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Abstract

Purpose of the Review: To summarize the potential interactions between obstructive sleep 

apnea (OSA), atrial fibrillation (AF), and connexins.

Recent Findings: OSA is highly prevalent in patients with cardiovascular disease, and is 

associated with increased risk for end-organ substantial morbidities linked to autonomic nervous 

system imbalance, increased oxidative stress and inflammation, ultimately leading to reduced life 

expectancy. Epidemiological studies indicate that OSA is associated with increased incidence and 

progression of coronary heart disease, heart failure, stroke, as well as arrhythmias, particularly AF. 

Conversely, AF is very common among subjects referred for suspected OSA, and the prevalence of 

AF increases with OSA severity. The interrelationships between AF and OSA along with the well-

known epidemiological links between these two conditions and obesity may reflect shared 

pathophysiological pathways, which may depend on the intercellular diffusion of signaling 

molecules into either the extracellular space or require cell-to-cell contact. Connexin signaling is 

accomplished via direct exchanges of cytosolic molecules between adjacent cells at gap membrane 

junctions for cell-to-cell coupling. The role of connexins in AF is now quite well established, but 

the impact of OSA on cardiac connexins has only recently begun to be investigated. Understanding 

the biology and regulatory mechanisms of connexins in OSA at the transcriptional, translational, 

and post-translational levels will undoubtedly require major efforts to decipher the breadth and 

complexity of connexin functions in OSA-induced AF.

Summary: The risk of end-organ morbidities has initiated the search for circulating mechanistic 

biomarker signatures and the implementation of biomarker-based algorithms for precision-based 

diagnosis and risk assessment. Here we summarize recent findings in OSA as they relate to AF 

risk, and also review potential mechanisms linking OSA, AF and connexins.
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Sleep-Disordered Breathing:

Sleep-disordered breathing (SDB) is a highly prevalent cluster of conditions that affects both 

genders and is frequently associated with a wide variety of co-morbid disorders affecting 

multiple organ systems. The major categories included in SDB consist of obstructive sleep 

apnea (OSA), central sleep apnea (CSA), obesity hypoventilation syndrome (OHS), and 

sleep-related hypoxemia such as in COPD and other lung parenchymal diseases. OSA 

affects at least 5-15% of the general population and possibly much more 1, 2 is characterized 

by recurrent collapse of the upper airway during sleep 3, and has been conclusively 

recognized as an independent cardiovascular disease (CVD) risk factor, as well as a major 

public health issue with society-wide adverse consequences involving motor vehicle 

accidents or work-related accidents, cognitive, mood and behavioral deficits impairing work 

performance, and metabolic and sexual dysfunction 4-7.

The cumulative evidence indicates that hypoxia, namely chronic intermittent hypoxia (CIH), 

generated during repetitive long apneic episodes is one of the major key factors linking SDB 

and CVD 8. Accordingly, OSA is an independent causally-associated factor in the 

development of hypertension, with the risk increasing as OSA severity increases 9, 10. Severe 

OSA (apnea– hypopnea index [AHI] ≥30 events/hour) has also been strongly associated 

with an increased risk of stroke, ischemic heart disease, atrial fibrillation (AF) and excess 

CVD and all-cause mortality 11-13.

To identify potential mechanisms of OSA morbidity, animal models have been developed to 

include not only the physiological perturbations that characterize SDB (i.e., CIH or sleep 

fragmentation (SF)), but also to incorporate disease aspects of human obesity and its co-

morbidities that are important contributors to end-organ injury in the context of OSA. Here, 

we will particularly focus on the findings derived from studies in rodents who were exposed 

to chronic intermittent hypoxia (CIH). Most models induce environmental hypoxia using 

inspired oxygen concentrations in the 5–7% range, and aim to elicit nadir arterial 

oxyhemoglobin saturation levels of 75–80%, which closely correspond to the saturation 

levels seen in moderate to severe OSA in humans 14-16. Models of CIH in mice and rats, 

defined as intermittent hypoxia exposures during sleep periods for 2 weeks or longer, result 

in phenotypic manifestations that are strikingly similar to the clinical features of human 

