addition to chemical stimuli, externally applied light can be used to control AAV 

transduction. A light-activatable platform based on the heterodimerization of Phytochrome B 

(PhyB) and Phytochrome Interacting Factor (PIF) has been developed [45]. Upon delivering 

AAV2 displaying PIF on its capsid surface, a PhyB-NLS plasmid, and the chromophore 

phycocyanobilin to mammalian cells, efficiency of virus nuclear translocation can be 

modulated using different ratios of red to far red light. Moreover, cells exposed to increasing 

red light intensities through a photomask can exhibit higher gene expression in a spatially 

controlled fashion [46].

Lastly, nonviral motifs can be inserted into the AAV capsid to bring about new functional 

outputs. Recently, a panel of mosaic AAV capsids with varying lengths of VP2 truncation 

mutant subunits with a His tag at the N-terminus have been generated [47]. By harnessing 

the AAV capsid’s natural mechanism of activatable peptide display, the resulting virus 

particles exhibit varying degrees of His tag exposure pre- and post- temperature activation. 

Among the elucidated design principles, capsid mosaicism appears to be a requirement for 

robust activatable peptide display, with incorporation of fewer mutant subunits improving 

activatability. The length of the truncation subunits does not impart any significant 

functional effects. In sum, motifs from nonviral sources can be incorporated into the viral 

capsid in order to dramatically expand the functionality of AAV vectors.

Chemical biology approaches for AAV capsid modification

The third rational design approach involves using chemical biology strategies to make more 

precise modifications to the capsid. For example, an aldehyde tag was inserted into all three 

VP subunits of the AAV2 capsid, to which various types of molecules could be attached 

[48]. Despite overall low transduction efficiency, conjugating cyclic RGD peptides to the 

modified AAV improves transduction of HeLa cells compared to controls lacking the 

functionalized peptides.

In another study, the non-canonical amino acid AzK was genetically incorporated at five 

different surface-exposed regions on the AAV2 capsid [49]. A synthetic peptide targeting 

αvβ3 integrin receptors was then chemically conjugated to the AzK residues of two AAV 

variants, T454AzK and R588AzK. The latter mutant demonstrates effective vector 

retargeting and transduction of high αvβ3-expressing ovarian cancer cells.

More recently, a small tetracysteine motif was introduced into AAV9 for subsequent 

chemical attachment of a maleimide dye [50]. Fluorophore labeling does not disrupt the 

virus’s ability to pass through the BBB in mice, and the fluorescent vectors can be tracked in 

real-time using intravital microscopy. Insights on the capsid interactome were gleaned from 

studies employing a maleimide-biotin AAV9 variant in human embryonic kidney (HEK) 

cells, namely that transduction decreases in the absence of αVβ6 integrin but increases with 

lower levels of histone deacetylase 4. In sum, chemical biology methods to capsid 

modification allow for site-specific attachment of moieties, such as targeting ligands and 

fluorophores, to the vector.
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Conclusion

Rational design strategies for AAV capsid engineering have yielded numerous vectors with 

enhanced functionalities. They rely on fundamental insights derived from the continuous 

discovery of naturally occurring virus variants, structural characterization, predictive 

modeling, and mechanistic studies. In consideration of clinical translation, areas that have 

been explored but still require further progress include improving AAV transduction 

efficiency, targeting specificity, and minimizing recognition by the host immune system. 

While mutation of various capsid residues may impart desirable characteristics, such as 

enhanced transduction or specific tissue de-targeting, the precise mechanisms behind these 

outcomes often remain poorly understood. Therefore, additional comprehensive experiments 

are needed to further our understanding of capsid sequence-structure-function relationships. 

When inserting exogenous motifs into the AAV capsid, it is sometimes difficult to minimize 

their effects on capsid assembly and hence vector production. If the vectors are to progress 

towards scale-up and clinical testing, improved designs must be investigated to lessen any 

adverse impacts of motif insertion on vector titers. As new AAV capsid variants continue to 

be developed and studied, key design principles will be discovered which will inform future 

capsid improvement strategies.
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Highlights

• Rational design of AAV relies on virus sequence, structure, and function 

knowledge.

• Strategies include point mutations, motif insertions, and chemical biology 

methods.

• Goals are to improve AAV transduction efficiency, specificity, and immune 

evasion.
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