OSA. Increased oxidative stress, evidence of autonomic nervous system dysregulation with 

increased sympathetic tonic and reflexive activity, and activation and propagation of tissue 

and systemic inflammatory pathways become all apparent, usually beginning within the first 

few days after initiation of CIH. These alterations result in cardiovascular derangements 

including hypertension and increased atherogenesis, along with metabolic perturbations that 

include insulin resistance and dyslipidemia even in non-obese animals fed with regular diet 
16-21. These findings have been replicated in a very small number of experimental studies 

involving humans, usually involving relatively short 2–14 day exposures to intermittent 

hypoxia in young healthy volunteers, and have also resulted in measurable alterations in 

memory, systemic blood pressure, glucose disposition, and calculated sensitivity of 

peripheral tissues to insulin 22-25.
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Considering that the prevalence of obesity is increasing worldwide, and that obesity 

represents one of the significant risk factors for OSA, as evidenced by the fact that more 

than 70% of patients being obese 26, 27, it is sometimes difficult to extricate the contributions 

of OSA and obesity to downstream morbidities. Obesity, a complex disorder, is most 

commonly caused by a combination of excessive food intake, lack of physical activity, and 

genetic susceptibility. Obese individuals are susceptible to co-morbidities such as type 2 

diabetes mellitus, nonalcoholic fatty liver disease (NAFLD), asthma, cancers, 

cardiovascular, and neurodegenerative diseases 28-32. The prevalence of metabolic syndrome 

is on the rise due to the obesity epidemic. Evidence suggests that an abnormal metabolic 

syndrome is associated with higher risk of diabetes and CVD 33, 34. Obesity in turn is a well-

recognized risk factor for OSA, and higher body mass index (BMI) is associated with 

greater severity of OSA for both genders 35.

Several attempts have been made to reproduce the pathological features of obesity-related 

OSA in animal models, and the more recent murine model is the New Zealand obese mouse 

(NZO/HlLtJ). These mice, which have anatomic and functional characteristics similar to 

those of obese OSA patients, also manifest obstructive respiratory events and may 

consequently be used as a pathophysiological model of OSA 36. It would be beneficial to 

study obesity and cardiovascular risk to identify OSA patients because several 

cardiovascular disease mechanisms in obese people can also be attributable to occult OSA 
37.

It has been demonstrated that there is an independent association between OSA, insulin 

resistance, and type 2 diabetes mellitus (T2DM) by a number of cross-sectional studies, 

observational studies, and large population-based studies 38-40. Metabolic syndrome is a 

cluster of metabolic factors that increases the risk of cardiovascular disease (CVD) 

morbidity and mortality including AF, and also increases the risk of developing T2DM by 

three-fold, cardiovascular disease by two-fold, and is growing as a major public health 

challenge worldwide 41.

As indicated above, the physiological consequences of OSA include intermittent arterial 

hypoxemia, central and peripheral nervous system autonomic arousal, and large swings in 

intrathoracic pressures during sleep, which in turn are associated with enhanced sympathetic 

activation and parasympathetic withdrawal, a combination of neural inputs that clearly 

facilitates the induction of arrhythmias, such as AF in vulnerable individuals 42-48 Of note, 

these very same mechanisms have also been implicated in the pathogenesis of AF per se in 

the absence of OSA, either by triggering its initiation or by atrial remodeling so as to 

promote or maintain the AF arrhythmia 49-51. However, OSA can also induce and facilitate 

the occurrence of hypertension, myocardial infarction, and heart failure, and, in concert with 

obesity, these conditions can lead to cardiac remodeling, as well as arrhythmia, particularly 

AF 50, 52, 53. Therefore, as shown in Figure 1, there is strong biologic plausibility that OSA 

may predispose toward the development of AF 51.

OSA has not only been recognized as an independent risk factor for major postoperative 

cardiopulmonary complications in addition to increased consumption of economic resources 

and increased hospital stay duration 54, but such increased complication rates and associated 
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hospitalization costs are accounted in a substantial proportion by underlying strong 

associations between OSA and AF 55, 56. Indeed, the prevalence of sleep apnea, particularly 

OSA, is 21% to 74% in patients with AF 57-59. Similar to OSA, AF prevalence is also 

expected to rise given the increased percentage of the aging population segment 60, 61.

Recently, several studies have shown a favorable effect of continuous positive airway 

pressure (CPAP) treatment on blood pressure, but this effect exhibits great variability 62. In 

fact, 25–30% of patients who use CPAP treatment for > 4 h/night do not experience a 

positive effect on blood pressure 63, 64. Application of precision medicine to these patients 

using circulating biomarkers such as microRNAs (miRNA) was reported as a first-line 

intervention to avoid the prescription of ineffective treatments and excessive consumption of 

pharmacological drugs that do not ameliorate the cardiovascular risk 62, 65. In parallel, Lim 

et al., 2017 presented a conceptual framework that provides the basis for a new P4 medicine 

approach to OSA, and should be considered more in depth: predict and prevent those at high 

risk for OSA and its morbid consequences, personalize the diagnosis and treatment of OSA, 

and build in patient participation to manage OSA, 66 thereby justifying its acronym of P4 

(i.e., prediction, prevention, personalization, and participation). In this context, our effort to 

identify circulating biomarkers of personalized prediction to therapy employed identification 

and validation of plasma-based miRNA is the initial step in such direction 62, 65.

Atrial Fibrillation:

Atrial fibrillation (AF), is the most commonly sustained arrhythmia worldwide, is associated 

with significant morbidity and mortality, and impairs quality of life, while complicating the 

management of other chronic diseases 67-71. AF is driven by structural and functional 

alterations in the atria that consequently result in complex electrophysiological 

perturbations. Patterns that render the atrial conductive system and the autonomic system 

dysfunctional, lead to a vicious cycle of exacerbated atrial and ventricular remodeling events 

(electrical, structural, and autonomic) that promote and maintain AF 72, 73. Three hypotheses 

have been suggested that explain the mechanisms of atrial fibrillation: (i) multiple random 

propagating wavelets, (ii) focal electrical discharges, and (iii) localized re-entrant activity 

with fibrillary conduction 74.

A number of clinical conditions are associated with an increased incidence of AF. Most of 

these conditions contribute to a gradual and progressive process of atrial remodeling 

characterized by changes in (i) ion channel function, (ii) calcium homeostasis, (iii) atrial 

structure such as cellular hypertrophy, activation of fibroblasts, and (iv) tissue fibrosis. These 

alterations may favor the occurrence of “triggers” for AF that initiate the arrhythmia as well 

as enhance the formation of a “substrate for AF” that promotes its perpetuation 75. The 

major clinical risk factors for AF incidence include age, diabetes, hypertension, heart failure, 

and coronary artery disease 76. AF and the accompanying deterioration of atrial mechanical 

function is associated with considerable morbidity, including increased risk of cognitive 

impairments, a 3-fold increase in the risk of heart failure, and a 5-fold increase in the risk of 

stroke 77, 78. Consequently, AF leads to substantial health care resource use and economic 

burden. As would be expected from the above mentioned pathophysiology, AF is a 

complication of many cardiopulmonary disorders that lead to increased cardiac afterload, 
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elevated filling pressures, and left atrial enlargement 79. Many of the conditions associated 

with such cardiac effects are increasing in prevalence, including hypertension, obesity, and 

of course OSA 80. Age-related declines in vascular compliance, increasing population 

longevity, and the increasing prevalence of cardiovascular disease in older persons has led to 

an expanding AF epidemic 81.

As discussed, obesity and OSA are both interactive risk factors for AF 82, 83. Obesity is 

commonly clustered with metabolic syndrome, diabetes, hypertension, and OSA, all of 

which may contribute to the development of AF. Obesity and OSA share multiple 

abnormalities implicated in the pathogenesis of AF, including hypoxia, negative 

intrathoracic pressure leading to increased atrial wall stress, sympathovagal imbalance, left 

ventricular diastolic dysfunction, systemic inflammation, and increased intravascular volume 
82, 84-8889, 90. Moreover, one-third of AF patients have at least three associated 

comorbidities, with a low percentage of AF patients presenting with presumably no heart 

disease or comorbidities 91. Figure 2 illustrates the link between obesity, OSA, and AF.

Notwithstanding the enormous advances in our understanding of the molecular 

pathophysiology of AF during the past decades, there are still numerous important gaps that 

need to be addressed. Structural remodeling seems a key for AF stabilization and therapy 

resistance 92. Notwithstanding, the genomics and proteomic features of AF require further 

investigation and clarification. Advanced bioinformatics and computational modeling 

approaches have the capacity to integrate and synthesize current insights to grapple with the 

complexity of AF. Bioinformatic tools will undoubtedly play a key translational role in 

understanding and combating the mechanisms of AF in vivo, due to sophisticated multiscale 

computational modeling that can integrate the cellular and molecular processes in the second 

and third dimensions, providing key insights into the impact of molecular events for AF at 

the multicellular tissue level 92.

Pathophysiological Mechanisms of Atrial Fibrillation:

The pathophysiology of AF is complex, involving dynamic interactions among several 

factors, including substrate, triggers, and perpetuators, and the therapeutic approaches/

strategies are informed by the disease progression from initiation of the abnormal electrical 

rhythm to its maintenance 93. It has been reported that inflammation is a key component of 

the pathophysiological processes that lead to the development of AF; and the amplification 

of inflammatory pathways triggers AF, as AF increases the inflammatory state 94. There are 

a number of risk factors and comorbidities that are common to both AF and OSA including 

age, male sex, hypertension, congestive heart failure and coronary artery disease 95. In 

addition, the intermittent hypoxia, recurrent arousals and increased negative intrathoracic 

pressures that characterize OSA and result in increased sympathetic nerve activity, oxidative 

stress, inflammation, and electrical and mechanical remodeling of both atria as well as the 

left ventricle are most likely to further aggravate the risk of AF or make AF more resistant to 

therapy while promoting recurrence 96, 97, 9899. OSA induces deeply negative intrathoracic 

pressure, increases venous return, impairs LV filling, and diminishes stroke volume. 

Strongly negative intrathoracic pressures activate intrathoracic baroreceptors, inducing 
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autonomic reflex responses that promote AF 100. AF onset tends to occur during sleep apnea 

episodes, suggesting that episodes of OSA acutely enhance the risk of AF 101.

Atrial Fibrillation and OSA:

There is now little doubt that the prevalence of OSA in AF is markedly higher than in the 

general population 95, 102, increasing the awareness of the potential relationships between 

AF and OSA 80, 103. As mentioned, OSA has been documented as a comorbidity with 

potential interaction and impact on progression and outcome of patients with cardiovascular 

disease 104, and several studies have indicated the presence of OSA as a predictor of AF in 

specific subgroups including post-cardiac surgery, post-electrical cardioversion, post-

ablation, or in association with underlying congestive heart failure 105. It has been estimated 

that the risk of atrial fibrillation is four times higher in patients with OSA independent of 

obesity, age, hypertension, heart failure or other confounding variables. In addition, nearly 

50% of patients of AF have OSA 55. The severity of OSA has been shown to influence the 

prevalence of AF. Patients with an AHI of ≥10/h had an AF prevalence rate of 58% 

compared with 42% in those with an AHI of ≤10/h (P<0.0001), and the frequency of AF was 

even higher (70%) in patients with severe OSA (AHI ≥40/h) 102.

Mechanisms of Atrial Fibrillation in OSA:

The common mechanisms linking OSA and AF are complex and mediated by multiple 

mechanisms. For example, human and animal studies have demonstrated that the 

pathophysiologic changes brought on by OSA, including changes in intrathoracic pressure, 

hypoxia, and hypercapnia may cause structural and electrical changes that predispose to 

arrhythmia including AF 82. It has been indicated that OSA increases atrial pressures, 

causing atrial stretch that could promote remodeling 106. Furthermore, animal data 

evaluating the impact of apnea on atrial electrophysiology demonstrated slowed atrial 

conduction and increased atrial refractoriness. Temporal differences of normalization of 

these factors after apnea cessation enable a window for heightened AF vulnerability 107-109. 

OSA induces repeated episodes of hypoxia that trigger chemoreflex and enhance 

sympathetic nerve activity, leading to tachycardia and blood pressure elevation, especially at 

the end of the apneic episodes 110. Also, hypoxia and reoxygenation cycles in OSA cause a 

change in oxidative balance, leading to the formation of reactive oxygen species capable of 

reacting with other organic molecules impairing their functions 111. Additionally, it has been 

indicated that hypoxia and hypercapnia associated with sleep apnea affect sympathetic nerve 

activity and cause vasoconstriction and, as a result, hypertension that is a known risk factor 

for AF 112, 113. There is also increasing evidence that OSA results in atrial electrical and 

structural remodeling. The atria of OSA patients were shown to have extensive areas of low 

voltage or electrical silence and conduction abnormalities, slower atrial conduction velocity, 

and sinus node recovery times 114. Very recently, it has been reported that mice exposed to 

CIH exhibit changes in the passive stiffness of the cardiac tissue extracellular matrix (ECM), 

a critical factor underlying conduction changes and predisposing to AF 115.

Understanding of AF mechanisms in the context of OSA may allow for more direct targeting 

of specific pathophysiological contributors. Furthermore, new insights into the molecular 
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pathophysiology of AF open new opportunities in risk assessment and monitoring of 

therapeutic responses. Novel biomarkers under investigation include noninvasive indices of 

atrial fibrosis and plasma biomarkers reflecting underlying biochemical mechanisms or 

responses 116, 117. Genetic findings suggest that dysregulation of gene transcription and an 

imbalance in major regulatory pathways of cell function may contribute to the complex 

genesis of AF. Future challenges include the identification and investigation of the 

downstream components of these pathways and henceforth, the identification of therapeutic 

targets of AF, particularly in the context of OSA 118.

Connexins:

Connexins ubiquitous proteins that are highly expressed in the heart, brain, and liver, as well 

as in endothelial and smooth muscle of blood vessels 119, 120. Connexins are critical for the 

development, function, and homeostasis of tissues and organs. Dysregulations of connexins 

are linked to many diseases such as stroke, heart attack and cancer 119. Connexins compose 

of a large family of trans-membrane proteins that allow intercellular communication and the 

transfer of ions and small signaling molecules between cells. Their main function is to 

facilitate cell-cell communication by forming channels called gap junctions (GJs) that 

connect the cytoplasm of cells 120. It has been reported that 20 different connexin genes have 

been found in mice and 21 in humans 121. Disruption of adhesion complexes, mainly 

adherent junctions, tight junctions, and gap junctions, leads to interference with normal 

tissue function, and may eventually lead to tissue dysfunction 122. Connexins are commonly 

named according to their molecular weights, and three different connexins were documented 

in cardiac myocytes, namely Cx40, Cx43, and Cx45. These 3 connexins were found to be 

expressed between cardiomyocytes, whereas Cx37 and Cx40 are present between 

endothelial cells 123, 124. All connexin molecules have four membrane-spanning domains, 

two extracellular domains, and a cytoplasmic carboxy-terminal tail of varying length that has 

an important role in the regulation of the gating properties of the channel 125. Connexin 

signaling can be achieved via direct exchanges of cytosolic molecules between adjacent cells 

at gap junctions, for cell-to-cell coupling, and possibly also can involve the formation of 

membrane “hemichannels,” for the extracellular release of cytosolic signals, direct 

interactions between connexins and other cell proteins, coordinating influence on the 

expression of multiple genes 126. Among the various connexins, Cx43 is the most studied 

connexin protein due to its expression in a wide variety of different tissues. For example, 

Cx43-containing gap junctions couple cardiomyocytes with non-cardiomyocytes, which can 

then alter the electrophysiological properties of cardiomyocytes 127.

Connexins play a central role in the synchronized contraction of the heart muscle, as well as 

the essential physiological processes such as tissue inflammation and repair 128, 129. 

However, the loss of connexins or mutations affecting their normal functions such as 

embryonic development, morphogenesis, and cell differentiation, as well as in the control of 

adult cell proliferation, and migration, and therefore connexins deficits have been implicated 

in a variety of diseases 130, 131132-135.

Cellular interaction in blood vessels is maintained by multiple communication pathways, 

including gap junctions and consist of intercellular channels ensuring direct interaction 

Khalyfa and Gozal Page 7

Curr Sleep Med Rep. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between endothelial and smooth muscle Cells 125. In general, Cx40 and Cx37 are 

abundantly expressed in elastic (aorta) and muscular (coronary) arteries of various species 
136-138, whereas the expression of Cx43 is restricted to the endothelial cells at branch points 

of these arteries 137. Furthermore, two studies reported that Cx40 plays an important role in 

blood-pressure regulation, and deletion of the Cx40 gene in mice results in a marked, 

sustained form of systemic hypertension 139, 140. In addition, the major dysfunction in Cx40-

deficient mice appeared to depend on local blood flow–induced signaling in the afferent 

arteriole, a concept that was elegantly confirmed in perfused kidney by using a gap-junction 

blocker 140. For example, Cx43 plays a role in the looping of the ascending limb of the heart 

tube and the development of the right ventricle and the outflow tract, while Cx43-knockout 

mice die at birth of severe cardiac malformations 141.

Connexin signaling is regulated by several mechanisms at the transcriptional, 

posttranscriptional, translational, and posttranslational level 142, 143. Connexin expression 

may be related to epigenetic mechanisms, including reversible histone modifications, DNA 

methylation, and microRNA-related actions 144, 145, but is predominantly controlled by the 

conventional cis/trans machinery 142. A basal level of connexin gene transcription is 

maintained by general transcription factors, such as specificity protein 1 and activator 

protein 1. However, tissue-specific expression depends on cell type-specific repressors and 

activators, such as hepatocyte nuclear factor 1 alpha or Cx32 expression in the liver 146. In 

addition, epigenetic mechanisms, including histone modifications, DNA methylation, and 

microRNA-related control, are essential determinants of connexin gene transcription 144. In 

the vasculature there are several connexin (Cx) isoforms that were identified including Cx32, 

Cx37, Cx40, Cx43, and Cx45, which regulate the coordination of vessel contraction and 

relaxation. Generally, Cx32, Cx37, and Cx40 have been shown the most abundant in ECs 

with Cx43 and Cx45 routinely identified in the vascular SMCs 147. However, this expression 

pattern varies depending on vessel size and function with Cx43 found in the endothelium at 

arterial branch points and in smaller resistance vessels 148.

Connexin abnormalities have now been critically implicated in the pathophysiology of AF 

for quite some time. Generally, either mutations that reduce the expression or function of 

cardiac connexins or alternatively diseases that foster declines in the expression of connexins 

in atrium have been shown to increase the probability of AF and the susceptibility to AF 

recurrence 149-155. Initial experiments in rats indicated that induction of recurrent apneas 

was associated with increased probability of AF and that such susceptibility appeared to be 

dependent on connexins expression 109. More recently, work from our laboratory showed 

that CIH down regulates the expression of cardiac connexins traditionally implicated in the 

pathophysiology of AF, ie., Cx40 and Cx43, and that such reductions in expression are likely 

mediated by increased oxidative stress, since abrogation of NADPH oxidase was protective 

and preserved connexins expression in atrial myocytes 156.

As discussed above, the connexin gene family undergoes extensive regulation at the 

transcriptional and post-transcriptional level, and also undergoes numerous modifications at 

the protein level, including phosphorylation, which ultimately affects their trafficking, 

stability, and function. Recently, it has been indicated that intercellular communication can 

occur directly between neighbor cells via gap junctions (GJ), or indirectly at longer 
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distances through soluble factors and extracellular vesicles (EVs) released into the 

environment 157, 158. Furthermore, Cx43, was able to modulate the interaction and 

communication between exosomes and cells 157. Extracellular vesicles (EVs) are membrane-

bound, subcellular fragments that contain DNA, RNA, protein and lipids, and play an 

important role in intercellular communication. Currently, EVs are commonly classified 

based on their intracellular origin and size. Exosomes are class of EVs that were described, 

for the first time three decade ago, as very small vesicles of endosomal origin, and released 

as a result of the fusion of the multivesicular bodies (MVBs) with the plasma membrane in 

reticulocytes from rats and sheep 159, 160. Exosomes transfer biological information to 

neighboring cells, and through this cell-to-cell communication are involved not only in 

physiological functions such as cell-to-cell communication, but also in the pathogenesis of 

some diseases, including tumors and neurodegenerative conditions. They carry the large 

sized molecules such as RNA and proteins that influence gene expression.

A major breakthrough was the demonstration that the cargo of EVs included both mRNA 

and miRNA and that EV-associated mRNAs could be translated into proteins by target cells 
161. Later studies reported on the RNA contents of EV isolates from other cell cultures and 

body fluids 162-166. In both patients with OSA or in animal models using CIH or sleep 

fragmentation, we showed that exosomes carrying miRNAs can be internalized and 

transferred from one cell to another 164-169 as illustrated in Figure 3. In addition, initial work 

linking extracellular vesicle content and activity to AF has begun to emerge 170, suggesting 

that exosomes may play a contributory role in facilitating AF under specific circumstances 

such as OSA or obesity. Furthermore, therapeutic approaches involving exosome-based gene 

therapy are being explored on the ability of exosomes to cross biological barriers and their 

capacity to shuttle functional nucleic acids between cells 171-173. As such, the increased 

propensity and prevalence of AF in OSA may be not only detectable via identification of 

biomarkers within exosome cargo in plasma, but may also enable development of specific 

therapies that are selectively delivered to atrial tissue targets via exosomes.

Summary:

OSA has now been extensively investigated as a condition influencing and adversely 

impacting the progression and outcomes of patients with cardiovascular disease. The 

awareness to the potential bidirectional interactions between AF and OSA has increased in 

the last decade. The mechanisms by which OSA predisposes to the development of AF, 

including sympathetic activation, intermittent hypoxia, transmural pressure changes, left 

atrial chamber enlargement, systemic inflammation, and endothelial dysfunction have been 

evoked, and the role of a third player, namely obesity has also emerged. It has been proposed 

that AF patients should be screened for OSA and therapy to alleviate OSA should be 

initiated as soon as it is diagnosed in patients with AF. In this context, the role of OSA in 

altering the expression and regulation of cardiac connexins which are mechanistically 

implicated in AF, and the need to identify at-risk patients with OSA or those with AF to 

facilitate more personalized approaches is prompting examination of circulating exosomes 

as both biomarkers and effectors of the OSA-AF dyad. If confirmed, exosomes may not only 

provide precise identification of AF risk in OSA patients, but may also constitute a precisely 
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targeted therapeutic approach aimed at the atrial conduction system to abrogate the risk of 

AF in susceptible patients.
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Figure 1: 
Cardiovascular consequences of obstructive sleep apnea.
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Figure 2: 
Interactions between obstructive sleep apnea obesity and down-stream effects on atrial 

structure and function including down-regulation of connexins in atrial myocytes.
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Figure 3: 
Hypothetical pathways involving coordinated activities of exosomes released in patients 

with obstructive sleep apnea, their effects on connexins in cardiac tissues, and the potential 

roles of epigenetic modifications on these elements to facilitate the occurrence of atrial 

fibrillation.
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